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Increasing life expectancies are unfortunately accompanied by increased prevalence of

Alzheimer’s disease (AD). Regrettably, there are no current therapeutic options capable

of preventing or treating AD. We review here data indicating that AD is accompanied

by gut dysbiosis and impaired renin angiotensin system (RAS) function. Therefore, we

propose the potential utility of an intervention targeting both the gut microbiome and

RAS as both are heavily involved in proper CNS function. One potential approach which

our group is currently exploring is the use of genetically-modified probiotics (GMPs)

to deliver therapeutic compounds. In this review, we specifically highlight the potential

utility of utilizing a GMP to deliver Angiotensin (1–7), a beneficial component of the

renin-angiotensin system with relevant functions in circulation as well as locally in the

gut and brain.

Keywords: Alzheimer’s disease, gut-brain axis, renin angiotensin system, genetically modified probiotic,

microbiome, Cognition, MAS1 Receptor, age-related memory loss

INTRODUCTION

Life expectancy continues to increase in developed countries worldwide, with persons aged >65
years representing the fastest growing segment of the population (Federal Interagency Forum on
Aging-Related Statistics, 2006). Among the most pressing public health issues related to aging is the
preservation of cognitive function and the prevention/treatment of dementia (Insel et al., 2013).
Over 50 million people suffer from dementia worldwide, of which 30–35 million have Alzheimer’s
disease (AD) (World Health Organization, 2019). In addition to the tremendous impact on affected
patients and their families, cognitive decline is estimated to cost the healthcare system of the
United States between $200–300 billion annually (Hurd et al., 2013). Thus, efficacious treatments
for preventing or treating dementia are desperately needed, but to date few therapeutic strategies
have shown significant promise. In particular, clinical trials in AD have proven challenging and
there are no currently approved therapies which directly target AD pathology. As a result, many
have called for fresh approaches to dementia treatment and prevention (Carrillo and Vellas, 2013;
Zheng et al., 2015; Fish et al., 2019)—in line with major U.S. National Institutes of Health (NIH)
initiatives (Insel et al., 2013). Given the substantial challenge in identifying efficacious treatments,
novel research in this area is urgently needed.

To date, most approaches to treat or prevent AD have directly targeted the brain/central nervous
system (CNS). In line with the need for fresh approaches, it is possible that alternative strategies
are needed that target other physiologic systems beyond the CNS. One prominent possibility is
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targeting the gut microbiota—the microorganisms which
compose the complex microenvironment of the human intestinal
tract—given their known roles in neural communication (Hu
et al., 2016; Alkasir et al., 2017; Proctor et al., 2017). For instance,
studies in neurodegenerative diseases including Parkinson’s
(Sampson et al., 2016) and Multiple Sclerosis (Berer et al., 2011)
have demonstrated gut-neural communication related to disease
pathology. Notably, advanced age is associated with changes to
both the composition and stability of gut microbiota (Buford,
2017), and dysregulated microbiota (i.e., dysbiosis) has been is
associated with cognitive impairment (Cattaneo et al., 2017; Sun
et al., 2019). Multiple studies have also indicated that dysbiosis
in frail seniors is associated with chronic systemic inflammation
(Buford, 2017)—a hallmark of aging and biomarker of numerous
age-related conditions including AD. We reviewed the potential
of the gut microbiome as a therapeutic target for age-related
cognitive decline (Sun et al., 2019), but original studies remain
sparse which target the gut microbiome as a therapeutic site of
intervention for AD.

One potential approach which our group is currently
exploring is the use of genetically-modified probiotics (GMPs)
to deliver therapeutic compounds. GMPs allow for the oral
delivery of therapeutic compounds by embedding the compound
of interest within a bacterial (i.e., probiotic) strain safe for
human consumption. Indeed, several authors have purported
the potential benefits and therapeutic applications of GMPs—
particularly those from lactic acid bacteria (Bermúdez-Humarán
et al., 2013; LeBlanc et al., 2013; Cano-Garrido et al., 2015; Börner
et al., 2019; Plavec and Berlec, 2019). Major benefits of this
approach to drug delivery include (1) typical inherent benefits
of the bacteria itself, (2) ease of production, (3) ability for oral
administration due to the ability of the bacteria to survive gut
digestive processes, and (4) ability to influence both systemic and
mucosal immune responses.

In fact, GMPs have already been successfully used to treat
Crohn’s disease and ulcerative colitis (Barra et al., 2020),
phenylketonuria (Durrer et al., 2017), and irritable bowel
syndrome (Shigemori and Shimosato, 2017), among other
conditions (Taylor and Lamont, 2005). However, its use in the
targeting of cognitive impairment is understudied, though the
potential benefits are numerous, as outlined herein. In this
review, we specifically highlight the potential utility of utilizing
a GMP to deliver Angiotensin 1–7 [Ang(1–7)], a beneficial
component of the renin-angiotensin system (RAS) with relevant
functions in not only the circulation, but also relevant tissues
including the intestines and brain. Though there is ample
evidence that this compound is beneficial in many ways, systemic
infusion of Ang (1,7) itself is not a feasible option, as it’s half-life
would require a near constant infusion (Fyhrquist et al., 1976).
Our previous work has demonstrated that oral administration
of Ang (1,7)-expressing probiotic [Lactobacillus paracasei (LP)
modified to express Ang (1–7); Ang (1–7) GMP] not only
increased circulating levels of Ang (1,7), it significantly altered
several components of the gut-brain-axis in ways that direct
systemic Ang (1,7) administration did not (Carter et al., 2019;
Buford et al., 2020). Moreover, oral administration of Ang (1,7)
GMP significantly altered microbial richness and diversity within

the gut, increased circulating Ang (1,7), decreased circulating
AngII, and altered several metabolites of tryptophan metabolism
in serum, demonstrating its ability to affect changes beyond
those observed within the digestive tract where it was placed.
However, these data provide evidence that it is not directly Ang
(1,7) itself improving peripheral health, as systemic injections did
not have similar effects, but perhaps it’s ability to improve gut
health that then has further reaching secondary effects on other
organ systems.

THE GUT MICROBIOME

Once considered the “forgotten organ,” the intestinal microbiota
have received a tremendous amount of attention in recent years
for their role in human health and disease. Indeed, gut dysbiosis
has been implicated in the development of pulmonary (Bruzzese
et al., 2014), neurologic (Berer et al., 2011; Hu et al., 2016;
Sampson et al., 2016), cardiometabolic, and musculoskeletal
conditions (Buford, 2017; Sun et al., 2019).

Notably, the majority of the body’s constitutive immune
function is dedicated to maintaining homeostasis with the
microbiota—evidenced by the fact that 70% of the body’s
lymphocytes reside in the gut-associated lymphoid tissue (Collins
et al., 2012). Once thought to contribute primarily to allergic
and/or inflammatory intestinal disorders, the gut microbiota are
now known to communicate with organs far from the intestine
(Belkaid and Naik, 2013; Cohen et al., 2017). In fact, it is now
well-established that a complex system of communication exists
between the gut microbiota and the CNS.

Indeed, the gut microbiota can communicate with the CNS in
several different ways including (1) release of pro-inflammatory
cytokines to activate the hypothalamic pituitary adrenal (HPA)
axis or directly impact CNS immune activity, (2) production of
short chain fatty-acids, (3) release of neurotransmitters, or (4) by
modulating tryptophanmetabolism and downstreammetabolites
(Figure 1, left) (Sharon et al., 2016; Hampton, 2017; Kennedy
et al., 2017; Strandwitz, 2018; Fülling et al., 2019). In summary,
the literature to date has demonstrated a critical impact of the
microbiota on several CNS processes including myelination,
neuroinflammation, regulation of blood-brain barrier integrity,
as well as regulation of neurogenesis and accumulation of
α-synuclein (Figure 1, right).

Human studies have reported advanced age is associated with
gut dysbiosis, which was subsequently associated with cognitive
impairment (Cattaneo et al., 2017). More recently, at least one
human study reported microbiome alterations in patients with
AD (Vogt et al., 2017), while a study in Drosophila demonstrated
that indeed gut dysbiosis accelerates the progression of AD in
the fly model of AD (Wu et al., 2017). Several rodent models of
AD have also reported gut microbiome alterations (Brandscheid
et al., 2017; Minter et al., 2017; Shen et al., 2017; Zhang et al.,
2017; Bäuerl et al., 2018; Chen et al., 2020). These data, coupled
with similar findings from other neurodegenerative conditions
(Berer et al., 2011; Sampson et al., 2016), suggest that the gut
microbiome may be an important target for preserving brain
health and combating AD. In line with this concept, at least
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FIGURE 1 | Mechanisms of action and processes affected by communication of the gut microbiota with the CNS.

two small studies have explored the potential of delivering
probiotics to treat AD (Akbari et al., 2016; Leblhuber et al.,
2018). These studies look to leverage the established actions
of probiotics on gut microflora composition, the colon mucus
barrier, and systemic immunity to treat AD. Another approach—
which we discuss here—is to capitalize upon these inherent
benefits of probiotics while simultaneously delivering another
therapeutic compound.

Indeed, GMPs have been purported as a highly promising
strategy for treating disease (Steidler, 2003; Syvanen, 2003; Paton
et al., 2012) as they offer an efficacious method to deliver drugs or
other therapeutic proteins with precision and a higher degree of
site specificity than conventional drug regimens (KumarM. et al.,
2016). Mucosal administration of therapeutic molecules offers
several important advantages over systemic delivery including
the possibility of oral administration, fewer secondary effects,
and the ability to simultaneously modulate both systemic and
mucosal immune responses (Börner et al., 2019). To date, GMPs
have been utilized to treat a limited number of conditions
including inflammatory bowel disease (Steidler et al., 2003) and
hypertension (Yang et al., 2015). Still, the scientific community
is in the infancy of exploring the potential for GMPs. To
our knowledge, no study to date has leveraged the GMP
approach—Ang (1–7) or otherwise—to improve cognition. Thus,
a tremendous opportunity exists to leverage existing knowledge
and advances in technology within this space.

DEMENTIA TYPES/GROWING CONCERNS

Various forms of dementia affect more than 70% of individuals
over the age of 70 and cost the United States ∼$200 billion
in 2010 (Hurd et al., 2013). Furthermore, dementia severely
decreases quality of life for both patients and caregivers, and
neurologic conditions are the third leading cause of disability
globally. While cognitive slowing and difficulty multitasking are
hallmarks of normal aging, dementias—including mild cognitive
impairment (MCI) and Alzheimer’s disease—result in far greater
cognitive impairments.

Often thought of as an intermediary step in the progression of
dementia is a disease state known as mild cognitive impairment
(MCI). While patients with MCI demonstrate impaired cognitive
processes beyond those of normal aging, they are not as severe
as individuals with more advanced neurodegenerative disease
states. While individuals with MCI are more likely to develop
Alzheimer’s disease (AD) and other forms of more advanced
dementia than age matched controls (Boyle et al., 2006), there
are distinct differences in the microbiome profiles of healthy aged
control subjects, those with MCI and those with AD (Liu et al.,
2019).

Alzheimer’s disease (AD), one of the most prevalent forms of
dementia, currently affects 5.8 million people in the United States
and is the sixth overall leading cause of death. Typical AD
pathology includes extra cellular deposits of amyloid β-protein
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(Aβ) and neurofibrillary tangles of hyperphosphorylated tau
(Selkoe, 2001), though more recent pathological theories of
disease etiology include metabolic factors (de la Monte and
Wands, 2008). Inclusion of metabolic factors may be critical

to preclinical models and therapeutic interventions for AD, as
80% of people with AD also have metabolic deficits, usually in
the form of type II diabetes or insulin resistance (Janson et al.,

2004). In addition to neuropathology, chronic inflammation and
disruption of immunoregulatory functions precede AD-related
cognitive decline (Schmidt et al., 2002). Furthermore, vascular
contributions to cognitive impairment in dementia (VCID) likely

plays a role in AD etiology (Jagust, 2001; de la Torre, 2004) and
there is evidence that the microbiome plays a role in vascular
health (Grant and Jönsson, 2019). These links between peripheral
health and brain pathology suggest the gut-brain-axis could be an
important factor in healthy brain aging and dementias, as each of
these areas of peripheral health are influences by gut health and

functioning (Honda and Littman, 2012; Nieuwdorp et al., 2014;
O’Mahony et al., 2015; Grant and Jönsson, 2019; Chen et al., 2020;
Ragonnaud and Biragyn, 2021).

Indeed, emerging evidence indicates individuals with AD
demonstrate an altered microbiome profile with decreased
diversity beyond that of age-matched controls (Vogt et al., 2017).

Although only two studies to date have implemented a probiotic
approach to treatment in human AD patients, results have
been promising. For example, probiotic administration for 12
weeks was reported to improve Mini-Mental State Examination
(MMSE) scores as well as several markers of metabolic health
including insulin sensitivity in AD patients relative to the

placebo group (30 participants/group) (Akbari et al., 2016). In
an additional study, multispecies probiotic supplementation for
28 days significantly altered serum kynurenine levels, which
may influence nervous system function (Leblhuber et al.,
2018).

Though not an overt form of dementia, Parkinson’s disease
(PD) is another neurodegenerative disease with potential
cognitive impacts and affects ∼1-million individuals in the

United States alone (Marras et al., 2018). Interestingly, one of

the earliest complaints in individuals who eventually receive a PD
diagnosis is constipation, and PD is associated with slow colonic

transit (Sakakibara et al., 2003), increased intestinal permeability

(Schwiertz et al., 2018) and by alterations in the RAS (Allen et al.,
1992). As with other conditions affecting neurological function,

PD patients demonstrate specific alterations in gut microbiome

(Tan et al., 2014). While probiotics have been utilized for a
while for the treatment of constipation in PD patients (Cassani

et al., 2011), more recent work has investigated the efficacy of
probiotic treatment for movement and metabolic parameters
in PD (Tamtaji et al., 2019). In this randomized double-
blind trial, probiotic supplementation for 12 weeks improved
motor symptoms as well as metabolic profiles. Similar motor
improvements, as well as cognitive benefits, have been noted
in a mouse model of PD (Perez-Pardo et al., 2017). These
data from PD further suggest that altering the gut microbiome
may influence cognitive outcomes in other neurodegenerative
conditions, such as AD.

ANGIOTENSIN (1–7), THE CNS AND
POTENTIAL MECHANISMS THROUGH
WHICH ANG (1–7) GMP MAY INFLUENCE
COGNITIVE FUNCTION AND PATHOLOGY

In recent years a number of pleiotropic effects have been ascribed
to the renin-angiotensin system (RAS) that extend beyond
lowering blood pressure (Sica, 2011; Zoccali and Mallamaci,
2014). As we reviewed (Simon et al., 2015), beneficial impacts
of the RAS may be induced not only by antagonizing the
vasoconstrictive actions of angiotensin II (AngII) binding to the
AT1 receptor (AT1R), but also by the more recently discovered
Ang (1–7) axis whereby the binding of Ang (1–7) to the Mas
(AT7) receptor promotes several beneficial actions (Figure 2,
left). However, the vascular effects of RAS-affecting compounds
should not be completely ignored, as individuals with AD often
present with underlying vascular impairment (Jagust, 2001; de la
Torre, 2004).

Among the purported benefits of the Ang (1–7) axis is
improved brain health. Components of the axis are found
throughout the central nervous system (CNS) including
within neurons, astrocytes, cerebral arteries, and various brain
regulatory centers including the paraventricular nucleus (PVN)
and hypothalamus (Hamming et al., 2004; Gallagher et al., 2006;
Becker et al., 2007; Doobay et al., 2007; Guo et al., 2010). Notably,
Ang (1–7) stimulates numerous molecular pathways responsible
for beneficial adaptations which could contribute to improved
cognitive function including increased (1) endothelial nitric
oxide synthase (eNOS), (2) brain-derived neurotrophic factor
(BDNF), and (3) vascular endothelial growth factor (VEGF)
as well as reduced production of reactive oxygen species and
pro-inflammatory cytokines (Figure 2, right) (Passos-Silva et al.,
2013; Jiang et al., 2014; Zheng et al., 2014; Wang et al., 2016;
Kamel et al., 2018).

In line with these actions, evidence from both human and
rodent models indicates that Ang (1–7) axis modulation benefits
multiple aspects of cognition in several models of cognitive
dysfunction, including AD (Kehoe et al., 2016; Wang et al., 2016;
Hay et al., 2017, 2019; Kangussu et al., 2017; Kamel et al., 2018).
Notably, animal studies have shown remarkable consistency
across both loss and gain of function genetic models as well as
via pharmacologic stimulation of the Ang (1–7) axis. Moreover,
at least two human studies have proposed both systemic (Jiang
et al., 2016) and brain (via post-mortem study; Kehoe et al., 2016)
Ang (1–7) axis activity as biomarkers of AD pathology including
association with amyloid-β and tau. Additionally, the plasma
membrane glycoprotein neprilysin—involved in endogenous
production of Ang (1–7)—reduces amyloid-β and improves
memory in mice and drosophila (Hüttenrauch et al., 2015; Turrel
et al., 2017). These data suggest that Ang (1–7) administration
could hold promise for preserving cognitive function in late life
as well as in combating AD.

Currently, recombinant Ang (1–7) is being utilized in
clinical trials for clinically-urgent conditions including
inoperable tumors, breast cancer, mitigation of chemotherapy
induced bone marrow toxicity, and wound healing (Source:
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FIGURE 2 | Actions of the AT1R-mediated and MasR-mediated axes of the renin-angiotensin system (left) and known neuroprotective actions of Ang (1–7) in the

central nervous system (right).

www.clinicaltrials.gov). However, systemic delivery of Ang
(1–7) typically requires burdensome infusions and/or repeated
injections as well as the expensive and cumbersome production
process for the drug. Thus, a different formulation—particularly
one which could be administered orally–could provide practical
benefits to patients from both a cost and ease of use standpoint.
In line with this reasoning, our previous work has demonstrated
that orally delivered Ang (1,7) GMP influences far beyond
the gut, including altering levels of neurotransmitters and
components of the RAS (Buford et al., 2020).

ANGIOTENSIN (1–7) AND THE GUT

Components of the Ang (1–7) axis are also present throughout
the gut including the small intestinal brush border, muscularis
mucosa, and propria, as well as microvascular endothelium and
vascular smooth muscle cells (Hamming et al., 2004). In fact, the
highest tissue concentrations of mRNA for ACE2—the enzyme
responsible for producing Ang (1–7) endogenously—are found
in the terminal ileum, duodenum, and colon (Tipnis et al., 2000;
Harmer et al., 2002). As a result, ACE2 has received attention
for its connection to the gut microbiome (Perlot and Penninger,
2013; Cole-Jeffrey et al., 2015; Raizada et al., 2017).

One critical link of gut Ang (1–7) to CNS function is in the
metabolism of the essential amino acid tryptophan (Figure 3).
Under normal conditions, gut microbiota directly metabolize
∼5% of ingested tryptophan into various bioactive compounds
related to the intercellular signaling molecule indole. Indole
derivatives can have beneficial or toxic effects, and the regulation

of derivative production is dependent upon the composition of
the intestinal microbiota.

The remaining (∼95%) tryptophan is then metabolized by
the human host and absorbed in the intestines for transport
to the liver and release into the circulation. Once into the
circulation, a minority of tryptophan is broken to support protein
synthesis and the production of the neurotransmitter serotonin.
Meanwhile the vast majority of tryptophan is metabolized
to the neuro-regulatory kynurenine pathway—which has been
proposed a key link between gut dysbiosis and various neurologic
conditions including AD (Widner et al., 2000; Gulaj et al.,
2010). Indeed, downstream metabolites of kynurenine are key
CNS signaling molecules providing either neuroprotective or
neurotoxic effects to the brain. Notably, members of the genus
Lactobacilli promote the production of Indole-3-carboxaldehyde
(I3A) which promotes the production of interleukin 22 and
the maintenance of mucosal reactivity (Zhang and Davies,
2016). Meanwhile, ACE2 is essential to intestinal absorption of
tryptophan (Hashimoto et al., 2012; Singer et al., 2012) as well
as in regulating intestinal immune function, ecology of the gut
microbiome, and attenuating intestinal inflammation suffered
in response to epithelial damage (Singer et al., 2012). Thus,
both Lactobacilli and Ang (1–7) hold promise for altering these
neuro-regulatory pathways.

We recently published data from a short-term dosing study
indicating that the Ang (1–7) GMP reduced neuroinflammatory
gene expression in the pre-frontal cortex while also increasing
circulating concentrations of neuroregulatory compounds
picolinic acid and serotonin in older F344/BN rats (Buford
et al., 2020). Our findings also indicated that the use of an Ang
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FIGURE 3 | Simplified schematic of human breakdown of tryptophan and influences on CNS signaling. Note that lactobacilli (the bacterial strain in our GMP) and the

Ang (1–7) axis are active in this process.

(1–7)-expressing GMP was more efficacious than subcutaneous
injection of a synthetic Ang (1–7) peptide, further suggesting the
possible utility of the GMP-based approach. Still, these studies
were short-term in an animal model without overt dementia,
thus continued exploration is needed in this area to document
the full potential utility of this intervention in the preservation
of cognitive function—particularly in models of AD.

EARLY STUDIES OF RAS-AFFECTING
COMPOUNDS IN PRE-CLINICAL AND
CLINICAL AD

Much of the previous work manipulating the RAS in preclinical
animal models (see Table 1) has utilized one of two categories
of drugs, angiotensin receptor blockers (ARBs) and angiotensin
converting enzyme inhibitors (ACEI). While both categories
of drugs target the same biochemical pathway, ARBs work by
blocking AngII from binding to its receptor, AT1R, while ACE
inhibitors block the conversion of AngI to AngII (Wright et al.,
2013). Both ARBs and ACEIs shift activity of the RAS system
away from the AT1-mediated axis toward the Mas-mediated axis
(see Figure 2), and therefore may be efficacious in protecting
the neurophysiological milieu from various cognitive deficits (see
Figures 2, 3).

ARB utilization in preclinical animal models of AD has
demonstrated both neuro- and vaso-protective effects when

delivered chronically. Intranasal administration of candesartan,
a particularly potent and blood brain barrier-permeable ARB,
for 8 weeks in a 5XFAD mouse model of familial AD was anti-
inflammatory, as it reduced hippocampal microglial activation
and Aβ pathology (Torika et al., 2018). However, an amyloid
precursor protein (APP) mouse model utilizing candesartan
did not observe altered Aβ pathology (Trigiani et al., 2018),
suggesting not all AD preclinical models respond similarly to
ARBs. While there were partial memory enhancing effects of
the ARB losartan in APP mutated mice, these effects were
ameliorated by selective blockade of angiotensin IV (AngIV) at its
receptor (AT4R), implicating the angiotensin IV/AT4R cascade
as a promising candidate for AD intervention (Royea et al., 2017).
Because telmisartan is also a peroxisome proliferator-activated
receptor (PPAR)-γ agonist capable of exerting anti-inflammatory
effects in neurons, these results indicate it may be a particularly
useful ARB for the treatment of AD through its combined PPAR-
γ and AT1R blockades, resulting in attenuated Aβ deposition
(Mogi et al., 2008) and improved cognitive outcomes (Tsukuda
et al., 2009). Other ARBS, including valsartan and eprosartan,
demonstrated no effect on Aβ or APP pathology (Ferrington
et al., 2011, 2012), though results are mixed (Wang et al., 2007),
so caution should be taken when selecting an ARB to utilize in
preclinical AD trials.

Several studies have also demonstrated great efficacy of
ACEIs in pre-clinical AD rodent models. In particular, centrally-
active ACEIs, such as perindopril, prevent AD-associated
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TABLE 1 | Pre-clinical rodent Alzheimer’s disease model investigations involving RAS-affecting drugs and their main findings.

Rodent model Age/Sex Intervention Duration of

intervention

Main findings

Torika et al. (2018) 5XAD transgenic mice

(Tg6799)

2 months/

unknown sex

Intranasal ARB

(Candesartan)

8 weeks Reduced hippocampal microglial activation and

Aβ pathology

Trigiani et al. (2018) APP mutation mice 3–4 months/male

& female

Oral or subcutaneous

osmotic mini-pump ARB

(candesartan)

2–5 months Lowered blood pressure, reduced

neuroinflammation, increased dendritic

arborization, and cellular proliferation but did

not improve cognition or reduce Aβ pathology

Ongali et al. (2014) APP mutation mice 15 months/male &

female

Oral ARB (Losartan) 3 months Losartan consolidates acquisition and recall

memory, rescued cerebrovascular function; no

reduction of Aβ pathology

Royea et al. (2017) APP mutation mice 3 months Subcutaneous osmotic

mini-pump ARB (losartan)

3–4 months Losartan improved memory retrieval, but not

spatial learning, which was reversed by AT4R

blockade. No alteration in Aβ pathology.

Mogi et al. (2008) Intracerebroventricular

Aβ1−40 injection Mice

2 months/male Oral ARB (telmisartan or

losartan)

2 weeks Telmisartan and losartan prevented

intracerebroventricular Aβ-induced cognitive

impairment, but only telmisartan improved Aβ

deposition

Tsukuda et al. (2009) Intracerebroventricular

Aβ1−40 injection mice

2 months/male Oral ARB (telmisartan) 2 weeks Telmisartan improved cognition function,

decreased tumor necrosis factor-a, and

reduced Aβ concentration

Takeda et al. (2009) Intracerebroventricular

Aβ1−40 injection mice &

APP mutation mice

2 months/male Oral ARB (olmesartan) 4–5 weeks Olmesartan attenuated cerebrovascular

dysfunction without reduction of Aβ pathology.

It also improved cognition, prevented vascular

dysregulation, and partially attenuated impaired

hippocampal synaptic plasticity in other mice

Ferrington et al. (2011) 3xTgAD mice 3–4 months/male Oral ARB (eprosartan or

valsatan)

2 months No change in Aβ or APP pathology

Ferrington et al. (2012) 3xTgAD Mice 9–10 months/male Oral ARB (eprosartan) 6 months No alteration in cognitive outcomes nor Aβ, tau,

or APP levels

Wang et al. (2007) APP mutated mice 6 months/female Oral ARB (valsartan) 5 months Reduced AD-type neuropathology and soluble

extracellular oligomeric Aβ

Yamada et al. (2010) Intracerebroventricular

Aβ25−35 injection Mice

5–6 weeks/male Oral ACEI (perindopril,

imidapril or enalapril)

1 daily dose

before testing

Only perindopril prevented working & long term

memory deficits

Dong et al. (2011) Intracerebroventricular

Aβ1−40 injection Mice

Not specified/male Oral ACEI (perindopril,

imidapril, or enalapril)

7 days Only perindopril prevented spatial memory

impairment, prevented hippocampal microglial

& astrocytic activation, and attenuated

oxidative stress

Torika et al. (2016) 5XAD transgenic mice

(Tg6799)

2 months/male Intranasal ACEI (perindopril

or captopril)

3.5–7 weeks Attenuate AD-associated markers in cortex,

reduced hippocampal, & cortical Aβ burden

Ferrington et al. (2011) 3xTgAD Mice 3–4 months/male Oral ACEI (captopril) 2 months No change in Aβ or APP pathology

Ferrington et al. (2012) 3xTgAD Mice 9–10 months/male Oral ACEI (captopril) 6 months No alteration in cognitive outcomes nor Aβ, tau,

or APP levels

AbdAlla et al. (2013) APP mutated mice 12 months Oral ACEI (captopril or

enalapril)

6 months Slowed Aβ plaque development and Aβ-related

neurodegeneration

3xTgAD, C57BL6 background mice with 3 AD-linked mutations; 5xAD, C57BL6 background mice with 5 AD-linked mutations; ACEI, Angiotensin-converting enzyme inhibitor; AD,

Alzheimer’s disease; APP, Amyloid precursor protein; ARB, Angiotensin receptor blocker.

cognitive decline, hippocampal microglial & astrocytic
activation, and oxidative stress in these animal models
utilizing intracerebroventricular Aβ injections, even after as
little as 1–7 days of treatment (Yamada et al., 2010; Dong et al.,
2011). In contrast, ACEIs that are not centrally active, such
as imidapril and enalapril, are ineffective under these same
conditions (Yamada et al., 2010; Dong et al., 2011). Longer
term administration of perindopril or captopril (also centrally

active) delivered intranasally can also improve amyloid burden
(Torika et al., 2016), demonstrating feasibility of delivering
these compounds peripherally rather than intracerebrally.
However, orally delivered captopril did not influence Aβ or
APP pathology after 2 (Ferrington et al., 2011) or 6 (Ferrington
et al., 2012) months of administration in 3xTgAD mice. Notably,
the aforementioned ARB and ACEI studies all utilized young
adult animal models of AD. However, it is imperative that aged
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animals be included in future investigations of the effects of RAS-
affecting compounds in AD-related research, as translational
studies will not be conducted in young humans, but within the
aged population naturally afflicted by this disease state.

The rationale for targeting RAS through a GMP includes
not only the aforementioned promising effects of ACE-affecting
drugs, but also the interaction between AD and the gut
microbiome as demonstrated by animal models. Not only is the
gut microbiome of APP transgenic mice significantly shifted,
but germ free APP transgenic mice demonstrate significantly
reduced Aβ pathology (Harach et al., 2017; Minter et al.,
2017). Similarly, overexpression of α-synuclein, which normally
results in Parkinson’s-like phenotypes, in germ free mice
result in significantly reduced pathological and physical burden
(Sampson et al., 2016). Treatment with antibiotics capable of
inducing prolonged shifts in gut microbiota also influences
neuroinflammation and amyloidosis in a APP/PS1 mouse model
(Minter et al., 2016), further suggesting a link betweenmicrobiota
and AD-related pathology. Work by Kumar et al. demonstrates
that there is a potential protective, antimicrobial role for Aβ

pathology, thus demonstrating a possible microbial basis for
triggering Aβ pathology (Kumar D. K. V. et al., 2016). All
together, these data demonstrate that translating RAS-affecting
manipulations to humans must not only be easily feasible, but
may be particularly effective when it targets the gut. Additional
evidence for the link between the RAS and AD is reviewed in
Kehoe (2018).

On the other hand, human studies on the influence of
angiotensin on AD are sparse, positive outcomes have been
reported using ACE inhibitors and ARBs clinically (Quitterer
and AbdAlla, 2020). ACEI use is capable of slowing cognitive
decline in individuals diagnosed with AD (O’Caoimh et al.,
2014), particularly within the first 6 months (Gao et al., 2013).
Continuous, or even intermittent, ACEI use over 4 years
by individuals with AD lead to significantly less decline in
MMSE scores relative to those who had never used ACEIs,
including individuals on other antihypertensive drugs (Soto
et al., 2013). In a group of individuals with both AD and
hypertension, prolonged ARB administration increased Aβ1-
42, decreased IL-1β and TNF-α and improved cognitive scores
relative to controls administered a calcium channel blocker
for the same duration (Wei et al., 2012). Among veterans
with cardiovascular disease, individuals prescribed an ARB
that developed AD were slower to require assisted living
than AD control patients (Li et al., 2010). Furthermore, a
combination of diuretics, calcium channel blockers and ARBs
slow cognitive decline (Hu et al., 2018), indicating the potential
for synergistic interventions targeting multiple systems. In fact,
there is evidence that ARBs may be more effective than ACEIs
in regard to cognitive outcomes, independent of their ability
to lower blood pressure (Hajjar et al., 2020). However, the
optimal timeframe of delivery for ARBs and ACEIs is unclear.
While these studies include examples of slowing of already
present cognitive decline, whether earlier and/or longer term
administration of either class of drug could be preventative of
AD and other dementias is unknown, but is worth considering in
future endeavors.

POTENTIAL MECHANISMS OF ANG (1,7)
GMP EFFICACY

The aforementioned preclinical and clinical studies demonstrate
the potential of RAS-affecting compounds for the treatment of
AD and dementia. However, a probiotic with not only the ability
to target these systems, but to restore gut dysbiosis, such as the
Ang (1,7)-expressing Lactobacillus paracasei (LP), may provide
a better way to target AD and age-related dementia. Moreover,
the delivery of therapeutic compounds through probiotics is
particularly useful due to their ability to survive gastric acids and
bile, allowing them to reach the intestinal target. The specific
GMP discussed here utilized LP as the live vector for oral
delivery. The LP was then modified to express Ang (1,7) as a
secreted fusion protein utilizing cholera toxin subunit B (the
non-toxic subunit; CTB), which functions as a trans-epithelial
carrier, allowing for uptake into circulation (Verma et al., 2020).
Although there is little evidence that oligopeptides, other than di-
and tripeptides, can normally cross the mucosal border (Miner-
Williams et al., 2014), CTB is able to facilitate transmucosal
transport through GM1 receptor mediated endocytosis (Baldauf
et al., 2015; Verma et al., 2020). Once this conjoined molecule is
secreted into the circulatory system, the CTB is separated from
the Ang (1,7) through a furin cleavage site. Expression of Ang
(1,7) itself, within several tissues and in serum, has previously
been confirmed in mice and rats (Carter et al., 2019; Verma et al.,
2020). It is likely that the effects on peripheral and CNS health
are synergistic, as they are densely interconnected. There are
several mechanisms by which Ang (1,7) GMP may be beneficial
for AD, including, but not limited to (1) improved vascular
health through the RAS, (2) improved gut dysbiosis, (3) altered
neurotransmitter metabolism within the gut and (4) improved
glucose metabolism.

Improved Vascular Health
First and foremost, the vascular effects of any RAS-affecting
compound should be considered. Direct application of the Ang
(1,7) GMP into the gut is able to get into circulation (Verma
et al., 2019; Buford et al., 2020), where it may then mimic the
effects of ARBs and ACEIs through the downregulation of the
vasoconstrictive arm of the RAS. The resulting vasodilation may
lead to an improvement in AD-related impairments, as many
individuals with AD also experience impaired cardiovascular
function (Jin et al., 2017). Therefore, this RAS-targeting probiotic
may rescue or reduce the cognitive phenotype associated
with vascular dementia. However, differentiation between
improved neural function and vascular function has yet to be
established, though the two are likely synergistically improving
outcomes as peripheral and cognitive health are strongly and
reciprocally linked.

Repairing Gut Dysbiosis
It is conceivable that the actions of Ang (1,7) GMP work to
improve CNS function through the targeting other peripheral
tissues, rather than through targeting the brain directly. Impaired
gut function can impair brain health and cognitive functioning,
and may result in neurodegenerative conditions (Berer et al.,
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2011; Gareau, 2014; Sampson et al., 2016; Cattaneo et al.,
2017), so it is plausible that the restoration of gut health
would ameliorate these deficits. The probiotic itself, Lactobacillus
paracasei, may be able to restore dysbiosis (Kim et al., 2019),
which is present in individuals with AD. Both the ACE2/Ang
(1,7)/MAS1 axis of the RAS and the probiotic help to reduce
inflammation (Gaddam et al., 2014; Wang et al., 2020), which
may then decrease gut leakiness and prevent the ability of
inflammatory markers and amyloid proteins from escaping into
circulation (Pistollato et al., 2016).

Altered Neurotransmitter Metabolism
The intestinal tract is an integral part of many bodily systems,
including the nervous system through the generation of many
neurotransmitter molecules (Yano et al., 2015; Pistollato et al.,
2016). While alterations in gut health may influence the
metabolism of several neurotransmitters, RAS activity within the
gut is particularly involved in tryptophan, and thus serotonin,
metabolism (Figure 1, left) (Sharon et al., 2016; Hampton,
2017; Kennedy et al., 2017; Strandwitz, 2018; Fülling et al.,
2019). Additionally, lactobacillus supplementation is capable of
modulating the neurotransmitter GABA receptor expression,
regulating emotional behavior in mice via the vagal nerve (Bravo
et al., 2011).

Repaired Glucose Metabolism
Unfortunately, there is both an age- (Gage et al., 1984; Rasgon
et al., 2005; Goyal et al., 2017) andAD-related (Janson et al., 2004)
reduction in the ability to metabolize glucose, which further
impairs cognitive function in these conditions. The ACE2/Ang
(1,7)/MAS1 axis of the RAS plays a significant role in glucose
absorption through the intestines and activation of this pathway
improves hyperglycemia in diabetic patients (Wong et al., 2007;
Garg et al., 2012), Furthermore, administration of ACEIs can
ameliorate type 2 diabetes (Henriksen, 2007; Favre et al., 2015)
and improve obesity (Kouyama et al., 2005; Weisinger et al.,
2009).

In addition to the RAS component of the GMP, the probiotic
utilized to deliver the compound may improve metabolic
function itself. Lactobacillus paracasei and other Lactobacilli
have complex microbiome-metabolome interactions, influencing
short chain fatty acid, ketone and methyl acetate concentrations
(Martin et al., 2008; Vitali et al., 2010; Arora et al., 2013).
Furthermore, these strains are able to increase amino acid
absorption as well as beneficially alter the fermentation process
(Ndagijimana et al., 2009). Lactobacillus itself is capable of
improving glucose and insulin signaling in mouse models of
obesity and diabetes (Yun et al., 2009; Naito et al., 2011), which
are both common comorbidities with AD.

POTENTIAL MODULATORS OF EFFECT
NEEDING CONSIDERATION IN STUDY
DESIGNS

Biological Sex
A vast gender disparity exists in Alzheimer’s disease (AD), with
two-thirds of diagnosed patients being female. Notably, this

gender discrepancy is not explained by increased life expectancy
as the incidence, cognitive decline, and amyloid pathology are
all greater in women compared to age-matched men with AD
(Barron and Pike, 2012). As a result, a significant need exists
to investigate mechanisms which might contribute to these sex
differences in the incidence of AD.

Notably, prior evidence indicates that male and female
rats have differing circulating and renal levels Ang (1–7) and
other non-classical components of the RAS (Sullivan et al.,
2010). Specifically, male mice and rats both demonstrate an
increased vascular response to AngII administration than their
female counterparts (Tatchum-Talom et al., 2005). Additionally,
female spontaneously hypertensive rats (SHRs) have decreased
sensitivity to angiotensin II, demonstrating blunted hypertensive
effects (Sullivan et al., 2010). This effect is mediated by the
RAS system, as ACE inhibitor enalapril administration similarly
reduced blood pressure levels in both sexes (Reckelhoff Jane et al.,
2000).

Of particular note to those interested in studying age-related
disease states such as dementia, there are sex-specific changes in
serum peptidases comprising the RAS that accompany aging in
humans (Fernández-Atucha et al., 2017). While aminopeptidase
A (APA) was the only significantly different peptide across all
men and women studied, both APA and ACE were significantly
lower in male subjects when only individuals over the age
of 55 were included in the analysis. Additionally, estrogen
mediates neuroprotection in clinical and animal models of
Parkinson’s disease, likely through inhibition of the RAS, as
estrogen inhibits nigral angiotensin, mediating neuroprotection
(Labandeira-Garcia et al., 2016).

Further consideration should be taken for sex differences in
gut microbiota, termed the “microgenderome” by Flak et al.
(2013). This concept outlined sex differences in the bidirectional
interactions between gut microbiota and the body, particularly
in the case of hormones and immunity. However, it should be
noted that differences in microbiome composition across male
and female humans are confounded by conflicting reports, with
opposite changes described across differing cohorts (Vemuri
et al., 2019). In any case, estrogen level in males and post-
menopausal females correlate with microbiome diversity and
richness, though this correlation is absent in pre-menopausal
females (Flores et al., 2012). Additionally, males and females
may respond to probiotic treatment differently in both humans
(Lönnermark et al., 2015) and rodents (McCabe et al., 2013).
Together, differences in the RAS and microbiome across
male and female subjects warrant additional research and
consideration in probiotic-based interventions, particularly in
the case of a RAS-targeting GMP.

Diet
Dietary intake is universally considered one of, if not the, most
important factor influencing the gut microbiome. Moreover,
dietary interventions including caloric restriction, altered
macronutrient ratios and intermittent fasting have strong effects
in promoting healthy aging. Thus, the choice of diet could
have critical implications for determining if results observed
with the GMP will translate to humans. However, there are
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several drivers of altered dietary patterns in older adults leading
to decreased diversity in foods consumed, including decreased
physical mobility, loss of smell or taste and slowed digestion
(Britton and McLaughlin, 2013).

Alterations in macronutrient composition may be the largest
driving force behind differences in gut microbial communities, as
evidenced by regional differences in dietary composition from an
early age, leading to demonstrable differences in gut microbiota
(Voreades et al., 2014). Long-term dietary intake, particularly
protein and animal fat content vs. carbohydrate content, most
strongly influence gut microbiome enterotype (Wu et al., 2011).
However, short term dietary changes can also rapidly influence
gut microbiome composition (Wu et al., 2011; David et al.,
2014). More extreme examples of altered dietary patterns, such as
ketogenic (Newell et al., 2016; Olson et al., 2018; Cabrera-Mulero
et al., 2019) and vegetarian or vegan diets (Tomova et al., 2019)
also dramatically shift microbial composition. This is particularly
relevant in the context of AD and related dementias, as both
Mediterranean and ketogenic diets have been utilized in pre-
clinical and clinical studies with promising results in regards to
improving cognitive deficits (Solfrizzi et al., 2011; Lourida et al.,
2013; McDonald and Cervenka, 2018; Rusek et al., 2019).

Although dietary composition has a large influence on
microbiome composition, altered dietary patterns may have a
strong influence as well. Obese individuals who restrict calorie
intake demonstrate an increase in Bacteroidetes, significantly
improving their Bacteroidetes:Firmicutes ratio, regardless of
whether this reduction was through from altered fat or
carbohydrate intake (Ley et al., 2006). Furthermore, calorie
restriction improved microbial gene richness and improved
metabolic parameters (Cotillard et al., 2013; Le Chatelier
et al., 2013). The introduction of time restricted feeding (i.e.,
eating exclusively during specific times of the day) not only
improves metabolic health, but improves diversity within the gut
microbiome (Zarrinpar et al., 2014; van der Merwe et al., 2020).

The RAS is also heavily influenced by diet. High-salt diets
can suppress systemic RAS, lowering plasma renin, angiotensin
II (AngII) and aldosterone levels (He and MacGregor, 2011;
Charytan and Forman, 2012). Both obesity and starvation have
profound effects on angiotensinogen, the precursor to AngII
(Frederich et al., 1992; Turban et al., 2002). Obese prone
rats demonstrate increased angiotensin-related gene expression
following 8 weeks of a high fat diet relative to lean and
obese resistant rats (Boustany et al., 2004). Obesity not only
negatively influences hypertension and RAS signaling, but greatly
increases the risk of dementia in aged individuals (Whitmer
et al., 2005; Beydoun et al., 2008). Furthermore, individuals with
dementias demonstrate altered eating patterns (Morris et al.,
1989; Ikeda et al., 2002; Sandilyan, 2011), perhaps enhancing
age-related gut dysbiosis. Of note, several subtypes of dementias
correlated with an significant increase in preference for sweet
foods (Ikeda et al., 2002), which can lead to detrimental shifts in
carbohydrate intake.

Beyond the direct relationship of dietary consumption
patterns and altered microbial diversity, diet can have a
profound influence on central nervous system function in aged
subjects through alterations in energy bioavailability (Hernandez

and Burke, 2018; Mujica-Parodi et al., 2020). Probiotics and
fermented foods may enhance the link between the gut and brain
through increased GABA, serotonin and/or BDNF (Chung et al.,
2014; Kim et al., 2016).

Physical Exercise
Physical exercise represents an important healthy aging
intervention with important implications for brain health
(Ahlskog et al., 2011; Buchman et al., 2012), and exercise
directly modulates the gut microbiome (Mailing et al., 2019).
The activity status of an organism also directly influences drug
responsiveness due to differences in various hemodynamic
and metabolic outcomes (Lenz et al., 2004; Lenz, 2011)—
often demonstrating differing drug effects under active and
sedentary states (Huffman et al., 2008; Narkar et al., 2008;
Buford et al., 2012; Menzies et al., 2013). Therefore, it is possible
that utilization of an Ang (1–7)-targeting GMP could be most
effective when combined with physical exercise.

Exercise alone can alter the gut microbiome, as reviewed
previously (Mailing et al., 2019). Specifically, exercise is able to
increase the abundance of butyrate-producing taxa (Matsumoto
et al., 2008; Evans et al., 2014; Kang et al., 2014). This may
have interesting implications in aging individuals with or without
dementia, as butyrate itself is anti-inflammatory, beneficial for
metabolic health and can boost production of ketones to serve
as a fuel source (Cavaleri and Bashar, 2018). This is particularly
beneficial given the negative alterations in glucose utilization
in aged dementia patients. However, the type of exercise may
influence the gut microbiome in different ways (Allen et al., 2015)
and there are conflicting data as to how certain phyla are altered
in both preclinical animal models and human data (Mailing et al.,
2019). However, a study utilizing the APP/PS1 transgenic mouse
model of AD demonstrated significant advantage of both exercise
and probiotic use (Abraham et al., 2019), strengthening the
argument for physical activity and gut health in AD treatment.

Similarly, exercise can have drastic effects on the RAS. Chronic
exercise not only improves systemic blood pressure, but prevents
increased expression of ACE and AT1R in hypertensive rats—
while simultaneously preventing a decrease in ACE2 and MasR
expression normally observed in these animals (Agarwal et al.,
2011). This study also showed that in addition to regulating the
vasoconstrictor axis of the RAS, chronic exercise also attenuates
inflammatory cytokine expression. Exercise training attenuates
ROS within the paraventricular nucleus, a brain region involved
in the RAS (Zhang et al., 2016). Additionally, exercise improves
vascular sensitivity to insulin through the action of Ang (1–
7) action at the MasR (Gallardo-Ortíz et al., 2020), which may
be of particular relevance to individuals with insulin-related
impairments including diabetes and AD.

An abundance of evidence demonstrates the potential for
exercise to improve quality of life in advanced age (Mazzeo
et al., 1998; Spirduso and Cronin, 2001; Rejeski et al., 2002;
Courneya and Karvinen, 2007), as well as dementia (Ahlskog
et al., 2011). Taken together, data from exercise studies suggest
that combining a RAS-affecting GMP with physical exercise
could have enhanced ability to target the multi-system decline
often facing dementia patients.
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CONCLUDING REMARKS

Alzheimer’s disease (AD) is one of the most prevalent age-related
inflictions among the elderly population, but there are currently
no available therapeutics of any kind capable of preventing or
curing this disease state. One potential approach is through the
gut, but significant work is required to determine how such
interventions can be implemented and the degree to which they
can be efficacious. Probiotic-based interventions may be a good
choice, provided there is an appropriate vessel through which
systemic alterations can be administered. Though there is limited
clinical evidence for the effectiveness of probiotics in dementia,
there is a strong link between gut microbiome and brain
function/dysfunction, including distinct microbial profiles in
major depressive disorder (Zheng et al., 2016), autism spectrum
disorders (Krajmalnik-Brown et al., 2015), schizophrenia (Shen
et al., 2018) and microbiome-dependent resistance to seizure
activity (Olson et al., 2018).

Thus, as outlined in this review, the utilization of genetically-
modified probiotics (GMPs) may hold promise for AD-related
impairments via oral delivery of therapeutic compounds.
Specifically, the utilization of GMPs from lactic acid bacteria
which itself has inherent benefits and these GMPs can be further
utilized to deliver compounds such as Angiotensin (1–7) as
there is strong evidence for the role of the RAS in AD (Wright

and Harding, 2010). We look forward to seeing the continued
development of work in this space in effort to identify efficacious
interventions to combat the ever-growing prevalence of AD and
other forms of dementia in the rapidly aging population.
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