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A B S T R A C T   

Monitoring built-up areas in the previous year and possible predictions for the following year are 
important in planning regional development and controlling the expansion of built-up areas. This 
study detects changes in the built-up area (2018–2022). It predicts the future (2026) using 
Landsat satellite imagery in the Sleman Regency, Yogyakarta Special Region, Indonesia study 
area. Mapping built-up areas is identified using the Normalized Difference Built-Up Index (NDBI). 
Vegetation conditions were analyzed using the Normalized Difference Vegetation Index (NDVI). 
Changes in the built-up area are predicted using the CA-Markov chain model for 2026. The 
prediction is calibrated by comparing the simulated map with the results of the classification of 
built-up areas in 2022. The research findings show that the built-up area has increased by 12.84 
% from 2018 to 2022 and is predicted to increase by 15.48 % in 2026. The existence of built-up 
areas has an influence on land surface temperatures where the analysis results show a moderate 
correlation between NDBI and LST, namely 2018 (R2 = 0.401), 2019 (R2 = 0.323), 2020 (R2 =
0.401), 2021 (R2 = 0.415), and 2022 (R2 = 0.384). The higher the NDBI value, the higher the 
LST value, and vice versa. Therefore, regional development planning, mainly built-up areas, is an 
important recommendation for decision-makers in the study area.   

1. Introduction 

Urbanization raises resource and environmental problems due to increased population and built-up area while also causing an 
increase in urban heat islands (UHI), which impact the surrounding area. Urbanization is expected to cause land surface temperatures 
in most parts of the world, especially in developing countries, to increase exponentially (Kikon et al., 2016). Rapid urban development 
has transformed large areas of vegetation cover into impermeable surfaces, profoundly changing the atmospheric and climatic con
ditions in urban areas [1,2]. Increased temperature and heat increase the demand for cooling, resulting in the transfer of excess heat 
and moisture to the atmospheric air, which can threaten the health of the occupants in the long term. Anthropogenically induced loss 
of vegetation cover increases built-up and impervious surfaces in urban areas, resulting in changes in monthly and annual average 
temperatures. Monitoring the development of built-up area in urban areas is useful for seeing very dynamic urban development. 

The study area, Sleman Regency, is part of the Special Region of Yogyakarta Province, an educational and tourism city in Indonesia. 
The student population in Yogyakarta makes up around 20 % of the city’s total population, most of whom come from other parts of 
Indonesia [3]. As a tourist city, Yogyakarta has worldwide tourist attractions: natural, cultural, and unique [3,4]. In recent years 
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tourism in Yogyakarta has been overgrown, and Sleman is no exception [5]. The presence of many tourists requires expanding built-up 
areas to accommodate more tourists [6], thus encouraging land conversion for tourism development [7]. It is one of the causes of the 
relatively high intensity of the increase in built-up areas in Sleman during 2005–2015 [8]. Geographically, Sleman Regency is 
considered a provider of most of the water in Yogyakarta because of its location in the upstream part of Yogyakarta [9]. The future 
spatial pattern of built-up area use will affect water supply-demand risks [10]. Therefore, monitoring and predicting built-up area in 
the future is very important in Sleman Regency for regional development planning that considers ecological conditions. 

Remote sensing can support reliable and effective monitoring systems. In recent years, technology has solved the problem of spatial 
big data analysis, such as time series data. Google Earth Engine (GEE) is one of the most widely used. This geospatial analysis platform 
allows users to visualize and analyze imagery for free at large sizes down to the petabyte scale [11]. Users can access and analyze data 
from the public catalog and their private data using the operator library provided by the Earth Engine API [12]. Several studies have 
conducted using GEE, such as real-time mapping of urban built-up areas [13], extraction of buildings in urban areas [14], land cover 
classification [15], and mapping temporal Normalized Difference Vegetation Index [16]. 

Satellite imagery can detect land surface changes based on several vegetation indices often used in the environmental domain, 
including land surface temperature and vegetation index transformation [17,18]. NDVI is a vegetation index transformation widely 
used for monitoring vegetation [19–21]. Several previous studies have shown that the relationship between NDVI and soil surface 
moisture has a strong positive correlation [20,22]. Land change, increase in urban settlements, and other anthropogenic activities 
increase surface temperature. LST is a condition controlled by the surface and subsurface media’s balance of surface energy, atmo
sphere, and thermal properties [23–26]. Generally, green vegetation and water bodies indicate low LST, while built-up areas, bare 
land, or dry land reflect high LST. In addition to vegetation and surface temperature, it is important to analyze built-up areas to see the 
spatial dynamics of built-up area development in cities. Several previous researchers relied on NDBI for the analysis of built-up areas 
[27–29]. NDBI can be useful in identifying rapid urban growth and the conversion of agricultural and forest land into low-density 
development. It is an objective measure that can provide valuable insights into land use changes [29]. NDBI found to have a strong 
correlation with LST and NDVI [30,31]. 

Fig. 1. Map of research location (Sleman regency) [36].  
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The reliability of remote sensing and geographic information systems can assist spatial changes in an area, including built-up areas. 
Cellular Automata and Markov Chain (CA-Markov) are widely used to make good predictions [32]. Several studies have been con
ducted in various regions to analyze past, present, and future land use changes using CA-Markov [33–35]. This model helps policy
makers make rational decisions in the region’s development. Therefore, the main objective of this research is to analyze the 
spatiotemporal changes of the built-up area over five years (2018–2022) and to predict the built-up area in 2026 using the CA-Markov 
spatial modeling. 

2. Materials and methods 

2.1. The study area 

The investigation is being conducted in Sleman Regency, a district in Yogyakarta, Indonesia’s Special Region. Its geographical 
coordinates are 110◦33′00″ to 110◦13′00″ East Longitude and 7◦34′51″ to 7◦47′30″ South Latitude(Fig. 1). Sleman is a district with very 
dynamic and fast changes, with a high level of urbanization and a dynamic increase in built-up area [8]. 

The northern part of Sleman district is rich in water resources due to its location on the slopes of Mount Merapi, starting from the 
road that connects the districts of Tempel, Turi, Pakem, and Cangkringan up to the peak of Mount Merapi. The eastern area is home to 
historical heritage (temple) covering the Prambanan District, parts of Kalasan District, and Berbah District. The middle region is the 
agglomeration area with the city of Yogyakarta, including the Districts of Mlati, Sleman, Ngaglik, Ngemplak, Depok, and Gamping. The 
western region is a wetland agricultural area with sufficient water and a source of raw materials for craft industry activities in the 
Districts of Godean, Minggir, Sayegan, and Moyudan. 

Fig. 2. Annual precipitation in Sleman regency in 2018–2022 (a) 2018; (b) 2019; (c) 2020); d (2021); e (2022)  
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Sleman Regency experiences a wet tropical climate with a rainy season between November–April and a dry season between 
May–October, as shown by the rainfall data obtained from CHIRPS (https://data.chc.ucsb.edu/) during the period 2018–2022 
(Fig. 2a–e). Fig. 2a–e shows the same pattern where rainfall is high in December–April and begins to decrease in May–November. The 
difference is only in the intensity of rainfall, as shown in Fig. 2b; precipitation fluctuation decreases in October–December. Likewise, in 
2022 (Fig. 2e), the average CH intensity is < 40 mm/day except for August, which is < 20 mm/day. This is per the predictions that in 
2022 the atmosphere and oceans will experience significant changes culminating in different weather patterns. Ocean temperatures 
and pressure patterns during La Nina will result in stable conditions and less rainfall [37]. 

2.2. Methodological approach and datasets 

Imagery analysis is performed on GEE by filtering and masking with 20 % cloud cover on Landsat 8 and 9 imagery. Filtering 
operations are performed annually on the best imagery collection for five years of data. The 2018–2020 imagery dataset uses Landsat 8 
with the script: ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED"). The 2021 and 2022 datasets use Landsat 9 imagery with 
the script ee.ImageCollection("LANDSAT/LC09/C02/T1_L2″). The timeframe considered for this analysis is from year to year, and 
annual collections are made based on the average values of the NDVI, NDVI, and LST indices. The government website confirmed LST 
data with secondary population density data (https://slemankab.bps.go.id/, accessed on June 5, 2023). The Flowchart in Fig. 3 il
lustrates the stages of data processing. 

Linear regression method (LR) is used to approximate the independent variable reported on the value or change in other variables 
studied in linear shape [38]. LR is very appropriate for seeing the correlation between two variables [39]. 

2.2.1. NDVI, NDBI, and LST 
The Normalized Difference Vegetation Index and Normalized Difference Built-up Index are valuable tools in monitoring urban 

development. NDBI is used to identify built-up areas, and is proven to have a positive linear relationship with surface temperature and 
a negative correlation with NDVI [40]. A high NDBI indicates a larger proportion of built-up area, reflecting urban development and 
land use changes [41]. The combination of NDVI and NDBI can provide a dynamic picture of urban growth and land use change, 
making it valuable for assessing spatio-temporal urban growth, land use land cover change, and the environmental impacts of rapid 
urbanization [29]. 

Likewise LST is a valuable tool for monitoring urban development. LST measurements can be used to assess the sustainability of 
urban growth, monitor temperature patterns over time, and identify areas vulnerable to heat stress, such as densely populated urban 
areas or regions with high agricultural activity [42,43]. Dalam sebuah penelitian rata-rata LST 28,74 ◦C untuk kawasan terbangun 
[44]. The various index formulas used in this study are presented in Table 1. 

2.2.2. CA-Markov Chain 
This study’s prediction process for built-up areas was determined using the CA-Markoc chain model. Markov chain is a stochastic 

process that experiences transitions from one state to another according to the state space [34]. CA is a mathematical model that shows 
how different elements in time change dramatically under the influence of nearest-neighbor values. CA-Markov is a mixed model 
between knowledge-based cellular automata integrated with Markov chains and spatiotemporal dynamic modeling. A Markov chain 
creates a set of probability values that indicate the probability of changing the user interface over a certain period, depending on the 

Fig. 3. Flowchart of built-up area prediction methodology.  
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number of changes in the past [32]. This research simulated IDRISI software that developed a land use change model. This model 
consists of two main stages: (1) calculating the probability of conversion, including the conversion probability matrix using Markov 
chain analysis, and (2) simulating the spatial specifications of land use based on CA operators and multi-criteria evaluation (MCE). 

3. Results 

3.1. Spatial distribution of NDVI, NDBI, LST 

The results of the NDVI analysis over five years (2018–2022) are presented in Fig. 4a- 10e with the maximum average ranging from 
(0.8–0.9) while the average minimum value range from (− 0.12) – (− 0, 30). Over five years, the NDVI values have almost the same 
range, namely 2018 (Fig. 4a,-0.12 – 0.81), 2019 (Fig. 4b,-0.24 – 0.88), 2020 (Fig. 4c–0.24 -0.91), 2021 (Fig. 4d,-0.30-0.89), 2022 
(Fig. 4e–0.28-0.90). Variations in NDVI values and vegetation indices indicate changes in current vegetation dynamics and trends [39]. 

Fig. 4a–e shows the highest NDVI values spatially distributed in the northern region, while the lowest NDVI values dominate the 
southern region where land cover is mainly built-up area. Differences in NDVI values over built-up areas based on the testing of several 

Table 1 
The equation used for NDVI, NDBI, and LST calculations.  

Index Name ID 
Index 

Band Used Formulas Application References 

Normalized different vegetation 
index 

NDVI near infra red (nir), red nir − red
nir + red 

mapping vegetation cover [45] 

Normalized different built-up 
index 

NDBI short wave infrared (swir) and nir swir − red
swir + red 

automatically mapping urban 
areas. 

[46] 

Land Surface Temperature index LST thermal infrared sensor (TIRS-1), 
TIRS-2 

Ts =

K2

ln
(

εNB K1
Rc

+1
)

mapping land surface 
temperatures 

[47]  

Fig. 4. Spatial distribution of NDVI in Sleman regency in 2018–2022: (a) 2018; (b) 2019; (c) 2020; (d) 2021; (e) 2022.  

N. Arif and L. Toersilawati                                                                                                                                                                                          



Heliyon 10 (2024) e34466

6

samples are presented in Table 3. 
Table 2 shows the NDVI values over built-up land, and the peak of Mount Merapi is lower than the NDVI value over vegetated areas. 

Built-up land provides a reflection that contrasts with NDVI values in vegetation. However, the weakness of NDVI is that it is only 
specific to vegetation. It is, therefore difficult to distinguish built-up land from open land. To analyze built-up land, it is noticeable 
based on the NDBI results as presented in Fig. 5. 

Fig. 5 shows the NDBI values did not differ significantly during 2018–2022; namely the lowest values ranged from (− 0.44) – 
(− 0.56). That the NDBI values did not differ significantly between 2018 and 2022, namely, the lowest values ranged from (− 0.44) – 
(− 0.56). While the highest values ranged from (0.38–0.45). NDBI values < 0 can extract water bodies, while NDBI >0.1 can extract 
built-up areas and bare land [23]. This study took samples from different land cover types to observe the NDBI values during 
2018–2022 (Fig. 6). 

Fig. 6 shows the NDBI values for vegetation, namely 2018 (− 0.31), 2019 (− 0.19), 2020 (− 0.32), 2021 (− 0.33), and 2022 (− 0.34). 
Whereas the NDBI values for built-up - 1 land are 2018 (0.10), 2019 (0.16), 2020 (0.18), 2021 (0.06), and 2022 (0.13). On built-up − 2 
land, namely 2018 (0.07), 2019 (0.18), 2020 (0.15), 2021 (0.07), 2022 (0.09). In other studies, its also written that the average built- 
up area ranges from 0.1 to 0.3 [48]. The NDBI value used to classify and predict built-up land in the future, namely the periods of 2018, 
2022, and 2026 with the results obtained that built-up area continues to increase (Table 3 and Fig. 7). The map of the predicted 
built-up areas in 2026 is presented in Fig. 7. 

Fig. 7 shows the spatial distribution of built-up area in 2026, where the built-up areas are clustering in the southern part of the study 
area, namely in the sub-districts of Depok, Mlati, and Ngaglik, as well as in parts of the sub-districts of Godean and Kalasan. Based on 
Table 3, the built-up area increase by 11.28 km2 in 2022, and it is predicted to increase by 13.52 km2 in 2026. 

The dynamics of land surface temperature have been seen based on LST values during 2018–2022, and the results show that the LST 
distribution (Fig. 5) has the same spatial pattern as the NDBI (Fig. 8a–e). LST’s maximum value spreads over the southern part of the 
study area. In contrast, the minimum value distributes in the northern region. The highest LST values in each year, i.e., 2018 
(28.56 ◦C), 2019 (28.59 ◦C), 2020 (28.53 ◦C), 2021 (26.48 ◦C), 2022 (27.18 ◦C). While the lowest LST values, i.e., 2018 (21.27 ◦C), 
2019 (21.89 ◦C), 2020 (20.53 ◦C), 2021 (20.38 ◦C), 2022 (19.12 ◦C). The highest LST scatteres in the southern region, such as in the 
sub-districts of Gamping, Mlati, Ngaglik, and Depok. The four sub-districts have the highest LST values due to the high population in 
the area (Table 4). 

3.2. LST, NDBI, and NDVI correlation 

Fig. 9a–e shows the correlation between NDBI and LST. Correlation points indicate the number of samples tested (n = 666). The 
higher the NDBI value, the higher the LST value, and vice versa. A relatively low correlation occurred in 2019 and 2022 (Fig. 9b and e), 
and this means that the NDBI can be sufficiently used to describe the level of built-up land. The difference in correlation values is due to 
the difference between the image recording time for the image used to extract LST values and the average conditions of the image used 
to analyze NDBI. Fig. 10a–e shows the LST and NDVI correlations. 

A relatively weak correlation between LST and NDVI occurs in 2022 (Fig. 10e), namely R 2 = 0.269, while 2018–2021 has a 
moderate correlation (Fig. 10a–d). Based on these results, it can be concluded that the NDVI values have a negative correlation with the 
LST values, whereas areas with low NDVI values have a high LST value. 

4. Discussion 

This study uses the NDBI to monitor urban development for five years (20018-2022) to ascertain the condition of built-up land. The 
results show no significant changes in Sleman districts during this period (Fig. 5a–e), although the test results from several sample 
points showed an increase in the NDBI value for 5 years (Fig. 7). The NDBI value fluctuates over time, influenced by changes in the 
built-up area and the extent of bare land within the study area. The fluctuations in NDBI values over time can be attributed to the 
conversion of land use from vegetated areas to built-up areas and vice versa. Conversely, an increase in vegetation will result in a fall in 
the NDVI value, thereby indicating a higher proportion of vegetation [30]. It is difficult to quickly analyze temporal variations in urban 
dynamics based solely on built-up land conditions [50]. However, this paper is sufficient to show the relationship between built-up 
land and LST by extracting NDBI values. NDBI is a valuable indicator for forecasting the expansion of urban areas. It quantifies the 
density of built-up structures, including buildings, roads, and other infrastructure. 

The spatial pattern of LST values in Sleman Regency shows peak values in areas with high population density (Fig. 8a–e). However, 
future planning for Sleman Regency has been carried out well, the population in dense areas has decreased, on the contrary, there has 
been an increase in population density in areas that were previously not included in the dense category (Table 4). This has a positive 

Table 2 
NDVI values for different land cover types.  

Coordinate Landcover NDVI-value 

X Y 2018 2019 2020 2021 2022 

0429810.602 09142729.82 built-up area − 0.02 − 0.006 − 0.03 − 0.007 − 0.01 
0429983.02 09157508.31 dense vegetation 0.73 0.73 0.85 0.73 0.83 
0438688.83 9166028,91 the peak of mount Merapi − 0.01 0.00 0.01 − 0.02 0.03  
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impact on regional development, namely reducing spatial gaps in infrastructure, resources and opportunities [51]. The pattern of the 
NDVI values is the opposite of the LST values (Figs. 4 and 8). The high density of vegetation causes the surface temperature to be lower. 
Urbanization creates an inverse relationship between impermeable cover and vegetation, generating new LST patterns due to the 
correlation of LSTs with impermeable cover and vegetation [52]. Table 4 shows the four sub-districts with the highest population 
numbers, namely Gamping, Mlati, Ngaglik, and Depok, where each has a population of more than 100 thousand people. A high 
population density of over 2.7 thousand people/km2 accompanies this high population. Therefore, the higher the population density, 

Table 3 
Built-up land area of Sleman regency in 2018, 2022 and 2026.  

Landuse Area (Km2) 

2018 2022 2026 

built-up areas/bare land 81,80 93,08 106,60 
non built-up area 493,01 481,72 468,20  

Fig. 5. Spatial distribution of NDBI in Sleman regency in 2018–2022: (a) 2018; (b) 2019; (c) 2020; (d) 2021; (e) 2022.  

Fig. 6. Graph of NDBI values on vegetation land cover and built-up area.  
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the higher the LST value of the area. Human-affected areas with large settlements will have higher temperatures [53]. 
The effects of land use, population density, and altitude on the UHI phenomenon found that LST was significantly related to 

population density [54]. This is consistent with the statement that population helps produce, and amplifies the harmful effects of UHI 
[55]. The increase in LST can also be affected by high emissivity values in urban materials such as roads [24]. The pattern of LST is the 
same as several previous studies where high LST is clustered in the city center, characterized with high building density and dominated 
by hotels and shops [56]. This paper proves that there is a moderate correlation between LST and NDBI (Fig. 9). The same pattern was 
conveyed by several previous researchers [30,57]. LST Distribution is confirmed by the level of greenness in the study area using NDVI. 
Correlation results show that NDVI has a negative correlation with LST (Fig. 10a–e). The relationship between average LST, population 
density, and the level of greenness in several cities has a similar spatial pattern [26,58,59]. The City density increases sensitivity to 
climate change [60], loss of green open space [61], and increasing urban heat islands [59,62]. 

The current study uses the CA-Markov chain model to detect changes in the built area in the past, present, and future. The Markov 
chain model can predict future land use changes [32,34].The study’s findings, including the 12.84 % increase in built-up areas from 
2018 to 2022 and the predicted 15.48 % increase by 2026 (Table 3, Fig. 7), provide valuable insights for policymakers and urban 
planners to make informed decisions about the growth and development of the region. Several studies have shown that the prediction 
results of built-up areas will increase [35,63,64]. The trend of growing built-up areas in the study area could be due to urbanization and 
increased tourism. The increased tourism activity has put enormous pressure on destinations to develop tourism infrastructure [65]. 
However, future research should include an analysis of land use and land cover change assessments to provide insight into the 
continuously developing urban landscape [66]. For future research recommendations, NDBI is a valuable tool for monitoring the 
impact of greening efforts on urban development. By monitoring changes in NDBI over time, policymakers can evaluate the effec
tiveness of forestation initiatives in reducing urban sprawl and mitigating urban heat island impacts [67]. 

Fig. 7. Sleman district built-up area prediction map for 2026.  
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5. Conclusions 

The research conducted using Landsat data to monitor LST in urban areas based on NDVI and NDBI values revealed several 
important findings. The highest LST value recorded was 28.59 ◦C in 2019, with an average of 25.25 ◦C. The study showed that NDBI 
values did not differ significantly over the last five years, ranging from − 0.44 to 0.45, and the NDVI values also did not change much, 
ranging from − 0.12 to 0.90. The research established a positive correlation between NDVI and LST, indicating that higher NDVI values 
are associated with lower LST values. Similarly, NDBI and LST exhibited a positive linear correlation, with higher LST values associated 
with higher NDBI values. The study also identified that regions with confirmed high LST are areas dominated by built-up land with a 

Fig. 8. Spatial distribution of LST in Sleman regency in 2018–2022: (a) 2018; (b) 2019; (c) 2020; (d) 2021; (e) 2022.  

Table 4 
Population density of Sleman regency.  

Subdistrict Population Density by District (Person/KM2) 

Total population Population density 

2020 2021 2022 2020 2021 2022 

Moyudan 33514 33842 33684 1213.40 1225.27 1219.55 
Minggir 32110 32459 32449 1177.48 1190.28 1189.92 
Seyegan 51231 51967 51984 1923.81 1951.45 1952.08 
Godean 72255 73036 70898 2692.06 272116 2641.50 
Gamping 103192 104020 95103 3527.93 3556.24 3251.38 
Mlati 100524 100707 93721 3524.68 3531.10 3286.15 
Depok 131005 131242 124565 3685.09 3691.76 3503.93 
Berbah 59004 59976 56449 2566.51 2608.79 2455.37 
Prambanan 53113 53859 54624 1284.47 1302.52 1321.01 
Kalasan 86163 87357 85210 2404.10 2437.42 2377.51 
Ngemplak 67555 68576 64331 1891.77 1920.36 1801.48 
Ngaglik 105612 106173 100780 2741.74 2756.31 2616.30 
Sleman 71888 72972 70976 2295.27 2329.89 2266.15 
Tempel 53628 54164 54739 1650.60 1667.10 1684.80 
Turi 36559 36980 37914 848.43 858.20 879,88 
Pakem 37320 37656 38563 851.28 858.94 879,63 
Cangkringan 31131 31488 31965 648.70 656.14 666,08 

Source [49]: 
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denser population. The research concluded that the results could serve as a recommendation for environmentalists and regional 
planners to consider green open spaces as a counterbalance to the development of built-up areas. 

The research’s findings provide valuable insights into the relationship between urbanization, land surface temperature, and land 
use/land cover changes, and offer important implications for urban planning and environmental management. The correlations 
identified between LST and the NDVI and NDBI values, as well as the continued increase in built-up areas, underscore the need for well- 
planned urban development and the preservation of green spaces to mitigate the urban heat island effect and its associated envi
ronmental and public health impacts. The findings show that additional built-up areas in the future should be well-planned. The results 
of this study can be a recommendation for environmentalists and regional planners to consider green open spaces as a counterweight to 
the development of built-up areas. 
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