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Abstract 

Background and Objective: Asthma is a common respiratory disease with a high prevalence and 
morbidity that can seriously affect quality of life. Microbial colonization of the airway may participate 
in the pathogenesis of asthma, however the mechanisms involved have not been established. In the 
present study, we aimed to determine the composition of the microbiota in different asthmatic 
phenotypes from Northeast China. 
Methods: 24 mild-to-moderate asthmatics (10 eosinophilic asthma and 14 non-eosinophilic asthma) 
and 12 healthy volunteers participated in this cross-sectional study. DNA was extracted from their 
induced sputum and amplified for 16s rRNA gene sequencing on Illumina Miseq platform. 
Bioinformatic analysis on the microbiome was performed.  
Results: Alpha-diversity analysis showed that the asthmatics had a decreased richness, evenness and 
diversity. Non-eosinophilic asthmatics showed a decreased richness, evenness and diversity 
compared with eosinophilic patients. A different taxonomy of 1 phylum and 6 genera taxa between 
the phenotypes was identified. Compared with heathy controls, asthmatics existed a larger 
taxonomic difference (P<0.05 for both EA and NEA vs. HC). 5 genera as the dominance in the 
microbial co-occurrence network correlated with the spirometry and disease progression of 
asthma. The function of microbiota genes was predicted to be related with infectious, immune and 
metabolic diseases. 
Conclusion: The diversity and composition of the airway microbiome was associated with the 
pathogenesis of asthma in different phenotypes. The diverse composition has been identified in the 
present study. 
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Introduction 
Asthma is a chronic heterogeneous disease that 

manifests as an inflammatory disorder and hyper- 
responsiveness [1] in the airway. As an immuno-
logical disease affecting about 200 million people 
worldwide [2], asthma has been classified as mild, 
moderate, and severe according to the Global 

Initiative for Asthma (GINA) guidelines [3]. Different 
asthmatics show a distinct, sometimes even complete-
ly refractory response to standard therapy and require 
a large amount of resources for management [4]. Two 
typical asthmatic phenotypes are eosinophilic asthma 
(EA) and non-eosinophilic asthma (NEA) [5], 
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consisting of nearly 50% in adult asthmatics for each 
[6]. EA manifests as an increase of eosinophils in the 
peripheral blood and sputum [7, 8]. EA also has more 
severe airway hyperresponsiveness and a higher risk 
of exacerbation [7]. However, NEA, mainly neutro-
philic asthma, usually manifests a poorly controlled 
status [9]. Environmental factors, such as allergens, 
bacteria and viruses have been considered as critical 
inducing factors for asthma [10, 11]. 

The hygiene hypothesis reported that high 
microbial exposure could reduce the risk of asthma 
and is confirmed by more and more evidence [12]. 
The microbiota in the asthmatic airway is tightly 
associated with the response to inhaled corticosteroid 
(ICS) [13, 14]. The composition of the bacterial 
community is also related to key clinical characteris-
tics of asthma such as worsening Asthma Control 
Questionnaire 6 (ACQ6) scores and level of protein 
associated with steroid responsiveness [15]. In 
addition, some genera such as Moraxella catarrhalis or 
the Haemophilus genera were also associated with a 
longer asthma disease duration, worse post- 
bronchodilator forced expiratory volume in 1 s (FEV1) 
and higher sputum neutrophil counts [16]. The total 
abundance of these organisms positively correlates 
with sputum IL-8 concentration and neutrophil count 
[16]. Therefore, identifying the etiological role of 
microorganisms in asthma is critical for understand-
ing the related mechanism and providing a potential 
therapeutic strategy. 

The way in which different microbiota 
participate in the pathogenesis of asthma, especially 
in different asthmatic inflammatory phenotypes is 
still poorly understood. Herein, we investigated the 
profile of bacterial flora in the lower airway of the 
characteristic asthmatic phenotypes, analysed their 
diversity at a taxonomic level, and investigated the 
interaction of the dominant flora. We tested the 
hypothesis that the characteristics of the airway 
microbiome would be different between inflamma-
tory phenotypes of asthma. 

Materials and Method 
Study Population and Sample Collection 

All asthmatic and heathy volunteers were 
recruited from the Northeast China Severe Asthma 
Network Centre. All patients were diagnosed as mild 
to moderate asthma according to the American 
Thoracic Society guidelines [17] and GINA guidelines 
[3], based on current respiratory symptoms and 
evidence from spirometry. The reversibility of FEV1 
to salbutamol was more than 12% and 250mL. 
Current smokers, ex-smokers who had ceased 
smoking in previous year, and those with a recent 

respiratory tract infection were excluded. Asthmatics 
with ACQ6 scores < 1.5 were included. Healthy 
control (HC) volunteers were not diagnosed with any 
diseases or any history of chronic lung diseases. 

Sputum induction, pre-treatment and sample 
processing for microbial analysis was performed as 
described previously [18, 19]. ICS and long acting beta 
agonists were ceased for 24 hours, then spirometry 
before and after bronchodilator treatment with 
salbutamol (2 puffs, 100mcg/puff) was performed 
according to our standard protocol [19]. Fasting 
peripheral whole blood and plasma were obtained in 
morning for full blood count and total IgE 
quantification. Asthmatic patients were classified as 
EA and NEA phenotypes according to a previously 
reported discriminant calculation formula based on 
the blood cell parameters [20]. 

The study was approved by the Jilin Province 
People’s Hospital Ethics Committee and registered in 
the International Clinical Trials Registry Platform and 
Chinese Clinical Trial Registry (NO. ChiCTR-ROC- 
16010115). All participants provided written informed 
consent. 

DNA extraction and 16s rRNA gene 
sequencing 

Total DNA was extracted from 100μL sputum 
aliquots with Omega mag-bind soil DNA kit 
(Cat.5635). The V3+V4 variable region of 16s rRNA 
gene was amplified by PCR with a forward primer: 
ACTCCTACGGGAGGCAGCA and Reverse primer: 
GGACTACHVGGGTWTCTAAT. PCR products were 
quantified and mixed using Quant-iT PicoGreen 
dsDNA kit. Sequencing library was established with 
Truseq Nano DNA LT Library Prep Kit according to 
the manufacturer’s protocol. After purifying the 
library system with BECKMAN AMPure XP beads, 
the quality of the library was assessed with agarose 
gel electrophoresis. Library with 2nM was sequenced 
with Illumina Miseq PE250. About 30,000 tags were 
read for every sample. 

Bioinformatical and statistical analysis 
All sequencing raw data was deposited into the 

NCBI Sequence Read Archive database under the 
BioProject ID number PRJNA412738. The sequencing 
quality has been filtered by sliding window to ensure 
the average quality of the base was more than Q20. All 
demultiplexed paired-end sequencing data were 
spliced with FLASH (v1.2.7) according to their 
barcoding indexes. Chimera sequence was removed 
with USEARCH (v10.0.240). QIIME (v1.8.0) was used 
to exclude error tags and cluster sequences into 
operational taxonomic units (OTUs) at 97% threshold. 
The clustered OTUs were classified against 
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Greengenes Databases (Release 13.8).  
After filtering the rare OTUs, which were lower 

than 0.001%, alpha diversity and beta diversity 
analysis including Principal component analysis 
(PCA) was finished with QIIME and R mixOmics 
package respectively. Metastats analysis of bacterial 
taxonomy was performed with Mothur (v1.39.5) 
followed by false discovery rate correction and 
displayed with Krona (v2.7). Moreover, Partial Least 
Squares Discriminant Analysis (PLS-DA) has been 
used to discriminate the clustering effect of different 
phenotypes. Redundancy Analysis (RDA) was also 
performed based on different critical clinical factors 
using R vegan package. In addition, the symbiotic 
relationship between the microbiota was displayed 
using Cytoscape (v3.4.0) according to the Spearman's 
rank correlation coefficient. Metabolic function was 
predicated with Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States 
(PICRUSt) based on the high-quality tags of the 
microbiota [21]. 

Statistical significance of the difference was 
firstly estimated using the F-test, followed by the 
Student's or Welch's t-test in two-group analysis 
according to the homogeneity of variance. Normality 
was ensured by Kolmogorov-Smirnov test. Mann- 
Whitney-Wilcoxon test was performed for the dataset, 
which does not follow the normality. Moreover, a 
one-way ANOVA test was performed in the analysis 
among multiple groups. Results with P< 0.05 were 
considered significant. The statistical analysis was 
completed with R and statistical figures were 
prepared with the ggplot2 (v2.2.1) packages. The 
version of R software used was 3.3.3. 

Results 
Subjects characteristics 

A total of 24 asthmatic patients and 12 healthy 
subjects were recruited. 10 of the asthmatics were 
classified as EA and the other patients were NEA 
according to the clustering formula. The clinical data 
of the patients are summarized and reported in Table 
1. Patients with EA had higher serum total IgE levels. 
Both EA and NEA showed reduced spirometry and 
FEV1/FVC ratio compared with HC. Eosinophil 
counts and ratio in blood displayed a significant 
systematic eosinophilia accompanied with a lower 
neutrophil count compared to NEA. 

Alpha-diversity and beta-diversity 
After filtrating the low-quality sequences and 

chimera, a total of 1,836 OTUs were classified to 
different taxonomic level (Figure S1). As indicated by 
the plateau stage of Rarefaction curve (Figure 1) and 
Species accumulation curve (Figure S2), nearly all taxa 
have been discovered in present sequencing depth 
and an appropriate sample size was included in 
present study. At the sequencing depth of 15,750, we 
discovered that both EA and NEA showed a 
significant difference on Chao1, Observed species and 
Shannon indexes among the three groups. Compared 
with HC, the asthmatics showed a significant 
decreased diversity (Observed species index, P<0.05), 
richness (Chao1 and Shannon indexes, P<0.01) and 
evenness (Pielou evenness index, P <0.01, Figure S3 
and Table S1). As for the asthmatics, NEA showed a 
significant decreased diversity (P<0.01), richness and 
evenness (P<0.05) compared with EA.  

 

 
Figure 1. Alpha-diversity analysis of microbiome in eosinophilic asthma (EA) group, non-eosinophilic asthma (NEA) group and healthy control (HC) group. 
Rarefaction measure of Chao1 index (A1), Observed species index (OBS, B1) and Shannon index (C1) from sequencing matrix in different sequencing depth. Chao1 
index statistics (EA vs NEA P<0.01, NEA vs HC P<0.01) (A2), Observed species index statistics (EA vs NEA P<0.01, EA vs HC P<0.05, NEA vs HC P<0.01) (B2) and 
Shannon index statistics (EA vs NEA P<0.05, EA vs HC P<0.01, NEA vs HC P<0.01) (C2) from matrix sequencing at the depth of 15,750. **, P<0.01 vs HC. #, P<0.05 
vs NEA. ##, P<0.01 vs NEA. 
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Table 1. Characteristics of all Subjects 

Phenotypes Eosinophilic asthma Non-eosinophilic asthma Healthy Control 
Number of subjects 10 14 12 
Sex (female/male) 4/6 9/5 5/7 
Age/years† 37.30 (30.25, 46.50) 37.86 (33.00, 46.75) 41.00 (31.00, 49.75) 
BMI/(kg·m-2) † 23.76 (20.18, 26.08) 24.99 (21.16, 28.03) 22.93 (22.04, 25.25) 
Duration of asthma/years† 3.75 (2.68,5.00) * 4.10 (2.85, 5.75) * 0 
Serum IgE/(ng·mL-1) † 202.1 (125.3, 275.5) ** # 142.2 (62.02, 209.3) 124.5 (75.89. 133.3) 
ACQ6† 0.9520 (0.6700, 1.170) ** 1.048 (0.7100, 1.290) ** N/A 
ICS/(μg·day-1) † ‡ 570.0 (425.0, 675.0) ** # 728.6 (600.0, 800.0) ** 0 (0, 0) 
FEV1/FVC (%)† 65.20 (60.25, 70.50) ** 65.36 (64.00, 69.75) ** 79.33 (76.48, 83.02) 
FEV1/FVC (% post) † 71.60 (64.50, 77.75) 72.43 (70.00, 78.50) N/A 
FEV1 Reversibility (L) † 0.3880 (0.3375, 0.4225) 0.4179 (0.3375, 0.4475) N/A 
FEV1 Reversibility (%)† 24.90 (16.50, 31.50) 30.07 (18.25, 36.00) N/A 
White blood cell counts †§ 7.127 (5.880, 8.482) 8.299 (5.865, 9.818) 7.285 (5.888, 8.175) 
Eosinophil counts†§ 0.5630 (0.3500, 0.6975) ** ## 0.1136 (0.0550, 0.1225) 0.1120 (0.04750, 0.1700) 
Eosinophil (%)† 7.990 (59.25, 9.500) ** ## 1.293 (0.7750, 2.00) 1.600 (1.000, 2.000) 
Lymphocyte (%)† 28.93 (22.32, 35.28) 25.33 (20.52. 28.97) * 33.30 (28.00, 39.50) 
Neutrophil counts†§ 4.112 (3.320, 5.025) # 5.689 (3.285, 7.220) * 4.277 (3.245, 5.042) 
Neutrophil (%)† 56.79 (50.82, 59.60) # 66.64 (62.00, 71.15) * 58.00 (53.50, 63.75) 
Score1† 19.35 (11.50, 21.12) 9.850 (8.442, 10.26) N/A 
Score2† 24.03 (12.27, 26.85) 7.214 (5.535, 9.030) N/A 
† Data are shown as mean (Q1, Q3). ‡ Dosage of inhaled corticosteroid (ICS) was expressed as beclomethasone propionate equivalent dosage. § Unit for cell count is10^9/L. * 
P < 0.05 vs Healthy control group, **P < 0.01 vs Healthy control group, # P < 0.05 vs Non-eosinophilic asthma group, ##P < 0.01 vs Non-eosinophilic asthma group. BMI, 
body mass index; ACQ6, asthma control questionnaire 6; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; Both Score1 and Score2 are calculating 
results of the clustering formula. If Score1 is less than Socre2, clustering the sample as eosinophilic asthma, otherwise as non-eosinophilic asthma. 
 

PCA was used as a mathematic method to lower 
the OTU matrix dimension, intuitively showed us the 
similarity of the dominant microbiota in all groups 
(Figure 2A). But PLS-DA visually displayed the 
reliability of the supervised clustering model and 
indicated that there existed the microbial difference 
between asthmatics and healthy controls (Figure 2B) 
and between the inflammatory phenotypes (Figure 
2C). Adonis/PERMANOVA also claimed a significant 
difference among the three groups (P=0.003, Table 
S2). RDA reported that the dose of ICS, ACQ6 and the 
duration of asthma showed an obvious positive corr-
elation between themselves and a significant negative 
correlation with spirometry. The nearly random 
distribution of the asthmatics indicted that, in present 
study, what influenced the difference of the 
microbiota between the inflammatory groups was not 
clinical characteristics of the patients but the 
phenotypes. In addition, it is also obvious that 
Prevotella is positively correlated with spirometry, but 
Veillonella, Actinomyces, Rothia and Neisseria seem to be 
associated tightly with the disease progression of 
asthma (Figure 2D). 

Distribution of taxa in different taxonomic 
level 

Metastats’ analysis identified a different distri-
bution of 1 phylum and 6 genera taxa between EA and 
NEA. Besides, compared with HC, EA showed 5 
different phyla and 30 genera, while NEA showed 7 
different phyla and 43 genera. All statistically 
different taxa are displayed in Figure S4-S5 with their 
content levels in Table S3-S4. The entire bacterial 
taxonomic composition of all groups is displayed in 

Figure 3. In general, Proteobacteria, Firmicutes, 
Actinobacteria and Bacteroidetes phyla exceeded over 
98% in all groups. The first 50 dominant genera of all 
groups were clustered in a Heatmap (Figure S6). The 6 
genera that varied between EA and NEA composed 
about 0.04% for both groups. Glaciecola and 
Helicobacter were more abundant, but Deinococcus, 
Scardovia, Bifidobacterium and Desulfobulbus were less 
abundant in EA. 

Network and KEGG metabolite analysis 
The co-occurrence network of every group was 

constructed based on Spearman's rank correlation 
coefficient of all genera, whose rho values were more 
than 0.6 and P < 0.05 (Figure 4). Several genera were 
differentially abundant. In total, 564 pairs of 
correlated symbiotic relationships in EA, 601 pairs in 
NEA and 1,009 pairs in HC composed the networking 
patterns. Besides, 5 clusters in EA, 4 clusters in NEA 
and 5 clusters in HC were identified within the 
networks. Some potential or opportunistic pathogenic 
bacteria such as Haemophilus, Prevotella, Actinomyces, 
Streptococcus, Rothia and Neisseria also showed 
different networking relationship in different groups. 

The microbiota function analysis revealed that 
genes of the microbial flora with the changed 
composition might be related with many diseases, 
such as infectious diseases (NEA vs HC, P=0.06), 
immune system diseases (NEA vs HC, P=0.07), and 
metabolic diseases (EA vs HC, P=0.054 and NEA vs 
HC, P=0.06). It seems to be significantly associated 
with the regulation of immune system (EA vs HC and 
NEA vs HC, P<0.01) and digestive system (NEA vs 
HC, P=0.014). Besides, genes of the floras may also be 
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related with many other cellular and genetic 
signalling processes (Table S5). 

Discussion 
This study reports the airway microbiome 

changes in asthmatic patients from Northeast China. 
We characterised asthmatics into inflammatory 
phenotypes and demonstrated that the NEA 
phenotype had decreased microbiome diversity, 
richness and evenness when compared to EA. We also 
found general structural differences of the microbiota 
between the EA, NEA and HC groups in different 
taxonomic levels. 5 genera were tightly associated 
with spirometry and diseases progression of 
asthmatics. These potential pathogens coordinated 
differentially with other genera in the symbiotic 
patterns indicating their unique roles in asthmatic 
phenotypes. 

The heterogeneity of asthma is responsible for 
the failure of asthma therapy. Increasing research has 
shown that the microbiota in the lower airway plays a 
critical role in the complex pathological process of 
asthma [18, 22, 23]. In this study, we have focused on 

the typical asthma phenotypes, including eosinophilic 
asthma and non-eosinophilic asthma, which is usually 
refractory to standard therapy [24]. The significantly 
higher average ICS dosage in NEA confirmed the 
refractory nature of this phenotype. Besides the 
significant eosinophilia, the higher total IgE level also 
indicated an atopic status in EA. While the different 
clinical outcomes can be attributed to many factors, 
the aim of present study was to evaluate the charact-
eristics of microbiome in different inflammatory 
phenotypes of asthma. 

 

Table 2. Statistic Content level of the distinct genera between the 
phenotypes 

Genera Levels Fold (EA/NEA/HC) § P values† 

Bifidobacterium N>E≈H 0.89/1.2/1.0 <0.05 
Desulfobulbus N>E≈H 0.57/1.3/1.0 <0.001 
Scardovia H≈N>E 0.44/0.96/1.0 <0.05 
Deinococcus H≈N>E 0.067/0.89/1.0 <0.05 
Glaciecola E>N≈H 16/1.0/1.0 <0.001 
Helicobacter E>H>N 1.5/0.091/1.0 <0.01 
† P values were calculated statistically and followed by False Discovery Rate (FDR) 
for comparison between the phenotypes. § The changed fold values of distinct 
phyla were the ratios of the logarithmic transformation on the respective OTU 
ratios.  

 

 
Figure 2. Beta-diversity analysis of microbiome in eosinophilic asthma (EA) group, non-eosinophilic asthma (NEA) group and healthy control (HC) group. (A) 
Display of Principal Component Analysis (PCA) of the samples in two-dimension (PC1=43%, PC2=17%). Partial Least Squares Discriminant Analysis (PLS-DA) of all 
samples under the supervision of (B) the three groups and (C) the different inflammatory phenotypes. (D) Redundancy Analysis (RDA) of all samples and all 
microbial genera with four potential environment factors (Dose represents the dose of ICS, ACQ6 represents the score of Asthma Control Questionnaire 6 system, 
Duration of asthma means the duration of asthma history, Spirometry was the ratio of FEV1 and FVC). The genera located at the centre of the RDA are not labelled 
for their non-obvious associations with the clinical characteristics. EA, NEA and HC are further abbreviated as E, N, H in the panels respectively. The numeric values 
of the genera in RDA are the sum of RDA1 and RDA2 (%). 
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Figure 3. Taxa distribution of the whole microbiota. Krona projections of the microbiome in different taxonomic level of eosinophilic asthma (EA) group (A), 
non-eosinophilic asthma (NEA) group (B) and healthy control (HC) group (C). As shown in this figure visually, asthmatics displayed a significant decreased diversity, 
richness and evenness. The angle of the sector represents the percent of each taxonomic level. It is phylum (p), class (c), order (o), family(f), genus(g) respectively from 
centre to border respectively. Different symbol in every panel was interpreted as follows. g1: Geobacillus, g2: Granulicatella, g3: Lactococcus, g4: Filifactor, g5: 
Peptostreptococcus, g6: Catonella, g7: Oribacterium, g8: Megasphaera, g9: Selenomonas, g10: TG5, g11: Leptotrichia, g12: Fusobacterium, g13: Rhodococcus, g14: 
Corynebacterium, g15: Rothia, g16: Actinomyces, g17: Porphyromonas, g18: Campylobacter, g19: Ochrobactrum, g20: Rhodanobacter, g21: Moraxella, g22: Actinobacillus, g23: 
Aggregatibacter, g24: Lautropia, g25: Ralstonia, g26: Haemophilus, g27: Atopobium, g28: Lactobacillus. 

 
Different from sputum cell counts, the method in 

present study for phenotyping was based on the 
morning fasting blood inflammatory cell counts, 
which reflected systemic inflammation and avoided 
the instability and low quality of sputum cell counts. 
Similar researches in this field have mainly 
concentrated on the microbial distinction in severe 
asthmatics with different inflammatory phenotypes or 
asthmatics with different severity [15, 18, 25, 26]. 
However, in present study we paid our attention to 
the microbiota in mild to moderate asthmatics with 
different inflammatory phenotypes. Our results 
showed a lower diversity, richness and evenness of 
microbiota in asthmatics, that is consistent with the 
previous report [19]. It has also been reported that 
airway microbiota was significantly less diverse in 
neutrophilic participants and different from other 
inflammatory phenotypes, especially EA [18]. 
Moreover, patients with poorly controlled asthma 
showed a reduced bacterial diversity [19]. Herein, we 

also demonstrated that NEA seemed to have a greater 
decrease in not only diversity but also richness and 
evenness than EA. A significant general structure 
difference of the microbiota in EA, NEA and HC 
groups has also been identified. 

As for the different taxonomic distribution, 
consistent with previous reports [26], we discovered 
that Bacteroidetes and Fusobacteria were reduced in 
asthmatic groups. However, an increase of Proteobac-
teria had not been observed [23]. Besides, compared 
with the severe or poorly controlled asthma reported 
previously [18, 19], we were first to report that 
Glaciecola, Helicobacter, Bifidobacterium, Deinococcus, 
Scardovia and Desulfobulbus showed a differentiated 
distribution level between the inflammatory 
phenotypes indicating a different microbial 
composition structure in mild-to-moderate asthma. 
Despite various studies have identified the potential 
protection from the gastrointestinal H. pylori on the 
allergy of asthma [27], the research on the 
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immunomodulation of airway epithelium is limited. 
Colonized H. pylori may participate in the 
pathogenesis of young asthma by inducing the 
activation of MAPK p38 protein and the increased 
production of IL-8, which is tightly associated with 
the recruitment of neutrophil [28, 29]. But H. pylori 
may play a different role in adults' asthma, especially 
in the different inflammatory phenotypes and needs 
further investigation. Bifidobacterium, has been 
observed with a lower level in the airway of EA in 
present study. This genus could suppress the Th2 type 
immune response within the lungs of allergic asthma 
and reduce the recruitment of eosinophil into the 
lungs by producing exopolysaccharide [30], a 
high-molecular compound with various potent 
immunomodulatory activities [31, 32]. Therefore, the 

differential level of Bifidobacterium may contribute to 
the formation of inflammatory phenotypes. However, 
the roles of other differentiated genera identified in 
the pathogenesis of asthma have not been reported. 
Moreover, Haemophilus influenzae as an important 
species exerts a critical effect on pulmonary 
neutrophilic inflammation and poor response to ICS 
[33, 34]. Herein, we also found a rich abundance of the 
Haemophilus genus (6%), but no significant difference 
was observed. Besides, we discovered the 5 genera 
correlated with spirometry and disease progression of 
asthma for the first time. All of them and Haemophilus 
are critical abundant points in the co-occurrence 
networks. However, the detailed pathogenic species 
in every genus and their biological effects behind the 
co-existing patterns need future investigation. 

 

 
Figure 4. Network analysis and the metabolic prediction of microbiome. The networking pattern of all genera in eosinophilic asthma (EA) group (A), 
non-eosinophilic asthma (NEA) group (B) and healthy control (HC) group (C) under the criteria of rho > 0.6 and P < 0.05. (Green line represents the positive 
correlation and red line represents the negative correlation. The size of the point in the network represents the relative abundance of different genera in every 
groups. All clusters are coloured and displayed with circular layout in the three groups. The red triangle represents a critical genus reported extensively.) 
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PICRUSt explored the potential functions of 
respiratory microbiota in this study. Our results 
showed that the microbial genes might participate in 
the pathogenesis of immune and infectious diseases, 
especially in NEA. Microbial genes could also 
modulate immune and digestive system directly in 
some extent. In fact, microbiota has already been 
reported to participate in the pathogenesis of asthma 
especially neutrophilic phenotypes via TIR-domain 
containing adapter-inducing interferon-beta and 
MYD88 molecules and induce the activation of Th17 
[35]. Normal colonizing microbiota could mitigate the 
inflammation by decreasing the accumulation of 
natural killer T cells in airway [36]. But the absence of 
microbiota in murine model or the dysbiosis in 
human airway could cause an allergic status and 
airway hyperresponsiveness [37, 38]. Besides, the 
colonization of pathogenic bacteria leads to an 
activation of corticosteroid-resistance associated 
signalling pathway and show a strong induction of 
inflammatory cytokines [13, 39, 40]. Given that the 
prediction of the microbial function was made based 
on the conserved genetic sequence, the RNA 
sequencing and the transcriptomics techniques 
should be applied for confirmation. Besides, the 
regulation of metabolism processing also needs to be 
demonstrated by further metabolomic research. 

In conclusion, this study performed in Northeast 
China showed a significantly decreased diversity, 
richness and evenness in mild to moderate asthmatics, 
especially in NEA. Different asthmatic phenotypes 
displayed a distinct taxonomic composition of 
microbiota. Understanding the detailed role of airway 
microbiota may contribute to the development of 
therapeutic strategies to modulate asthma. 
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