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Various immune cell types, including monocytes, macrophages, and adaptive immune T
and B cells, play major roles in inflammation in systemic autoimmune diseases. However,
the precise contribution of these cells to autoimmunity remains elusive. Transcriptome
analysis has added a new dimension to biology and medicine. It enables us to observe the
dynamics of gene expression in different cell types in patients with diverse diseases as well
as in healthy individuals, which cannot be achieved with genomic information alone. In this
review, we summarize how transcriptome analysis has improved our understanding of the
pathological roles of immune cells in autoimmune diseases with a focus on the
ImmuNexUT database we reported. We will also discuss the common experimental
and analytical design of transcriptome analyses. Recently, single-cell RNA-seq analysis
has provided atlases of infiltrating immune cells, such as pro-inflammatory monocytes and
macrophages, peripheral helper T cells, and age or autoimmune-associated B cells in
various autoimmune disease lesions. With the integration of genomic data, expression
quantitative trait locus (eQTL) analysis can help identify candidate causal genes and
immune cells. Finally, we also mention how the information obtained from these analyses
can be used practically to predict patient prognosis.

Keywords: transcriptome, eQTL, autoimmune disease, immune cell, monocytes, macrophages, systemic lupus
erythematosus, rheumatoid arthritis
INTRODUCTION

Autoimmune reactions and chronic inflammation are hallmarks of systemic autoimmune diseases
or rheumatic diseases. The presence of autoantibodies and autoreactive T and B cells in these
diseases indicates that the adaptive immune system is critical for their pathogenesis. The innate
immune response also plays an indispensable role. The infiltration of monocytes and macrophages
is always observed in the affected tissues of patients with autoimmune diseases (1). These cells
stimulate and recruit other immune cells to diseased tissues by secreting pro-inflammatory
cytokines and chemokines. Macrophages are important phagocytes acting against pathogens and
serve as antigen-presenting cells that activate adaptive immune responses (2). Monocytes,
macrophages, and adaptive T and B cells cooperatively contribute to chronic inflammation in
autoimmune diseases.

The majority of systemic autoimmune diseases are multifactorial or polygenic; i.e., no single
variant or gene can fully explain disease development. Genetic studies have revealed cumulative
org May 2022 | Volume 13 | Article 8572691
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polygenic effects of numerous risk (or protective) variants with
weak effect sizes on the susceptibility to developing autoimmune
diseases. In the example of systemic lupus erythematosus (SLE),
a prototypic autoimmune disease characterized by a broad
spectrum of clinical symptoms and autoantibodies (3), patients
in the highest polygenic risk score decile had a higher disease risk
(odds ratio 30.3) compared with those in the lowest decile (4). In
addition to polygenic risk factors, environmental factors are also
critical in the development of autoimmune diseases.
Concordance rates of 20–30% in monozygotic twins emphasize
the importance of environmental factors in the development of
autoimmune diseases (5). Transcriptome analysis of
autoimmune diseases can capture dynamic genome-wide gene
expression changes in immune cells reflecting both genetic and
environmental stimulations.

In this review, we summarize how transcriptome analyses
have improved our understanding of pathological immune cells,
pathways, and genes in autoimmune diseases. We will introduce
our peripheral blood transcriptome analyses on autoimmune
diseases by the ImmuNexUT (Immune Cell Gene Expression
Atlas from the University of Tokyo) consortium (6). We will also
discuss the common experimental and analytical designs of
transcriptome analyses and how transcriptome analysis can
contribute to clinical decision-making for patient care.
BLOOD TRANSCRIPTOME
AND IDENTIFICATION OF
INTERFERON SIGNATURES
Microarray studies, the pioneer transcriptome analyses
conducted in autoimmune diseases, involve the hybridization
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of fluorescently labeled cDNA samples to probes on microarrays.
Identification of the prominent interferon (IFN) genes involved
in SLE by microarray analysis of blood mononuclear cells in
patients and healthy controls in 2003 was an early hallmark
discovery (7, 8) (Table 1). Using this differential gene expression
approach, we compared the transcriptomes of diseased patients
and a control group and statistically created a list of disease
signature genes. Physiologically, plasmacytoid dendritic cells
sense viral nucleic acids via TLR7 and TLR9 and produce type
I IFN. Type I IFN increases the expression of major
histocompatibility complex genes, induces chemokines and
cytokines to recruit immune cells, and activates both innate
and adaptive immune cells into an antiviral state (16). A recent
genome-wide association study found that genetic variants in
type I IFN gene clusters are associated with SLE risk (4).
Elevation of the serum IFN-a concentration in blood cells is
diagnostic of SLE (17). Several clinical trials and identification of
the IFN signature led to the approval of anifrolumab, a human
monoclonal antibody against IFNAR1 that significantly
decreases the expression of type I IFN-induced genes, for the
treatment of SLE in 2021 (18, 19). Enhanced expression of type I
IFN signature genes in SLE is thus pivotal in the pathophysiology
of SLE.

Peripheral blood IFN signature genes are expressed not only
in SLE but also in other autoimmune diseases, including
rheumatoid arthritis (RA), dermatomyositis, systemic sclerosis
(SSc), and Sjögren’s syndrome (20–23). In RA, the most
prevalent autoimmune disease, characterized by chronic
autoimmune inflammation in the joints (24), the preclinical
IFN signature predicts the development of arthritis (20).
Moreover, a third to a half of established RA patients express
IFN signature genes (21, 22). In a comparative study of five
TABLE 1 | Key immune cell transcriptome reports in SLE.

Authors Reported
year

Main experimental
method

Main analytic
method

Key findings Reference

Bennett et al. 2003 Microarray of PBMC DEG IFN and granulopoiesis signature were elevated in SLE. (7)
Baechler et al. 2003 Microarray of PBMC DEG IFN signature was elevated in SLE and it was related to more severe SLE. (8)
Chaussabel et al. 2008 Microarray of PBMC modular IFN signatures and neutrophil signatures were correlated with SLE

disease activity.
(9)

Lyons et al. 2010 Microarray of PBMC,
CD4 and CD8 T cells,
B cells, monocytes,
and neutrophils

DEG, hierarchical
clustering

Transcriptome differences observed in the PBMC largely reflected
changes in their cellular composition. High IFN signatures in monocytes
distinguished SLE from AAV and healthy controls.

(10)

McKinney et al. 2015 Microarray of CD4
and CD8 T cells

modular Enhanced CD8 T-cell exhaustion and reduced CD4 T-cell co-stimulation
signatures indicated a better prognosis in SLE and AAV patients.

(11)

Banchereau et al. 2016 Microarray of PBMC modular Plasmablast gene signature was the robust biomarker of disease activity.
The neutrophil signature was correlated to active nephritis.

(12)

Arazi et al. 2019 single-cell RNA-seq
of kidneys

graph-based
clustering, trajectory
analysis

IFN signatures were correlated between matched blood and kidney
samples. Inflammatory blood monocytes gradually progressed to a
phagocytic and then an M2-like macrophage. Naïve B cells differentiated
to activated B cells with gradual elevation of ABC signature.

(13)

Nehar-Belaid et al. 2020 single-cell RNA-seq
of PBMC

graph-based
clustering

Subpopulations of major immune cells expressed high levels of IFN
signatures. DN2 B cells were expanded in SLE.

(14)

Perez et al. 2022 single-cell RNA-seq
of PBMC

Louvain clustering,
modular, eQTL

Naïve CD4+ T cells are decreased and GZMH+CD8+ T cells are increased
in SLE. Classical monocytes expressed the highest levels of IFN
signature.

(15)
May 2022 | Volume 13 | Art
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autoimmune diseases, the proportion of patients positive for type
I IFN signature genes was 73% for SLE, 66% for
dermatomyositis, 61% for polymyositis, 68% for SSc, and 33%
for RA (22). These data suggest variable contributions of IFN
signature genes to the pathogenesis of autoimmune diseases.
MODULAR ANALYSIS OF THE
BLOOD TRANSCRIPTOME AND
CELL-TYPE GENE SIGNATURES

Analysis of differentially expressed genes at the transcriptome
level is generally permissive to noise because of the large number
of genes (usually > 10,000) analyzed and relatively limited sample
numbers (usually ~100 and at most ~1,000). To overcome this
“curse of dimensionality”, Chaussabel et al. applied modular
analysis to peripheral blood mononuclear cell (PBMC)
microarray data from 239 individuals and found two SLE
disease activity-related transcriptional modules: IFN-signature
and neutrophil genes (9). In modular analysis, sets of
coordinately expressed genes are identified, and modules are
constructed in a data-driven way. The modules typically
represent functionally associated genes, such as plasma cell-
type genes and IFN signature genes.

Banchereau et al. applied this modular analysis to data from
the whole blood of 156 pediatric SLE patients and identified the
plasmablast cell-type gene signature as the most robust
biomarker of disease activity (12). The neutrophil module was
activated in a subset of patients with active nephritis. The authors
proposed a model of gradual disease progression, with early
increases in IFN responses and B-cell differentiation into
plasmablasts, followed by development of kidney disease and
full-blown systemic inflammation fueled by myeloid cells,
including neutrophils.

The most valuable lesson from these early transcriptome
analyses is that blood transcriptomic differences are largely
driven by compositional changes in immune cell populations.
For example, blood transcriptome studies revealed that
peripheral neutrophils are increased in lupus patients with
active nephritis, but they could not determine the qualitative
changes in neutrophils in detail.
BULK IMMUNE CELL TRANSCRIPTOME
AND PURIFIED CELL-TYPE
SPECIFIC SIGNATURES

Lyons et al. isolated CD4 and CD8 T cells, B cells, monocytes,
and neutrophils from patients with SLE or ANCA-associated
vasculitis (AAV) and performed microarray analysis in
comparison with microarray analysis of whole PBMCs (10). In
their study, a substantial number of differentially expressed genes
were identified only in the purified immune cells samples.
Transcriptomic data from the monocytes differentiated AAV
and SLE patients from each other and from controls more
Frontiers in Immunology | www.frontiersin.org 3
robustly compared with the PBMC transcriptomic data.
Especially, IFN signature gene levels in monocytes
distinguished the two diseases.

McKinney et al. analyzed the transcriptomes of purified CD8
and CD4 T cells using a module analysis approach (11). They
found that enhanced CD8 T-cell exhaustion and reduced CD4
T-cell co-stimulation gene signatures indicated a better
prognosis in SLE and AAV patients. In contrast, the CD8
T-cell exhaustion signature was associated with poor outcomes
in patients with viral infections.
IMMUNEXUT; BULK RNA-SEQ ACROSS
IMMUNE CELLS AND IMMUNE-
MEDIATED DISEASES

Recently, we reported ImmuNexUT, a large database containing
immune cell gene expression data from various immune-
mediated diseases and many types of immune cells, in addition
to healthy controls. In the first flagship study (6), we performed
RNA sequencing (RNA-seq) in 28 types of purified bulk immune
cells from healthy samples and 10 immune-mediated diseases
(https://www.immunexut.org/). RNA-seq directly determines
cDNA sequences using next-generation sequencers,
independent of prior knowledge of genomic sequences, and the
dynamic range to quantify gene expression levels is superior to
that of microarrays (25). Modular analysis revealed that
characteristically expressed gene modules in autoimmune
diseases overlap IFN signature gene sets, and those in
autoinflammatory diseases overlap IL-18- or IL-1b-activated
gene sets (Figure 1). When comparing gene expression among
individuals, we observed remarkable heterogeneity within
diseases. Especially, patients with idiopathic inflammatory
myopathy (IIM) with anti-MDA5 antibodies expressed high
levels of IFN signature genes comparable with those in SLE
patients, while the immune cell transcriptomes of the other IIM
patients were heterogeneous. Anti-MDA5 antibodies in IIM are
associated with life-threatening, rapidly progressing interstitial
lung diseases (27). Because MDA5 is a cytosolic sensor of double-
stranded RNA regulating IFN signaling, IFN signaling could
have pathophysiological relevance, especially in this subtype
of IIM.
IMMUNEXUT SUB-ANALYSIS OF SSC

SSc is an intractable autoimmune disease characterized by skin
and internal organ fibrosis and vasculopathy (28). The rate of
disease-related mortality is higher in SSc patients than in other
autoimmune disease patients (26). Treatment approaches such as
immunosuppressive drugs, vasodilation, and antifibrotic therapy
only partially ameliorate the disease. Bulk transcriptome analysis
of the affected skin showed adaptive immune cell signatures were
associated with early-phase disease, while fibroblast and
macrophage cell type signatures were associated with advanced
fibrosis (29). Valenzi et al. have performed a single-cell RNA-seq
May 2022 | Volume 13 | Article 857269
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analysis of the affected lung tissue from SSc patients and have
identified a large proliferating myofibroblast population (30).
However, little was known about the transcriptomic changes of
peripheral blood immune cells in SSc.

In a sub-analysis of SSc patients from ImmuNexUT, we
performed a modular analysis of gene expression data from
each immune cell type to compare SSc and healthy controls (31).
Using a machine learning approach, random forest, we
prioritized the most important gene co-expression module for
discriminating SSc from healthy controls. An inflammatory gene
module in CD16+ monocytes, including KLF10, PLAUR, JUNB,
and JUND genes, showed the greatest capacity for
discrimination. Integration with single-cell RNA-seq data from
peripheral blood and interstitial lung disease lesional monocytes
revealed a significant overlap of the gene module with a subgroup
of monocytes. Because monocytes and their subpopulations are
involved in tissue fibrosis (32–34), the pro-inflammatory
monocyte subpopulation identified in that study might have a
profibrotic capacity as well.

In addition, in a subsequent analysis comparing the
transcriptomes of early-stage SSc (disease duration < 5 years)
and late phase SSc (35), we revealed distinct differentially
expressed genes in regulatory T cells (Tregs). In an integrative
analysis with single-cell RNA-seq data, we performed
deconvolution (36), a method to statistically estimate the
proportions of cell subpopulations based on mixed cell data.
Again, we found expansion of an activated subpopulation of
Tregs in early-stage SSc (and also in IIM) with marked
differences in gene expression. The role of Tregs in fibrosis is
controversial because whether Tregs are profibrotic or
antifibrotic depends on the experimental animal model (37).
Our data suggest a profibrotic role of Tregs during the early
phase of fibrotic autoimmune diseases.

In sharp contrast, a similar analysis of ImmuNexUT data in
AAV patients versus healthy controls identified upregulation of a
gene module related to neutrophil extracellular trap formation
(NETosis) in AAV patients (38), revealing the importance of
NETosis in the pathogenesis of AAV. In fact, the neutrophil
enzymes MPO and PR3 are released by NETosis and are targets
of autoantibodies in AAV (39, 40).
Frontiers in Immunology | www.frontiersin.org 4
Because these analyses are performed using a data-driven
hypothesis-free approach, the identified candidate immune cell
populations, pro-inflammatory monocytes, and activated Tregs,
could be characteristic of SSc and worth further investigation.
These results also taught us that even the gene expression data
from highly purified bulk immune cells in ImmuNexUT are
influenced by changes in the sizes of target immune
cell subpopulations.
SINGLE-CELL RNA-SEQ OF BLOOD
IMMUNE CELLS IN SLE

The complex immune system involves interactions among
multiple types of immune cells. Advances in single-cell RNA-
seq technology have allowed comprehensive identification and
characterization of distinct immune cell subpopulations at a
single-cell resolution (41–44). However, currently available
single-cell RNA-seq technologies capture only a few thousand
of the most highly expressed genes per cell, resulting in a sparse
gene expression picture with higher technical noise compared
with bulk-cell RNA-seq technologies.

Nehar-Belaid et al. reported large-scale single-cell RNA-seq
profiles (> 350,000 single cells) in the PBMCs of child and adult
SLE patients (14), comprising 33 child and 11 adult patients. That
study revealed that a small subpopulation of monocytes and other
major immune cells expressing high levels of IFN signature genes
was expanded and capable of distinguishing SLE from healthy
controls. The results imply that enhanced expression of IFN
signature genes in peripheral blood in many autoimmune
diseases is, in fact, derived from a small subpopulation of high
IFN-expressing cells. They also report an expansion of the B cell
subpopulation expressing both IFN signatures and extrafollicular,
potentially autoreactive, double negative switched memory B cell
phenotype (CD27-IgD-CXCR5-CD11c+ DN2 cells) (45). This B
cell subpopulation was enriched with monogenic lupus-associated
genes, which suggest a causal role of this subpopulation in the SLE.
DN2s are closely related to age-associated B cells (ABC), sharing
their surface marker CD11c (45). ABCs are implicated in both
FIGURE 1 | Heterogeneity of immune-mediated diseases in ImmuNexUT. In the ImmuNexUT flagship article, we applied weighted gene correlation network analysis
(26) to immune cell gene expression data and systemically characterized the gene modules related to immune-mediated diseases. When we compared the
expression of these modules between autoimmune disease patients and healthy controls, gene modules enriched with IFN-induced gene sets were overexpressed in
autoimmune disease patients. SLE, mixed connective tissue disease (MCTD), Sjögren’s syndrome (SjS), systemic sclerosis (SSc), idiopathic inflammatory myopathy
(IIM), and rheumatoid arthritis (RA). Gene modules enriched with IL-18 or IL-1b-induced gene sets were overexpressed in patients with autoinflammatory diseases:
Behçet’s disease (BD) and adult-onset Still’s disease (AOSD). Takayasu arteritis (TAK) or ANCA-associated vasculitis (AAV) patients showed similar expression
patterns to those in autoinflammatory disease patients. SSc, IIM, and RA patients were more heterogeneous compared with the other diseases.
May 2022 | Volume 13 | Article 857269
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aging and autoimmunity. In addition, a fraction of SLE CD8+ T
cells showed upregulation of cytotoxic genes.

Recently, Perez et al. also reported larger-scale single-cell
RNA-seq profiles (>1.2 million single cells) in the PBMC of 162
SLE patients and healthy controls both from European and Asian
ancestries (15). They revealed a reduction in naïve CD4+ T cells
and an increase of GZMH+CD8+ T cells in SLE. GZMH+CD8+ T
cells expressed cytotoxic, exhaustion, and IFN signatures.
GZMH+CD8+ T cells were clonally expanded and restricted,
and they may have a pathogenic role in the disease process. The
presence of an atypical B cell population, sharing some ABC
markers (CD11c+TBX21+) was confirmed. Classical monocytes
expressed the highest levels of IFN signature. These results
support the utility of single-cell RNA-seq technology to
identify and characterize disease-relevant subpopulations of
immune cells.
SINGLE-CELL RNA-SEQ
ANALYSIS OF TISSUE AND
PROINFLAMMATORY MACROPHAGES

Peripheral blood immune cells are popular cell models for
transcriptome analyses of autoimmune diseases, probably
because of the better access to such cell samples in comparison
with immune cells infiltrating affected organs, such as the
synovium in RA. However, whether peripheral blood immune
cells accurately capture the immunological abnormalities of the
affected organs is debated.

In a single-cell profiling experiment of immune cells, Wu
et al. simultaneously analyzed peripheral blood and synovial
CD45+ mononuclear cells from RA patients with and without
anti-citrullinated peptide antibodies (ACPAs), hallmark
autoantibodies of RA (46). Peripheral blood analysis revealed
important characteristics of RA, such as an expansion of
cytotoxic CD4 T cell population (47, 48), while synovial gene
profiling revealed correlates of ACPA status, including up-
regulation of CCL13, CCL18, and MMP3 in myeloid cell
subsets of ACPA-negative RA compared with ACPA-positive
RA. Although reports directly comparing the utility of single-cell
RNA-seq analysis in blood versus synovium are scarce, synovial
immune cell profiling seems more sensitive than peripheral
blood profiling in the detection of immunological correlates of
RA subpopulations.

As part of the Accelerating Medicines Partnership
consortium, Zhang et al. profiled 51 synovial tissue samples
from both RA and osteoarthritis patients by combining single-
cell RNA-seq, bulk RNA-seq, and mass cytometry data (49).
They found expansion of IL1B+ pro-inflammatory monocytes,
ITGAX+TBX21+ autoimmune-associated B cells, PDCD1+

peripheral helper T cells (Tph), and follicular helper T cells
(Tfh) in the RA synovium. Tph cells are a new subset of helper T
cells previously identified in the RA synovium, which can induce
plasma cell differentiation in vitro (50). In contrast to classical
CXCR5+ Tfh cells, Tph cells lack surface CXCR5 and produce
CXCL13 and IL-21 to recruit both Tfh and B cells. Therefore,
Frontiers in Immunology | www.frontiersin.org 5
Tph cells appear to have an important role in the local
autoantibody production in the inflamed tissues.

Kuo et al. focused on synovial macrophages and, using single-
cell RNA-seq, identified HBEGF+ pro-inflammatory
macrophages enriched in the RA synovium (51). This
macrophage subpopulation has the capacity to promote
fibroblast invasiveness in an EGF receptor-dependent manner.
Also, synovial fibroblasts can promote the HBEGF+
inflammatory phenotype of macrophages. The crosstalk
between pro-inflammatory macrophages and synovial
fibroblasts might be important in the pathophysiology of
chronic inflammation in RA joints. Interestingly, synovial pro-
inflammatory macrophages express some common gene
markers, such as PLAUR, NR4A2, and CXCL2, to those
expressed in inflammatory monocytes that we identified in the
peripheral blood of patients with SSc (31). This may imply
similarities between monocytes and macrophages in the
pathophysiology of RA or SSc. Zhang et al. performed
integrative single-cell RNA-seq analysis of > 300,000 cells in
bronchoalveolar lavage samples from COVID-19, RA, and other
inflammatory diseases, all of which exhibited expansion of
CXCL10+CCL2+ inflammatory macrophages, experimentally
driven by a combination of the pro-inflammatory cytokines
IFN-g and tumor necrosis factor (TNF)-a (52). That study is a
good example demonstrating the utility of cross-disease data
analysis to reveal shared disease processes, in this case, the
expansion of inflammatory macrophage subpopulations in
various disease conditions.
SINGLE CELL RNA-SEQ ANALYSIS OF
LUPUS NEPHRITIS

In the Accelerating Medicines Partnership consortium, Arazi
et al. reported immune cell clusters in lupus nephritis samples
(13). Trajectory analysis, based on the similarity of single-cell
gene expression, suggested a gradual progression of
inflammatory blood monocytes to a phagocytic and then an
alternatively activated (M2-like) macrophage phenotype in the
kidney. Alternatively, activated (M2) macrophages have an anti-
inflammatory function and regulate wound healing (53).
Trajectory analysis also revealed a gradual differentiation from
naïve B cells to activated B cells with an incremental elevation of
the ABC gene signature. They compared the CD8+ T cell
exhaustion signatures, previously reported to be associated
with lower lupus flares (11), between blood and kidney. The
CD8+ T cell exhaustion signature of patients with lupus nephritis
was high in blood but not in the kidney. In that report, IFN
signature gene expression was correlated between matched blood
and kidney samples (n = 10), implying that the IFN response
may be an extrarenal process. When comparing urine and kidney
leukocytes, the urine samples had a higher frequency of
phagocytic macrophages, and high transcriptomic correlations
were observed between the samples. Urine cells may serve, at
least partially, as an alternative to their kidney counterparts. Der
et al. reported tubular and keratinocyte single-cell RNA-seq data
May 2022 | Volume 13 | Article 857269
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(54). They showed that the IFN signatures in tubular cells and
keratinocytes distinguished patients with lupus nephritis from
healthy control subjects. Moreover, high IFN and fibrotic gene
signatures in tubular cells were associated with failure to respond
to treatment.
DYNAMIC EQTL ANALYSIS OF
AUTOIMMUNE DISEASES

Genome-wide association studies (GWASs) have identified tens
of thousands of gene variants significantly associated with
diseases (55). In RA and SLE, large-scale GWASs have
identified more than a hundred robust genetic variants
associated with each disease (4, 56, 57). However, most of the
identified causal genetic variants of these autoimmune diseases
are located in non-coding enhancer regions of the genome (58,
59), and their biological mechanisms in autoimmunity are not
self-explanatory.

Expression quantitative trait locus (eQTL) analysis evaluates
associations between genetic variants and gene expression levels
(Figure 2) via linear regression of normalized gene expression
levels and the tested allele dosages. Genetic variants associated
with diseases have greater eQTL effects compared with other
variants (60). The variants can alter the binding capacity
of transcription factors to the enhancers or promotors of genes
and thus regulate the expression of nearby genes (61).
Importantly, eQTL analysis provides directional information
on the effects of the tested single nucleotide polymorphisms
(SNPs) on target gene expression. In the example in Figure 2,
if the G allele of gene X is a GWAS risk SNP, enhanced
expression of gene X, especially in stimulated monocytes, is a
candidate biological mechanism. The following are limitations of
eQTL analysis: large-scale transcriptomic data with typically
more than 50–100 samples are required (62); eQTL effects are
variable among immune cell types (63, 64) and stimulations
(65, 66); overlap of GWAS and eQTL signals do not guarantee
causality of the identified genes (67); and only common
SNPs (allele frequency > 0.01–0.05) can be tested, while rare
variants cannot.

ImmuNexUT includes samples from more than 400
individuals comprising both healthy controls and immune-
mediated disease patients (unstimulated and stimulated
immune cells in vivo) and 28 immune cell types (Figure 1).
Using eQTL analysis of ImmuNexUT data (6), we identified
immune cell-type specific and disease-specific eQTLs. A median
of 7,092 genes was significantly regulated by eQTL in each
immune cell type. Partitioning of GWAS heritability with cell-
type-specific eQTL data revealed candidate causal immune cells
in autoimmune diseases: effector Tregs in RA and naïve and
unswitched memory B cells in SLE. Colocalization analysis
between SLE GWAS and ImmuNexUT eQTL data identified
candidate causal genes. For example, decreased expression of
ARHGAP31 in plasmablasts was associated with SLE. Those
results highlight the power of eQTL analysis in elucidating
autoimmune disease mechanisms.
Frontiers in Immunology | www.frontiersin.org 6
In the OneK1K cohort, Yazar et al. collected PBMC single-cell
RNA seq data of 1.27 million cells from 982 healthy donors (68).
They identified 14 major immune cell populations and eQTL
analysis identified variable number of independent eQTLs (399
in plasma cells and 6473 in naïve and central memory CD4+ T
cells). They showed the overlap of various autoimmune GWAS
loci and immune cell eQTLs. Also, using single-cell RNA-seq
data of SLE patients, Perez et al. performed eQTL analysis in the
eight most abundant cell types (15). Their analysis identified
3331 genes with at least one eQTL in a cell type. The advantage of
these single-cell RNA-seq based approaches over a bulk RNA-
seq based approach is the ability to compute dynamic
transcriptional transitions of cellular state using pseudotime
analysis. However, cell-type-specific effects of the population
with a small fraction size could not be estimated because of the
limited number of cells. For example, the cell-type-specific eQTL
effects of Treg were not examined in these single-cell RNA-seq
eQTL studies, despite the importance of Treg in its ability to
regulate autoimmune reactions. Further, Yazar et al. detected
fewer eQTL signals in each immune cell type despite the higher
A

B

FIGURE 2 | Dynamic eQTL of the immune cells. (A) Schematic representation
of expression quantitative trait locus (eQTL) analysis. eQTL is an association
test between common single nucleotide polymorphisms and nearby (in most
cases) gene expression. (B) An example of dynamic eQTL in immune cells.
eQTL effect sizes, expressed as standardized linear regression coefficients, are
cell-type and cell-state dependent. In this example stimulated monocytes have
four times more eQTL effects compared with unstimulated monocytes.
May 2022 | Volume 13 | Article 857269
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number of analyzed individuals (n=982) in comparison to the
ImmuNexUT project (n=416). Therefore, the bulk RNA-seq
based approach has some advantages in the detection power of
immune cell eQTL analysis over the single-cell RNA-seq
based approach.
CLINICAL APPLICATION OF
TRANSCRIPTOME ANALYSES

In clinical trials of anifrolumab for SLE, higher baseline levels of
IFN signature genes were associated with a better clinical
response (18, 19). In those reports, IFN gene signatures,
classified as either high or low, were estimated by whole-blood
quantitative PCR-based analysis of four genes (IFI27, IFI44,
IFI44L, and RSAD2). These results are consistent with the
specific binding of anifrolumab to INFAR1. Similarly, baseline
protein levels of TNF and soluble interleukin-6 (IL-6) receptor
are associated with the response to their respective targeted
treatment in RA patients (69, 70). In addition, the B cell
subpopulation levels are associated with the treatment
responses of B-cell-targeted anti-CD20 rituximab therapy in
AAV or SLE patients (71, 72). As seen in these examples, gene
or protein expression levels or cell populations appear to be
promising candidate biomarkers for predicting treatment
responses. However, these biomarkers do not have enough
sensitivity or specificity for routine clinical use. One reason
might be the use of blood for estimating the biological activity
of cytokines because they typically act locally via both autocrine
and paracrine manners on other cells (73).

Interestingly, peripheral blood levels of IFN signature genes
are associated with the response to RA treatment. For example,
high IFN signature gene levels are associated with better
responses to treatments with a TNF-a inhibitor (74), the IL-6
receptor inhibitor tocilizumab (75), and the T-cell-blocking
CTLA4-Ig abatacept (76). Meanwhile, IFN signature gene
levels were associated with non-responsiveness to methotrexate
(77) and B-cell-targeting rituximab (78, 79). Those reports imply
that the IFN signature status could be used for immunological
stratification of RA patients, thereby affecting treatment choice.

Transcriptome analysis of blood samples can capture both
cytokine signaling gene expression (e.g., IFN signature) and
immune cell-type signature gene expression (e.g., plasmablast
signature). Therefore, peripheral blood transcriptome profiling is
a candidate approach in precision medicine based on biologically
targeted therapies. In addition, the peripheral blood
transcriptome can be used to predict the natural history of
various autoimmune diseases. In the report by McKinney
et al., the “exhaustion signature” of purified CD8+ T cells was
associated with a lower number of disease flares in SLE and AAV
patients (11). Serial peripheral blood transcriptome analyses
have also identified gene signatures preceding RA flares,
associated with B cell activation and subsequent expansion of
CD45-CD31-PDPN+ pre-inflammatory mesenchymal cells,
which show gene expression features similar to those of
inflammatory synovial fibroblasts (80). With the establishment
of accurate and robust prognostic prediction by transcriptome
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analysis, treatments can be tailored based on the obtained
transcriptomic data.

In RA, several studies have shown that gene expression analysis
of joint synovial tissues can identify disease subtypes and predict
treatment responses (81–84). Humby et al. combined gene
expression with immunohistological analyses of the synovium in
treatment-naïve early-stage RA patients (82). Three groups of
patients were identified according to the synovial tissue
phenotype: pauci-immune fibroid, diffuse-myeloid, and lympho-
myeloid patients. Elevation of myeloid- and lymphoid-associated
gene expression was strongly correlated with disease activity and
the treatment (90% methotrexate) response at six months. Lewis
et al. also profiled early RA-associated genes using RNA-seq and
showed that the gene signature of synovial plasma cells predicts
future joint damage (83). In addition, they compared the blood
and synovial RNA-seq data and showed that synovial genes are
more differentially expressed among the different synovial tissue
phenotypes. In addition, the blood IFN signature was associated
with synovial B and plasma cell infiltration, which may at least
partially explain the correlation between the blood IFN signature
and treatment effects (78). Finally, Humby et al. reported a clinical
trial comparing the effects of the anti-CD20 monoclonal antibody
rituximab and anti-IL6 receptor tocilizumab in non-responders to
anti-TNF therapy (84). Baseline synovial biopsies were subjected
to classical histological and RNA-seq analyses to classify the
samples as B-cell rich or poor. In B-cell-poor RA, tocilizumab
treatment had a better response rate than that of B-cell targeted
rituximab therapy. An important finding of that study was that
RNA-seq-based classification was better correlated to the
treatment response than was histological classification.
Currently, synovial biopsies are not standard clinical practice for
RA, but they might become such, considering the limited
invasiveness of the biopsy procedure and potential benefits of
precision medicine based on the molecular disease subtype.
CONCLUSION

Here, we reviewed how the transcriptome analysis of immune
cells has improved our understanding of the pathophysiology of
autoimmune diseases with a focus on the ImmuNexUT analysis
that we recently reported. Single-cell RNA-seq analyses have
been expanding our knowledge of the immune cells infiltrating
disease lesions. Inflammatory monocytes and macrophages are
expanded across various autoimmune and inflammatory
diseases. IFN pathway, neutrophils, and B cell subpopulations
have been robust signatures in SLE in different experimental and
analytic methods (Table 1). These cell populations could have
pathophysiological relevance to autoimmune diseases.
Expression QTL analysis, integrated with GWAS data, has
identified candidate causal immune cells and genes. Genes
identified by transcriptome analyses of the peripheral blood or
the RA synovium can be used as clinical predictive or prognostic
biomarkers. Therefore, transcriptome analysis of autoimmune
diseases is not only a useful tool for the investigation of disease
mechanisms but also has the potential for direct clinical
application in future precision medicine.
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