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Simple Summary: Mycotoxins are toxic secondary metabolites of fungi that frequently contaminate
animal feed and human food in different combinations; therefore, it is of great importance to
determine the effects of mycotoxin co-contamination. Pigs are one of the most sensitive animal species
to Fusarium mycotoxins, and the liver is an important site of mycotoxin metabolism. The objective of
the present research was to determine histopathological changes, apoptosis, and proliferation in the
liver of gilts fed with Fusarium mycotoxin-contaminated feed for a prolonged time at the end of their
pregnancy and until weaning of their piglets. Additionally, the same parameters were evaluated in
the liver of their piglets to determine whether Fusarium mycotoxins would affect the offspring. The
results revealed increased hepatocellular necrosis and apoptosis as well as sinusoidal leukocytosis
with inflammatory infiltrates of hepatic lobules in experimental gilts, but no significant changes were
observed in the piglet livers, implying that the utilized concentrations and duration of exposure did
not cause detrimental effects on them. Interestingly, the amount of interlobular connective tissue in
the liver of experimental gilts was significantly decreased. The obtained results emphasized the need
to evaluate Fusarium mycotoxin concentrations in feed because even at low concentrations, they can
cause adverse effects, but there is less concern for severe detrimental effects on the offspring.

Abstract: Mycotoxins are common fungal secondary metabolites in both animal feed and human food,
representing widespread toxic contaminants that cause various adverse effects. Co-contamination
with different mycotoxins is frequent; therefore, this study focused on feed contaminated with Fusar-
ium mycotoxins, namely, deoxynivalenol (5.08 mg/kg), zearalenone (0.09 mg/kg), and fusaric acid
(21.6 mg/kg). Their effects on the liver of gilts and their piglets were chosen as the research subject as
pigs are one of the most sensitive animal species that are also physiologically very similar to humans.
The gilts were fed the experimental diet for 54 ± 1 day, starting late in their pregnancy and continuing
until roughly a week after weaning of their piglets. Livers of gilts and their piglets were assessed
for different histopathological changes, apoptosis, and proliferation activity of hepatocytes. On
histopathology, gilts fed the experimental diet had a statistically significant increase in hepatocellular
necrosis and apoptosis (p = 0.0318) as well as sinusoidal leukocytosis with inflammatory infiltrates of
hepatic lobules (p = 0.0004). The amount of interlobular connective tissue in the liver of experimental
gilts was also significantly decreased (p = 0.0232), implying a disruption in the formation of fibrous
connective tissue. Apoptosis of hepatocytes and of cells in hepatic sinusoids, further assessed by the
terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, showed a statistically
significant increase (p = 0.0224 and p = 0.0007, respectively). No differences were observed in piglet
livers. These results indicated that Fusarium mycotoxins elicited increased apoptosis, necrosis, and
inflammation in the liver of gilts, but caused no effects on the liver of piglets at these concentrations.

Keywords: Fusarium mycotoxins; pig; liver; histopathology; immunohistochemistry; apoptosis;
proliferation index
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1. Introduction

Mycotoxins are toxic secondary metabolites produced by many filamentous fungi.
The most important fungi causing frequent and problematic contamination of human food
and animal feed belong to the fungal genera of Fusarium, Aspergillus, and Penicillium. Maize
is considered the most susceptible crop for mycotoxin contamination and rice the least
susceptible one [1].

Fusarium fungi produce a variety of toxic secondary metabolites, which are not es-
sential to fungal growth but can induce several adverse effects in livestock [2]. The most
toxicologically important Fusarium toxins are fumonisins (FBs), zearalenone (ZEN), and
trichothecenes, such as deoxynivalenol (DON), nivalenol (NIV), diacetoxyscirpenol (DAS),
and T-2 toxin [3]. Both in vitro and in vivo studies have demonstrated that toxicokinetics,
bioavailability, and the mechanisms of action of these substances vary depending on the
species involved [4]. ZEN causes reproductive abnormalities in pigs and ruminants and
DON is well known for being a potent feed intake inhibitor in pigs [5,6]. Next to these
well-known Fusarium mycotoxins, there are also several unregulated, so-called emerging
mycotoxins, which frequently occur in agricultural products. One of them is fusaric acid
(FA), which is found in several types of cereal grain and mixed feeds. This mycotoxin
needs to be further investigated in vitro and in vivo because its neurochemical effects and
possible synergistic effects with other mycotoxins, especially DON and FBs, may pose a
problem to humans and livestock [7].

Besides aflatoxins (AFs) and ochratoxins, which are not Fusarium mycotoxins, FBs,
ZEN, and trichothecenes, especially DON, are considered highly important in food safety
and public health due to their widespread occurrence and toxicity. In people, chronic
exposure to mycotoxins, even at low levels, may lead to adverse effects in different organs,
such as the liver, kidneys, and immune system [8,9].

Due to the frequent presence of several different mycotoxins in grain and animal feed,
widespread reports of co-contamination are of great potential significance [10]. A global
survey indicated that 72% of samples of feed and feed raw materials are positive for at least
one mycotoxin and 38% are co-contaminated [11], whereas several studies in European
countries, simultaneously analyzing 20 or more mycotoxins, have shown a remarkable
44–100% of such samples to be co-contaminated with more than one mycotoxin [12]. A
recent study that included 524 worldwide finished pig feed samples detected more than
235 different metabolites, including regulated mycotoxins, emerging mycotoxins, and
modified/masked mycotoxins. DON was detected in 88% of the samples, mostly from
the Northern Hemisphere, with a median concentration of 0.206 mg/kg of feed. All
DON-contaminated samples were co-contaminated by other mycotoxins, the second most
common being ZEN with a median concentration of 0.018 mg/kg of feed, while FA was
not among the 60 most prevalent fungal metabolites [13].

Concomitantly occurring mycotoxins can have antagonistic, additive, or synergistic
effects [14], but very little is known about their potential interactive toxic effects [2]. Even
though the results from the global survey indicated that the Fusarium mycotoxins DON, FBs,
and ZEN contaminated 55%, 54%, and 36% of feed and feed ingredients, respectively, most
samples complied with even the most rigorous European Union regulations or recommen-
dations on the maximal tolerable concentrations of individual mycotoxins [11]. Currently,
the European Commission’s recommendation and its amendment on the presence of
DON, ZEN, ochratoxin A, T-2 and HT-2, and FBs in products intended for animal feeding
suggest that compound feed for piglets and gilts does not exceed 0.9 mg of DON/kg,
0.1 mg of ZEN/kg, 0.05 mg of ochratoxin A/kg and 5 mg of fumonisins B1 + B2/kg [15,16].
It is therefore of great importance to determine the effects of co-contaminating Fusarium
mycotoxins, especially at naturally occurring concentrations, as well as concentrations
lower than the accepted tolerance concentrations for individual mycotoxins.
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Pigs are especially interesting for further research because they are one of the most
sensitive animal species for Fusarium mycotoxins, especially ZEN and trichothecenes, such
as DON and T-2. They are usually fed a cereal-rich diet, which can expose them to higher
levels of these mycotoxins. As they are physiologically very similar to humans, they can
serve as a good translational animal model, especially due to their similarities in the intesti-
nal tract [17]. The effects of these toxins partly depend on their absorption, distribution,
metabolism, and excretion (ADME processes) by the animal species in question. As the
ADME processes seem to be qualitatively quite similar between pigs and humans, pigs
can be very useful in the risk assessment of mycotoxins and for establishing legal limits of
mycotoxins [18].

Research on the effects of feeding pigs with Fusarium mycotoxin co-contaminated
feed has been ongoing for over 30 years, providing insight in various aspects. These
studies often emphasized the zootechnical, hematological, biochemical, toxicological, and
immunological parameters [19–23], whereas others also investigated histological changes
in various organs with or without the aid of immunohistochemistry [14,24–35] or even
examined gene expression profiles [36–38].

Since Fusarium mycotoxins are such a common contaminant and clearly have effects
on different animal species, it is also of interest whether they have detrimental effects
on the offspring. Some studies have analyzed the transfer of single or multiple Fusarium
mycotoxins from sows to their offspring, implying that these can cause indirect effects via a
decreased feed intake and via direct effects of diaplacentar transfer of ingested mycotoxins
to the developing fetuses [20,21,29–31,39,40].

The liver is an important site of Fusarium mycotoxin metabolism [18]. DON’s effects
on liver have been investigated by studies evaluating biochemical, functional, histopatho-
logical parameters [33,34,41–43] and even gene expression profiles [38].

The aim of this study was therefore to determine whether feed containing naturally
occurring concentrations of DON, ZEN, and FA would elicit histopathological changes, a
difference in the number of apoptotic cells, and the proliferation index in the liver of gilts
and their suckling piglets.

2. Materials and Methods
2.1. Research Design

This study was conducted on samples retrieved from the experiment approved by
the Veterinary Administration of the Republic of Slovenia and described in detail by
Jakovac-Strajn et al. [22]. In summary, the experiment included 10 gilts that were fed an
experimental diet containing maize naturally contaminated with Fusarium mycotoxins,
10 gilts that were fed a control diet, and the offspring of both groups. The gilts were daily
fed 3.5 kg of the diet during gestation and 6 kg of the same diet from the day of farrowing
until weaning. The gilts from the experimental group consumed significantly less than
the control group, but the average bodyweight was not significantly different even at the
end of the experiment. At the start of the experiment, the gilts were at 89 ± 2 days of
gestation, and they remained in the experiment for a total of 54 ± 1 day. The farrowing
in both groups started 24 to 27 days after the start of the experiment and the piglets were
weaned at 21 days of age. No antimicrobials were given to either the gilts or their piglets
during the experiment.

The experimental diet contained 5.08 mg DON, 0.09 mg ZEN, and 21.6 mg FA per kg of
feed. The control diet contained 0.29 mg DON per kg of feed, whereas ZEN (<0.02 mg/kg)
and FA (<0.77 mg/kg) were below their detection limits. The concentrations of aflatoxin
B1 (<0.2 µg/kg), 15-ADON, NIV, fusarenon-X, DAS, T-2 toxin, HT-2 toxin (<0.05 µg/kg),
ochratoxin A, and fumonisins B1, B2, and B3 (<10 µg/kg) were also measured in both diets,
but they were all below their detection limits, these being indicated in parentheses.

In order to collect organs for further examination, a single 7-day-old suckling piglet
was randomly selected from each of the 20 litters and killed by lethal injection of T-61
solution (embutramide/mebezonium iodide/tetracaine hydrochloride, Intervet, Unter-
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schleißheim, Germany), whereas all the gilts were killed by captive bolt and exsanguination
5 to 8 days after weaning of the remaining piglets in the litters. Afterwards, liver samples
were immediately collected, fixed in 10% phosphate buffered formalin and routinely em-
bedded in paraffin blocks. Liver samples from two killed suckling piglets, one from each
group, were inappropriate for further processing.

2.2. Histopathology of the Liver of Gilts and Their Suckling Piglets

Histopathological examination of 4 µm thick tissue sections of formalin-fixed paraffin-
embedded (FFPE) liver samples stained with hematoxylin and eosin (H&E) was conducted
using light microscopy. Several different histopathological changes were assessed in the
liver: irregularity of hepatic cords, fibrosis, sinusoidal leukocytosis with inflammatory
infiltrates of hepatic lobules, portal tract inflammatory infiltrates, hepatocytes with vac-
uolar or granular cytoplasm, hepatocellular necrosis and apoptosis, markedly enlarged
hepatocytes (hepatocellular megalocytosis), markedly enlarged hepatocellular nuclei (hep-
atocellular megakaryosis), biliary hyperplasia, dilatation and thickening of blood vessels,
and thrombosis of blood or lymphatic vessels.

Each assessed histopathological change was graded for its intensity and extent. The
intensity of the histopathological changes was assigned one of the following scores:
0—not present, 1—mild, 2—moderate, and 3—severe. The extent of the histopathological
changes was assigned one of the following scores: 0—not present, 1—minimal (0 to <5% of
the tissue section), 2—mild (5 to <15% of the tissue section), 3—moderate (15 to <40% of
the tissue section) and 4—severe (40% or more of the tissue section). The assigned intensity
and extent score were then multiplied to obtain the final score for each histopathological
change in the tissue section of each liver sample from both the gilts and their piglets.

2.3. Detection of Apoptotic Cells in the Liver of Gilts and Their Suckling Piglets

For the detection of apoptotic cells in 4 µm thick FFPE tissue sections of liver from both
the gilts and their piglets, we performed the terminal deoxynucleotidyl transferase dUTP
nick-end labelling (TUNEL) assay using a commercial kit (ApopTag® peroxidase in situ
apoptosis detection kit; Chemicon, Temecula, CA, USA) according to the manufacturer’s
instructions. Finally, the tissue sections were counterstained with Mayer’s hematoxylin and
coverslipped. Tissue sections of porcine kidney incubated with RQ1 RNase-Free DNase
(M6101; Promega, Madison, WI, USA) were used as the positive control, and tissue sections
of porcine kidney that were only incubated with the label solution (without terminal
deoxynucleotidyl transferase) served as the negative control.

Using light microscopy, we counted TUNEL-positive cells in 30 randomly selected
high-power fields (HPF), and also noted whether they were apoptotic hepatocytes or
apoptotic cells in hepatic sinusoids. For hepatocytes to be considered TUNEL-positive,
they had to have a clearly stained nucleus. Similarly, apoptotic cells in hepatic sinusoids
had to exhibit moderate to marked nuclear staining.

2.4. Determining the Proliferation Index in the Liver of Gilts and Their Suckling Piglets

The proliferation activity of hepatocytes was evaluated on 4 µm thick FFPE tissue
sections of liver from both the gilts and their piglets using immunohistochemical labelling
with the mouse monoclonal antibody raised against human Ki-67 antigen, clone MIB-1
(Dako, Glostrup, Denmark), which was diluted 1:75. The antigen retrieval was performed
by microwave treatment at a medium power (550 W) for 15 min in ethylenediamine-
tetraacetic acid (EDTA) with a pH of 8.0. The tissue sections were then incubated with
primary antibodies for 1 hour at room temperature in a humid chamber. Endogenous
peroxidase activity was quenched in the peroxidase-blocking solution Dako REALTM
(Dako, Glostrup, Denmark) for 30 min at room temperature. The visualization kit Dako RE-
ALTM EnVisionTM Detection System Peroxidase/DAB+, Rabbit/Mouse (Dako, Glostrup,
Denmark) was applied according to the manufacturer’s instructions. Finally, the tissue
sections were counterstained with Mayer’s hematoxylin and coverslipped. Tissue sections



Animals 2021, 11, 2534 5 of 14

of porcine spleen were used as the positive control, and tissue sections of porcine liver that
were not treated with primary antibodies served as the negative control. From one of the
experimental gilts, a tissue section of the liver was not acquired due to lack of adequate
FFPE tissue.

The proliferation index of hepatocytes was calculated as the rate of Ki-67-positive nu-
clei in a total of 1000 counted nuclei in the tissue sections of liver under a light microscope.

2.5. Morphometrical Evaluation of Interlobular Connective Tissue in the Liver of Gilts

The amount of interlobular connective tissue was measured in 4 µm thick FFPE
tissue sections of liver samples only from the gilts. The tissue sections were stained with
Goldner’s Masson trichrome stain to clearly depict fibrous connective tissues under a light
microscope coupled with a digital camera. Using the software program NIS-Elements Basic
Research (Nikon Instruments Inc., Tokyo, Japan), five consecutive microphotographs at
HPF were made for each tissue section and represented the area of measurement. The
microphotographs were then converted into a binary-colored output by marking pixels that
belonged to either interlobular connective tissue or parenchyma, thus enabling automated
detection of interlobular connective tissue. The amount of interlobular connective tissue
was expressed as the area fraction of the corresponding pixels out of the total number of
pixels in the area of measurement. When necessary, the automatically detected areas of
interlobular connective tissue were corrected manually.

2.6. Statistical Analysis

For statistical analysis, we used the R statistical software, version 3.6.2 (R Foundation
for Statistical Computing, Vienna, Austria) [44]. The obtained results for the experimental
and control groups of both the gilts and their piglets are presented with basic descriptive
statistics. The Shapiro–Wilk test was used to assess the normality of the variables. For both
gilts and piglets, the differences between the experimental and control group were analyzed
with the two-tailed Mann–Whitney U test because most of the variables had a non-normal
distribution. The correlations between histopathological changes, the number of apoptotic
cells and the proliferation index were assessed separately for the gilts and their piglets
with Spearman’s rank correlation coefficients and Holm’s adjusted p-values. Statistical
significance was determined as p < 0.05, and 0.05 ≤ p < 0.1 was marginally significant.

3. Results
3.1. Histopathology of the Liver of Gilts and Their Suckling Piglets

In gilts, seven assessed histopathological changes were observed on H&E-stained liver
sections: fibrosis, sinusoidal leukocytosis with inflammatory infiltrates of hepatic lobules,
portal tract inflammatory infiltrates, hepatocytes with vacuolar or granular cytoplasm,
hepatocellular necrosis and apoptosis, hepatocellular megalocytosis, and hepatocellular
megakaryosis. Overt fibrosis was only observed in the liver of one gilt from the con-
trol group, but even this was mild based on its final score of 1 and was not statistically
significant in comparison with the experimental group (p = 0.3681). The remaining six
histopathological changes also had low final scores with a maximum score of 2, and in
one experimental gilt, hepatocytes with vacuolar or granular cytoplasm reached a score of
4 (Table 1). Final scores for hepatocellular necrosis and apoptosis (p = 0.0318) and sinusoidal
leukocytosis with inflammatory infiltrates of hepatic lobules (p = 0.0004) were significantly
higher in the experimental group compared with the control group (Figure 1A,B), whereas
portal tract inflammatory infiltrates (p = 0.4539) showed no statistically significant differ-
ences. Additionally, hepatocellular necrosis and apoptosis and sinusoidal leukocytosis
with inflammatory infiltrates of hepatic lobules were strongly correlated (Spearman’s
ρ = 0.73, p = 0.0226). The inflammatory infiltrates were composed of different proportions
of lymphocytes, plasma cells, neutrophils, eosinophils, and, occasionally, macrophages.
Hepatocytes with vacuolar or granular cytoplasm (p = 0.3681), hepatocellular megalocy-
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tosis (p = 1.0000), and hepatocellular megakaryosis (p = 1.0000) did not show statistically
significant differences between both groups.

Table 1. The final scores for each histopathological change in the liver of control and experimental gilts presented with basic
descriptive statistics.

Histopathological Change Group N Min Q1 Median Q3 Max

Fibrosis
control 10 0 0 0 0 1

experimental 10 0 0 0 0 0

Sinusoidal leukocytosis with
inflammatory infiltrates of

hepatic lobules *

control 10 0 0 0 0 0

experimental 10 0 1 1 1 1

Portal tract inflammatory infiltrates
control 10 0 1 1 1 2

experimental 10 0 1 1 1 2

Hepatocytes with vacuolaror
or granular cytoplasm

control 10 0 0 0 0 0

experimental 10 0 0 0 0 4

Hepatocellular necrosis
and apoptosis *

control 10 0 0 0 0.75 1

experimental 10 0 1 1 1 1

Hepatocellular
megalocytosis

control 10 0 0 0 0 1

experimental 10 0 0 0 0 1

Hepatocellular
megakaryosis

control 10 0 0 0 0 1

experimental 10 0 0 0 0 1

* Statistically significant difference between the control and experimental groups (p < 0.05). N—number of animals, Min—minimum,
Q1—lower quartile, Q3—upper quartile, Max—maximum.

In piglets, only three assessed histopathological changes were observed on H&E-
stained liver sections, these being hepatocytes with vacuolar or granular cytoplasm, hepa-
tocellular megalocytosis, and hepatocellular megakaryosis. Hepatocellular megalocytosis
and hepatocellular megakaryosis had low final scores that did not exceed a final score
of 1, whereas hepatocytes with vacuolar or granular cytoplasm had a final score ranging
between 0 and 12 (Table 2). Similar to what was observed in gilts, hepatocytes with vac-
uolar or granular cytoplasm (p = 0.1981), hepatocellular megalocytosis (p = 1.0000), and
hepatocellular megakaryosis (p = 1.0000) showed no statistically significant differences
between both groups (Figure 1C,D).

Table 2. The final scores for each histopathological change in the liver of control and experimental piglets presented with
basic descriptive statistics.

Histopathological Change Group N Min Q1 Median Q3 Max

Hepatocytes with vacuolar or
granular cytoplasm

control 9 0 4 8 8 12

experimental 9 0 0 4 4 8

Hepatocellular
megakaryosis

control 9 0 0 0 0 1

experimental 9 0 0 0 0 1

Hepatocellular
megakaryosis

control 9 0 0 0 1 1

experimental 9 0 0 0 1 1

N—number of animals, Min—minimum, Q1—lower quartile, Q3—upper quartile, Max—maximum.
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plasm, (D) piglet from the experimental group with hepatocytes diffusely exhibiting vacuolar or granular cytoplasm and 
a single hepatocyte exhibiting megalocytosis and megakaryosis (arrow). H&E, bar = 50 µm. 

Several assessed histopathological changes, namely, irregularity of hepatic cords, bil-
iary hyperplasia, dilatation and thickening of blood vessels, and thrombosis of blood or 
lymphatic vessels, did not occur in any of the liver samples from either the gilts or their 
piglets. 

3.2. Apoptosis and Proliferation Index in the Liver of Gilts and Their Suckling Piglets 
The cumulative number of apoptotic hepatocytes was significantly higher in the ex-

perimental group of gilts compared with the control group (p = 0.0224) and an even more 
significant difference was observed for the apoptotic cells in hepatic sinusoids (p = 0.0007) 
(Figure 2A,B). Moreover, the apoptotic cells in hepatic sinusoids were marginally signifi-
cantly but strongly correlated with sinusoidal leukocytosis with inflammatory infiltrates 
of hepatic lobules (Spearman’s ρ = 0.69, p = 0.0535). The apoptotic cells in hepatic sinusoids 
were most likely lymphocytes, based on their morphology, but double immunohisto-
chemical labelling was not attempted to further clarify this. There was no statistically sig-
nificant difference in the proliferation index of hepatocytes between the two groups of 
gilts (p = 0.6901) (Table 3). 

Figure 1. Representative microphotographs of the liver of gilts and their piglets: (A) gilt from the control group, (B) gilt
from the experimental group with increased sinusoidal leukocytosis with inflammatory infiltrates of hepatic lobules (inset
depicting the latter), (C) piglet from the control group with hepatocytes diffusely exhibiting vacuolar or granular cytoplasm,
(D) piglet from the experimental group with hepatocytes diffusely exhibiting vacuolar or granular cytoplasm and a single
hepatocyte exhibiting megalocytosis and megakaryosis (arrow). H&E, bar = 50 µm.

Several assessed histopathological changes, namely, irregularity of hepatic cords,
biliary hyperplasia, dilatation and thickening of blood vessels, and thrombosis of blood
or lymphatic vessels, did not occur in any of the liver samples from either the gilts or
their piglets.

3.2. Apoptosis and Proliferation Index in the Liver of Gilts and Their Suckling Piglets

The cumulative number of apoptotic hepatocytes was significantly higher in the ex-
perimental group of gilts compared with the control group (p = 0.0224) and an even more
significant difference was observed for the apoptotic cells in hepatic sinusoids (p = 0.0007)
(Figure 2A,B). Moreover, the apoptotic cells in hepatic sinusoids were marginally signifi-
cantly but strongly correlated with sinusoidal leukocytosis with inflammatory infiltrates of
hepatic lobules (Spearman’s ρ = 0.69, p = 0.0535). The apoptotic cells in hepatic sinusoids
were most likely lymphocytes, based on their morphology, but double immunohisto-
chemical labelling was not attempted to further clarify this. There was no statistically
significant difference in the proliferation index of hepatocytes between the two groups of
gilts (p = 0.6901) (Table 3).
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Figure 2. Representative microphotographs of apoptosis in the liver of gilts: (A) gilt from the control group with a single
apoptotic cell in a hepatic sinusoid (arrow), (B) gilt from the experimental group with increased numbers of apoptotic
cells in hepatic sinusoids (arrows) and an apoptotic hepatocyte (inset). TUNEL, counterstained with Mayer’s hematoxylin,
bar = 50 µm.

Table 3. The cumulative number of apoptotic cells and the proliferation index of hepatocytes in the liver of control and
experimental gilts presented with basic descriptive statistics.

Group N Min Q1 Median Q3 Max

Apoptotic hepatocytes *
control 10 0 0 0 1 2

experimental 9 0 1 1 2 5

Apoptotic cells in hepatic sinusoids *
control 10 0 2.5 5.5 7.5 13

experimental 9 11 13 16 19 35

Proliferation index of hepatocytes
control 10 0 0 0 0.08 0.2

experimental 10 0 0 0 0 0.2

* Statistically significant difference between the control and experimental groups (p < 0.05). N—number of animals, Min—minimum,
Q1—lower quartile, Q3—upper quartile, Max—maximum.

In piglets, there were no statistically significant differences in the cumulative number
of apoptotic hepatocytes (p = 0.1265) and apoptotic cells in hepatic sinusoids (p = 0.8581)
between the two groups. No statistically significant difference in the proliferation index
of hepatocytes was seen when comparing both groups of piglets (p = 0.1069) (Table 4).
Nevertheless, the proliferation index of hepatocytes was found to be strongly correlated
with hepatocytes with vacuolar or granular cytoplasm (Spearman’s ρ = 0.74, p = 0.006).

Table 4. The cumulative number of apoptotic cells and the proliferation index of hepatocytes in the liver of control and
experimental piglets presented with basic descriptive statistics.

Group N Min Q1 Median Q3 Max

Apoptotic hepatocytes
control 9 0 0 1 1 2

experimental 9 0 0 0 0 1

Apoptotic cells in hepatic sinusoids
control 9 1 5 5 8 22

experimental 9 1 4 6 6 20

Proliferation index of hepatocytes
control 9 0.2 0.3 0.3 0.6 1.2

experimental 9 0 0.1 0.1 0.3 5.3

N—number of animals, Min—minimum, Q1—lower quartile, Q3—upper quartile, Max—maximum.
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3.3. Interlobular Connective Tissue in the Liver of Gilts

Morphometrical analysis of interlobular connective tissue was only implemented on
liver samples from both groups of gilts. Subjectively, the interlobular connective tissue
in the control group of gilts appeared to be of the expected thickness, whereas in the
experimental group, it appeared mildly decreased; therefore, automated detection was
important to decrease subjective bias. The interlobular connective tissue in the experimental
group appeared to have decreased amounts of collagen fibers, therefore forming narrower
bands of fibrous connective tissue among hepatic lobules (Figure 3). The amount of
interlobular connective tissue proved to be significantly lower in the experimental group
compared with the control group of gilts (p = 0.0232) (Figure 4).
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4. Discussion

Mycotoxin co-contamination of finished pig feed is more common than single myco-
toxin contamination [13], emphasizing the importance of investigating the effects of such
naturally contaminated feeds, even when mycotoxins are detected below the accepted tol-
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erated concentrations for individual mycotoxins. A review from Escrivá et al. [17] showed
that in vivo toxicity studies of Fusarium mycotoxins had become much more frequent in
the decade between 2003 and 2014, thus highlighting their importance. These mycotoxi-
coses can manifest as acute diseases with high morbidity and death or as chronic diseases,
reduced animal productivity, and decreased resistance to pathogens [45].

In the present study, gilts were fed a diet containing maize naturally contaminated
with Fusarium mycotoxins from roughly the beginning of the last quarter of their pregnancy
until a week after the weaning of their piglets (a total of 54 ± 1 day). Our experimental
diet contained three Fusarium mycotoxins, namely DON (5.08 mg per kg of feed), ZEN
(0.09 mg per kg of feed), and FA (21.6 mg per kg of feed). Undertaking this approach, we
assumed that the presenting liver pathology of both gilts and their piglets would mimic
chronic exposure to mycotoxins in a typical pig production setting.

A detailed investigation into liver histopathology revealed a statistically significant dif-
ference in hepatocellular necrosis and apoptosis as well as sinusoidal leukocytosis with in-
flammatory infiltrates of hepatic lobules. Additionally, these two histopathological changes
were strongly correlated, and they likely represented recruitment of inflammatory cells to
sites of hepatocellular necrosis. Since the inflammatory cells were composed of a mixed
population of neutrophils, eosinophils, lymphocytes, and, occasionally, macrophages, the
observed rise in sinusoidal leukocytes could also be an indicator of a concurrent inflamma-
tory process, knowing that DON is suspected to raise the susceptibility to infection and
chronic diseases [46].

In humans and animals, the toxic effects of DON include emesis and anorexia, alter-
ation of intestinal and immune functions, reduced absorption of nutrients, and elevated
susceptibility to infection and chronic diseases [46]. As DON can induce such a variety
of toxic effects, it is difficult to interpret whether liver pathology observed in the in vivo
experiments was mostly due to direct hepatotoxic effects or significantly aggravated by
indirect effects related to reduced nutrient absorption and overall decreased food intake.

Some studies have shown no changes in liver morphology when DON was either the
sole potential toxic factor or in combination with another mycotoxin [30,31,40,42,43], but
that was not the case in all studies. When piglets received diets either mono-contaminated
with DON (1.5 mg per kg of feed) or multi-contaminated with DON (2 or 3 mg per kg of
feed), ZEN (1.5 mg per kg of feed), and NIV (1.3 mg per kg of feed), the most prominent
histopathological features were disorganization of hepatic cords, cytoplasmic vacuoliza-
tion of hepatocytes, and megalocytosis. Piglets fed the co-contaminated diet with the
higher dose of DON also exhibited focal necrosis in the liver [33]. In previous studies,
feed co-contaminated with DON and ZEN often elicited microscopic changes in the liver.
Chen et al. [28] fed pigs a diet containing 1 mg of DON and 0.250 mg of ZEN per kg of
feed and mentioned blood vessel thickening and dilation as the only histopathological
finding in the liver but did not provide a clear grading scheme or statistical analysis. When
feeding prepuberal gilts for 35 days with wheat containing increasing concentrations of
DON and ZEN, the amount of intracytoplasmic glycogen decreased in a dose-dependent
manner, whereas hemosiderin deposition increased. Wheat containing the highest doses of
DON (6.1 mg or 9.57 mg per kg of feed) and ZEN (0.235 mg or 0.358 mg per kg of feed)
also elicited a statistically significant increase in the thickness of interlobular connective
tissue [27]. On the other hand, a similar study, where pregnant sows were exposed to
a concentration of 4.42 mg DON and 0.048 mg ZEN per kg of feed for 35 days, did not
show any difference in thickness of interlobular connective tissue [29], whereas a slight
difference was observed in pregnant sows receiving a concentration of 9.57 mg DON and
0.358 mg ZEN per kg of feed for 35 days [30]. Another study assessed the effects of feeding
gilts for 1, 3, or 6 weeks with either DON at a dose of 0.012 mg/kg body weight (BW)
per day, ZEN at 0.04 mg/kg BW, or a mixture of DON and ZEN. Histologically, several
changes were observed in the liver, especially in gilts receiving DON and ZEN, such as
increased thickness of perilobular connective tissue, increased total microscopic liver score,
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dilation of hepatic sinusoids, temporary changes in glycogen content, and increased iron
accumulation in hepatocytes [34].

Interestingly, a statistically significant decrease in interlobular connective tissue was
observed in our experimental group of gilts when automated detection was used on
slides stained with Goldner’s Masson trichrome stain. Our finding is in contrast with
previous studies because in those cases, experimental animals had an increased amount
of interlobular connective tissue in the liver [27,30,34]. A recent study on collagen and
elastin content in skin of mink receiving DON-contaminated feed showed a decrease in
type III (immature) collagen when mink received DON at a concentration of 1.1 mg/kg of
feed and complete absence of type III (immature) collagen when mink received a dose of
3.7 mg/kg DON in feed with or without 0.05% bentonite [47]. As interlobular connective
tissue in pig liver contains both type I and type III collagen [48], the observed decrease in
interlobular connective tissue in our study may have been due to DON influencing the
expression of fibrous collagens. Further investigation would be needed to confirm or refute
this assumption.

Cell culture experiments on porcine hepatocytes have shown that DON causes mor-
phological and functional disorders in hepatocytes. Cell death of hepatocytes occurred in a
dose-dependent manner and exhibited morphological changes characteristic of apoptosis.
Apoptosis was further confirmed by consistently TUNEL-positive nuclei and increased
activity of caspase-3, a key enzyme in apoptotic cell death [49]. Our study showed a signifi-
cantly increased number of apoptotic cells in the liver of experimental gilts; an increase was
observed for hepatocytes and even more so for cells in hepatic sinusoids. The apoptotic
cells in hepatic sinusoids were most likely lymphocytes, based on their morphology, but we
did not attempt double immunolabelling to confirm this. Similarly, piglets intravenously
injected with DON at a concentration of 1 mg/kg body weight displayed systemic apop-
tosis of lymphocytes in lymphoid tissues as well as hepatocytes, thereby proposing a
hepatotoxic potential of DON next to its already known immunotoxic effect [41]. Based
on these findings, we suspect that both oral and intravenous administration of DON can
cause apoptosis of hepatocytes as well as circulating leukocytes.

As DON has also been associated with antiproliferative activity [50], we assessed
the proliferation activity by determining the number of Ki-67-positive hepatocytes, but
found no significant differences, neither in the liver of gilts nor their piglets. The same
was observed in the liver of porcine fetuses when pregnant sows were exposed to DON
and ZEN for 35 days during pregnancy [40], whereas an increased proliferation index
was observed when piglets received feed mono-contaminated with FBs (6 mg per kg of
feed) or DON (3 mg per kg of feed) and especially when co-contaminated with both FBs
and DON [14].

Fusarium mycotoxins clearly have direct and indirect effects on the liver of pigs that
are fed contaminated diets, thereby some studies have examined possible placentar transfer
from sows to their offspring [20,21,29–31,39,40]. Some did not identify any changes in
the fetuses [40] or piglets [39]. Dänicke et al. [20] suggested that the developing fetus is
exposed to DON, ZEN, and their metabolites when sows are fed contaminated feed, but did
not observe any histopathological changes, and Goyarts et al. [21] also found that DON and
de-epoxy-DON pass the placental barrier to a significant extent. Fetuses that were exposed
to DON and ZEN between the 35th and 70th day of gestation exhibited increased glycogen
content and changes in the architecture of hepatocellular mitochondria, likely caused by
diaplacentar toxin transfer of ingested toxins from the mother to the developing fetuses.
Feed consumption did not play a role in that experiment because both the control and
experimental groups received the same amount of feed per day [29]. When sows were fed
a diet contaminated with DON (9.57 mg per kg of feed) and ZEN (0.358 mg per kg of feed)
between the 75th and 110th day of gestation, there were no histological changes in the livers
of their piglets [30]. When sows received DON and ZEN co-contaminated diet between the
63rd and 70th day of gestation, DON was detected in fetus plasma and there was a change
in the proportion of their white blood cells [31]. In our study, there were no significant
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differences in the assessed histopathological changes, apoptosis, and proliferation index in
the livers of piglets. This suggests that a decreased feed consumption by the gilts leading
to a lower energy and nutrient intake or a direct effect of diaplacentar transfer of ingested
mycotoxins did not cause morphologically apparent changes in the developing fetuses,
possibly due to the relatively low concentrations of Fusarium mycotoxins in the diet fed to
the pregnant gilts.

5. Conclusions

The present study showed that gilts fed a diet contaminated with DON, ZEN, and
FA showed significantly increased hepatocellular necrosis and apoptosis as well as sinu-
soidal leukocytosis with mixed inflammatory infiltrates of hepatic lobules. The number of
apoptotic hepatocytes and apoptotic cells in hepatic sinusoids was also significantly higher
in the experimental gilts compared with the control gilts. No significant differences were
observed in the livers of their piglets, suggesting that the herein utilized concentrations of
Fusarium mycotoxins do not have detrimental effects on the liver of offspring.
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