Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems

Received for publication, October 16, 2021, and in revised form, January 11, 2022 Published, Papers in Press, January 14, 2022,
https://doi.org/10.1016/j.jbc.2022.101591

Pengjun Xia ${ }^{1}$, Anirudha Dutta ${ }^{2}$, Kushol Gupta ${ }^{3}{ }^{\circ}$, Mona Batish ${ }^{1,2}$, and Vijay Parashar ${ }^{1,2, *}$
From the ${ }^{1}$ Department of Biological Sciences, and ${ }^{2}$ Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA; ${ }^{3}$ The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsy/vania, Philadelphia, Pennsylvania, USA

Edited by Wolfgang Peti

RNA interference by type III CRISPR systems results in the synthesis of cyclic oligoadenylate (cOA) second messengers, which are known to bind and regulate various CARF domaincontaining nuclease receptors. The CARF domain-containing Csa3 family of transcriptional factors associated with the DNA-targeting type I CRISPR systems regulate expression of various CRISPR and DNA repair genes in many prokaryotes. In this study, we extend the known receptor repertoire of cOA messengers to include transcriptional factors by demonstrating specific binding of cyclic tetra-adenylate (cA4) to Saccharolobus solfataricus $\mathrm{Csa} 3\left(\mathrm{Csa}_{\mathrm{Sso}}\right)$. Our 2.0- \AA resolution X-ray crystal structure of cA4-bound full-length Csa3 $3_{\text {sso }}$ reveals the binding of its CARF domain to an elongated conformation of cA4. Using cA4 binding affinity analyses of $\mathrm{Csa} 3_{\text {Sso }}$ mutants targeting the observed $\mathrm{Csa} 3_{\text {Sso }}{ }^{\circ} \mathrm{cA} 4$ structural interface, we identified a Csa3-specific cA4 binding motif distinct from a more widely conserved cOA-binding CARF motif. Using a rational surface engineering approach, we increased the cA4 binding affinity of $\mathbf{C s a} 3_{\text {sso }}$ up to ~ 145-fold over the wildtype, which has potential applications for future second messenger-driven CRISPR gene expression and editing systems. Our in-solution Csa3 $3_{\text {sso }}$ structural analysis identified cA4-induced allosteric and asymmetric conformational rearrangement of its C-terminal winged helix-turn-helix effector domains, which could potentially be incompatible to DNA binding. However, specific in vitro binding of the purified $\mathrm{Csa}_{\text {Sso }}$ to its putative promoter ($\mathrm{P}_{\text {Cas4a }}$) was found to be cA4 independent, suggesting a complex mode of $\mathrm{Csa} 3_{\text {sso }}$ regulation. Overall, our results support cA4-and Csa3-mediated cross talk between type III and type I CRISPR systems.

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems mediate prokaryotic immune response to mobile genetic elements (MGEs) (1) and have been identified in $\sim 40 \%$ bacterial and $\sim 90 \%$ archaeal genomes (2-4). These systems typically contain (i) CRISPR arrays containing alternating identical repeats and unique spacers derived from

[^0]the MGEs $(5,6)$ and (ii) cas gene cassettes adjacent to the CRISPR arrays that encode helicases, nucleases, and structural proteins (7).

The hallmark property of the CRISPR-Cas systems is their ability to adapt, process, and interfere with foreign genetic material. This is accomplished through a three-stage process involving (i) spacer acquisition (adaptation), (ii) crRNA production (processing), and (iii) target interference (8). The adaptation stage involves de novo spacer acquisition by a complex formed by two highly conserved nucleases (Cas1 and Cas2) (9, 10). A Cas4 endonuclease further recognizes and removes a short 5^{\prime}-flanking region of the prespacers called protospacer adjacent motif (PAM) ensuring integration of only mature spacers into the CRISPR array (11). During the crRNA production stage, Cas6 (or an endogenous protein) processes long CRISPR pre-RNAs into short mature crRNAs to contain a region of the extrachromosomal genetic element, a 5^{\prime}-tag derived from the preceding repeat, and a 3^{\prime} end handle from the downstream repeat ($12-17$). During the final stage of target interference, a ribonucleoprotein (RNP) complex, comprising the mature crRNA and Cas proteins, specifically cleaves foreign nucleic acids via base pairing with the crRNA (18) and by the recognition of the PAM sequence in the target (19-24).

Based on the complexity of the associated RNP complexes, CRISPR systems are classified into two major classes (class 1 and class 2) that contain a total of six different types (types I, III, and IV for class 1 and types II, V, and VI for class 2) $(25,26)$. The interference RNP complexes of class 2 systems employ a single protein in complex with a crRNA, whereas class 1 systems use multisubunit RNP complexes. Owing to their simplicity and amenability to practical applications such as genome editing, the class 2 systems (containing Cas9, Cas12, and Cas13) are more well studied than class 1 systems $(27,28)$. The less studied class 1 systems, however, are more primitive, abundant, and widespread in prokaryotes comprising about 90% of all CRISPR-Cas systems $(25,29)$.

The most widespread type I and type III class 1 systems coexist in many prokaryotic genomes (30-32). Such a coexistence is well represented in genomes from a crenarchaeal

cA4-induced allostery in Csa3

order Sulfolobales, two-thirds of which harbor both the systems (4, 33, 34). For example, Sulfolobus islandicus encodes two CRISPR loci, one subtype I-A adaptation and two subtype III-B interference modules (34). Saccharolobus solfataricus, on the other hand, possesses a more extensive CRISPR system with six different CRISPR loci, which include two type I adaptation modules as well as three type I and four type III interference modules $(35,36)$.

The type I and III interference complexes exhibit a striking functional diversity (37). Recognition of a PAM and a crRNA complementary sequence in the target DNA by the type I interference complex (known as CRISPR-associated complex for antiviral defense or Cascade) recruits the Cas3 endonuclease for degradation of the nontarget strand (Fig. 1B) (38, 39). By contrast, the type III interference (cmr-csm) complexes recognize a newly transcribed phage RNA in a PAM-independent fashion by base pairing with a seed motif at the 3^{\prime} end of the crRNA (4, 30-34). Self-targeting during type III interference is prevented by a mismatch at the 5^{\prime} end of the crRNA (Fig. 1A) (40, 41). The interference by cmr-csm complexes involves degradation of the target RNA as well as the nontemplate DNA (Fig. 1A) (32, 42-47). Owing to its PAM-independent functional mode, the cmr-csm complex exhibits a broad target specificity and provides a unique phage survival advantage to the prokaryotic cells coharboring the type I and III systems (48, 49).

Upon recognition of the target RNA, the palm domain of the Cas10 subunit of the cmr-csm complex synthesizes cyclic oligoadenylates (cOAs) containing 3 to 6 adenylate groups (named cA3-cA6) (Fig. 1A), a function that is deactivated upon target RNA cleavage (50-52). cOAs are important second messengers that orchestrate an antiviral response by primarily binding to CRISPR-associated Rossmann fold (CARF) conserved in many CRISPR-associated proteins (Fig. 1A) (53). cOA binding regulates the function of various nucleic acid hydrolases such as Csm6/Csx1 family ribonucleases, CRISPR ancillary nuclease 1 (Can1) proteins, and cOA-activated RNase and DNase 1 (Card1 or Can2) proteins. Furthermore, many of the CARF-containing cOA receptors harbor a cOA phosphodiesterase (also called "ring nuclease") activity that hydrolyzes the cOA ligand into a linearized tetranucleotide ($\mathrm{A} 4>\mathrm{P}$) and then into two linear $A_{2}>P$ species (54). The ring nuclease cOA receptors include (i) standalone host nucleases such as CRISPR ring nuclease 1 (Crn1), CRISPR ring nuclease 3 (Crn3), and CRISPR ring nuclease 2 (Crn2); (ii) stand-alone viral nuclease AcrIII1; and (iii) self-inactivating effector nuclease Csm6 (54). The ring nuclease activity of these receptors is believed to prevent a nonspecific nuclease response post MGE clearance by tightly coupling cOA-mediated response to MGE transcription (54).

Bacteriophage infections drive large global changes in the archaeal transcription. For example, infection by S. islandicus rod-shaped virus 2 has been shown to upregulate the expression of approximately one-third of the S. islandicus genome (55). Although production of cOAs by type III interference complex could conceivably mediate such transcriptional regulation, type III loci do not encode a transcription factor.

The adaptation and interference cassettes of the type I systems, however, encode CRISPR Apern 3 (Csa3) family transcription factors Csa3a and Csa3b, respectively (56). The S. islandicus Csa3b ($\mathrm{Csa3b}_{\mathrm{Sis}}$) acts as a transcriptional repressor to genes encoding subtype I-A CRISPR spacer acquisition complex, and subtype I-A target interference complex, as well as a transcriptional activator to genes encoding subtype III-B cmr interference complex $(57,58)$. S. islandicus Csa3a (Csa3a ${ }_{\mathrm{Sis}}$), on the other hand, transcriptionally activates expression of CRISPR arrays, subtype I-A adaptation complex, and DNA repair proteins $(59,60)$. An atomic structure of the apo form of a Csa3a homolog from S. solfataricus $\left(\mathrm{Csa}_{\mathrm{Sso}}\right)$ has been previously reported to harbor an N-terminal CARF and a C-terminal MarR-like winged helix-turn-helix (wHTH) domain (61). The $\mathrm{Csa} 3_{\text {Sso }}$ CARF domain exhibited a dimerizationmediated 2 -fold symmetric ligand-binding pocket, which was predicted to bind a four-nucleotide-long RNA (61). Consistent with this, $\mathrm{Csa}^{2} \mathrm{~b}_{\text {Sis }}$ has recently been shown to bind a linear analog of cA4 ($5^{\prime} \mathrm{CAAAA}^{\prime}$) in a CARF domain-dependent way (57). However, despite functional significance of Csa3 transcription factors, their ligand specificity and the structural basis of ligand binding has not been reported. Here, we identify cA4 as the cognate ligand of $\mathrm{Csa} 3_{\text {Sso }}$ and show that $\mathrm{Csa} 3_{\text {Sso }}$ lacks ring nuclease activity in vitro. We determine a $2.0-\AA$ crystal structure of $\mathrm{Csa} 3_{\text {sso }}$ bound to cA4 and identify $\mathrm{Csa} 3_{\text {Sso }}$ residues important for cA4 binding. Complementary SAXS analysis indicates a cA4-induced conformational change in preformed $\mathrm{Csa}_{3}{ }_{\text {sso }}$ dimers, suggesting that allosteric changes within the $\mathrm{Csa}_{\text {Sso }}$ dimer may regulate Csa3-mediated signaling.

Results

Csa3 ${ }_{\text {sso }}$ specifically binds cyclic oligoadenylate 4

Based on previous identification of a 2 -fold symmetric ligand-binding pocket at the $\mathrm{Csa}_{3 \text { sso }}$ (a Csa3a homolog, KEGG accession number Sso1445) dimer interface (61), and in vitro binding of a cA4 analog to $\mathrm{Csa}^{3} \mathrm{~b}_{\text {Sis }}$ (57), we hypothesized that the Csa3 family of transcription factors from S. solfataricus could also be receptors of cOAs. To test specificity of binding of $\mathrm{Csa} 3_{\text {Sso }}$ to cOA nucleotides, we purified an N-terminally His_{6}-tagged fusion of $\mathrm{Csa}_{3 \text { sso }}\left(\mathrm{His}_{6}\right.$ - $\mathrm{Csa}_{\text {Sso }}$) recombinantly produced in Escherichia coli (Fig. 1C) and performed binding affinity analyses of cA3, cA4, cA6, and the linear 5^{\prime} CAAAA 3^{\prime} RNA analog using microscale thermophoresis (MST). Despite a nonspecific binding exhibited by high concentrations of all the cOAs $(250-1000 \mu \mathrm{M})$ (Fig. S1), only cA4 exhibited a specific low micromolar binding to $\mathrm{His}_{6}-\mathrm{Csa}_{\text {Sso }}$ with an apparent dissociation constant (K_{D}) of $5.8 \pm 0.03 \mu \mathrm{M}$ (Fig. 1D). This is consistent with the previously observed predominance of cA4 among the cOAs produced by S. solfataricus Csm complex in vitro (50). Of note, the lack of $\mathrm{Csa} 3_{\text {sso }}$ binding to cA3, a second messenger also produced by CD-NTases of an alternate CBASS antiviral defense system in bacteria (62), suggests specificity of the Csa3 transcription factors to CRISPR-Cas systems. Furthermore, $\mathrm{His}_{6}-\mathrm{Csa}_{\text {Sso }}$ binding to cA4 is stronger (8-fold) than the previously reported binding

Figure 1. Synthesis of cyclic oligoadenylates (cOAs) by type III interference complex, and transcriptional activation of CRISPR array and acquisition genes by Csa3a. A, infection by a mutant virus lacking a PAM sequence escapes DNA recognition by Cascade (type I interference complex). Type III interference complexes can use crRNAs produced from type I CRISPR loci for interference against the mutant phage. crRNA end mismatch-mediated binding of the phage transcript by type III interference complex induces ssDNA nuclease and cyclase activities of its Cas 10 subunit (yellow) resulting in the synthesis of $c A(n)(n=3-6$, with more abundant $c A 3, c A 4$, and $c A 6$ illustrated in yellow background). Cas10 subunit activities are turned off by Csm3 or Cmr 4 subunit (shown as magenta ovals)-mediated cleavage of the phage transcript. Most of the characterized cOAs receptors are nucleic acid hydrolases whose activities are regulated by cOA binding to a CARF domain. B, Csa3 (Csa3a-type) transcriptional factor from the type I CRISPR locus activates the transcription of acquisition cas genes and CRISPR arrays to facilitate acquisition of new spacers (step 1), synthesis of new crRNAs (step 2) for their incorporation into Cascade complex (step 3) for the eventual recognition and degradation of the phage DNA. Csa3a carries a CARF domain at its N terminus and is investigated as a receptor of cAn in this study. C, gel filtration chromatography analysis of the purified Csa3sso from S. sulfolobus strain P2 (UniProtKB database accession number Q97Y88, MW theor: 28.1 kDa) shows that $\mathrm{Csa} 3_{\text {soo }}$ forms dimers (MW exper: 58.31 kDa) in solution. Vertical bars above the absorbance trace indicate the peak positions of the gel filtration standards. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) picture shows the purity of $\mathrm{Csa} 3_{\text {soo }}$ after gel filtration. $D, \mathrm{Csa}_{\mathrm{sso}}$ prefers $\mathrm{CA} 4\left(\mathrm{~K}_{\mathrm{D}}\right.$ of $5.8 \pm 0.03 \mu \mathrm{M}$) over other cOAs and a linear cA4 analog. The nucleotide preference was determined by microscale thermophoresis-based binding affinity analyses.
of ${\mathrm{Csa} 3 \mathrm{~b}_{\text {Sis }}}$ with the linear "cA4 analog" ($5^{\prime} \mathrm{CAAAA} 3^{\prime}, \mathrm{K}_{\mathrm{D}}$ of $46.10 \pm 8.14 \mu \mathrm{M})$ that was determined using surface plasmon resonance (57). However, both these Csa3 homologs from

Sulfolobus show cA4 binding affinities lower than Treponema succinifaciens Card1 (K_{D} of 15 nM), which is also a cA4 receptor lacking ring nuclease activity (63). Nevertheless,

cA4-induced allostery in Csa3

considering the expected high micromolar concentrations of cA4 in the cell upon infection as discussed below (64), we believe that cA4 is the preferred ligand of $\mathrm{Csa} 3_{\text {Sso }}$.

The 2.0-Å crystal structure of $\mathrm{Csa3}_{\text {sso }}$ bound to cA4

To better understand the structural basis for $\mathrm{Csa}_{\text {Sso }}$ ligand specificity, we determined a $2.05-\AA$ X-ray crystal structure of $\mathrm{His}_{6}-\mathrm{Csa} 3_{\text {sso }}$ bound to cA4 (Table 1). The overall $\mathrm{Csa} 3_{\text {Sso }}{ }^{\bullet}$ cA4 structure is very similar to that of the previously determined $1.8 \AA$ apo $\mathrm{Csa}_{\text {Sso }}$ structure (PDB ID 2WTE, RMSDs of $0.735 \AA$ over all atoms, Fig. S2) (61). Like the apo $\mathrm{Csa} 3_{\text {Sso }}$ structure, the $\mathrm{Csa} 3_{\text {sso }}$ dimer is domain swapped with respect to an N-terminal CARF and the C-terminal wHTH DNAbinding domains of the two protomers A and B (Fig. 2). The N -terminal CARF domain in each protomer is composed of six mixed β-strands flanked by four α-helices. The first five β strands ($\beta \mathrm{N} 1-\beta \mathrm{N} 5$) run parallel, whereas the last one ($\beta \mathrm{N} 6$) runs antiparallel and connects the CARF domain to a C-terminal wHTH DNA-binding domain (residues 145-212) through a linker (residues 133-144). The linker is composed of
two turns of α-helices followed by four residues in an elongated conformation. The C-terminal wHTH DNA-binding domain contains a right-handed three-helix bundle formed by three helices $(\alpha \mathrm{C} 1-\alpha \mathrm{C} 3)$ where $\alpha \mathrm{C} 2$ and $\alpha \mathrm{C} 3$ comprise the wHTH motif with α C3 (residues 173-186) constituting the DNA recognition helix. The wHTH of $\mathrm{Csa}_{3}{ }_{\text {sso }}$ belongs to the widespread MarR-like wHTH fold in which the DNA recognition helix is followed by two β-strands to make a "wing" that follows an α-helix. Accordingly, the HTH wing in the $\mathrm{His}_{6}{ }^{-}$ $\mathrm{Csa} 3_{\text {Sso }}{ }^{\bullet}$ cA4 structure is composed of the $\alpha \mathrm{C} 3-\alpha \mathrm{C} 4$ loop that is followed by α C4. Although residues 192 to 196 at the tip of this wing are disordered in protomer A , the electron density for all the protomer B wing residues was observed likely due to their stabilization by contacts with a symmetry-related subunit (Fig. 2A).

The Csa3 ${ }_{\text {sso }}{ }^{\circ}$ cA4 complex exists as a dimer in vitro

Apo $\mathrm{Csa} 3_{\text {Sso }}$ has previously been shown to exist in a dimeric form (61). However, crystal packing analysis of our $\mathrm{Csa} 3_{\text {Sso }} \bullet$ cA4 crystal structure depicted dimer-dimer

 (ball-and-stick model) using its N -terminal CARF domain. Blue and purple cartoons represent two $\mathrm{Csa3}_{\text {sso }}$ protomers in the dimer. The Csa3 ${ }_{\text {sso }}$ secondary structure elements are labeled with "type" (α or β), followed by "domain" (N or C terminal), and "number" ($1-6$ for β strands and $1-4$ for $\alpha-h e l i c e s$). Protomer B elements are labeled with an apostrophe symbol (') to differentiate them from protomer A elements. aC3 is connected to aC4 by a flexible linker shown as a dashed blue line. The zoomed-in inset on the top shows an expanded side view of cA4 (ball-and-stick model), highlighting the "planar" and "outward facing" (outer) groups in cA4. B, a top view of the $\mathrm{Csa}_{\mathrm{Sso}^{\circ}}{ }^{\circ} \mathrm{CA} 4$ structure showing $\mathrm{Csa}_{3} \mathrm{sso}$ in the surface representation (blue and purple). To obtain this view of the $\mathrm{Csa} 3_{\mathrm{sso}}{ }^{\circ} \mathrm{CA} 4$ model, the structure illustrated in A was rotated 90° in the direction indicated by the black arrow. The zoomed-in inset on the top shows an expanded top view of cA4 (ball-and-stick model), with a composite electron density map ($2 \mathrm{~F}_{\circ}-\mathrm{F}_{c}$, contoured at 2.0σ) of cA4 in the refined Csa3 ${ }_{\text {sso }} \bullet \circ \mathrm{CA} 4$ structure. In both A and B insets, groups in $c A 4$ are denoted as A, adenine; R, ribose; P, phosphoryl. To simplify illustration of the bound $c A 4$ in this text, we refer to its $A M P$ moieties as $A M P_{1 a}, A M P_{1 b}, A M P_{2 a}$, and $A M P_{2 b}$; the corresponding adenine rings as $A_{1 a}, A_{1 b}, A_{2 a}$, and $A_{2 b}$; its ribose rings as $R_{1 a}, R_{1 b}, R_{2 a}$, and $R_{2 b}$; and the four phosphoryl groups as $P_{1 a}$ (connecting $R_{1 a}$ and $R_{2 a}$), $P_{2 a}$ (connecting $R_{1 b}$ and $R_{2 a}$), $P_{1 b}$ (connecting $R_{1 b}$ and $R_{2 b}$), and $P_{2 b}$ (connecting $R_{2 b}$ and $R_{1 a}$). All the cA4 atoms had a clash score of <0.7 except for C 4 and O 4 atoms of $\mathrm{R}_{2 \mathrm{~b}}$, which was allowed at $1.15 \AA$ to fit cA4 molecule in the electron density.
interactions that could underlie a higher-order oligomerization. More specifically, a symmetry mate obtained by operation $\mathrm{X}-1 / 2,-\mathrm{Y}+1 / 2,-\mathrm{Z}-1$ to the dimer in the asymmetric unit showed an increase in buried surface area of $2444.5 \AA^{2}$ per dimer of $\mathrm{Csa} 3_{\text {sso }}$ using the PISA server $(65,66)$. Such a large crystallographic interface does not exist in the apo $\mathrm{Csa}_{\text {Sso }}$ structure. To assess the possibility of cA4-induced $\mathrm{Csa} 3_{\text {Sso }}$ oligomerization in solution, we performed size-exclusion chromatography. Consistent with prior reports, our $\mathrm{Csa} 3_{\text {Sso }}$ preparations eluted as dimers in gel filtration chromatography ($\sim 60 \mathrm{kDa}$ versus globular standards, Fig. 1C). We further analyzed the oligomeric properties of $\mathrm{Csa}_{3 \text { sso }}$ in the presence and absence of cA4 using sedimentation velocity analytical ultracentrifugation (SV-AUC) (Figs. 3 and S3 and Table S1). In SV-AUC, His_{6}-Csa3 ${ }_{\text {Sso }}(96 \mu \mathrm{M})$ appeared as a single peak at $3.5 \mathrm{~S}_{20, \mathrm{w}}$ with estimated mass $\left(\mathrm{M}_{\mathrm{f}}\right)$ of 52 kDa , consistent with the theoretically calculated S and mass values of 3.8 S and 52.3 kDa from the apo Csa3 structure (PDB 2WTE) (Figs. 3 and S3 and Table S1) (61). The addition of excess amounts of cA4 (Figs. 3 and S3 and Table S1) yielded a very similar dimer profile ($3.6 \mathrm{~S}_{20, \mathrm{w}}$ and 61.2 kDa), consistent with the calculated S and mass values from our $\mathrm{Csa} 3_{\mathrm{Sso}} \bullet \mathrm{cA} 4$ structure with cA4 bound ($3.86 \mathrm{~S}_{20, \mathrm{w}}$ and 57.5 kDa). Overall, these data evidence monodisperse dimers of $\mathrm{Csa}_{\text {Sso }}$ in solution that persist in the presence and absence of cA4. Consistent with insolution dimers observed for $\mathrm{Csa}_{3 \text { soo }}$, the asymmetric unit for the $\mathrm{Csa} 3_{\mathrm{Sso}}{ }^{\bullet}$ cA4 complex structure consisted of a dimer of $\mathrm{Csa} 3_{\text {Sso }}$ bound to one molecule of cA4 (Fig. 2B).

Conformation adopted by cA_{4} in the $\mathrm{Csa}_{\mathrm{sso}^{\circ}}{ }^{\circ} \mathrm{CA} 4$ structure

Comparison of all the cA4-bound structures of CARF domain proteins revealed that cA4 in the $\mathrm{Csa} 3_{\mathrm{Sso}-\mathrm{cA}_{4} \text { com- }}$ plex structure exists in a unique elongated conformation. In this conformation, $\mathrm{P}_{1 \mathrm{a}}$ and $\mathrm{P}_{1 \mathrm{~b}}$ (called distal phosphoryl groups) in the cA4 ring are stretched outward (with a P-to-P distance of $11.8 \AA$), which brings $\mathrm{P}_{2 \mathrm{a}}$ and $\mathrm{P}_{2 \mathrm{~b}}$ (called proximal phosphoryl groups) to a shorter P-to-P distance of $4.4 \AA$

Figure 3. cA4-bound $\mathrm{Csa}_{\text {sso }}$ is a dimer in solution. Sedimentation velocity analytical ultracentrifugation data showing $c(S)$ distributions. $c(S)$ values were derived from the fitting of the Lamm equation to the experimental data collected for wildtype $\mathrm{Csa}_{\mathrm{sso}}(40 \mu \mathrm{M})$ in the absence (red) and presence of cA4 $(50 \mu \mathrm{M})$ ligand (blue), as implemented in the program SEDFIT. The profile for the $\mathrm{Csa}_{\mathrm{sso}}-$ R98A mutant $(64 \mu \mathrm{M})$ in the absence of cA4 ligand (green) is also shown. This analysis shows evidence of dimeric species in solution that persists upon the addition of CA4. The emergence of the 1.5 S species in the presence of cA4 is interpreted to be mild protein degradation enduring during the time course of the experiment. Parameters derived from these analyses are presented in Table S1, and Lamm equation fits to the primary data are shown in Fig. S3.
(Fig. $2 B$ inset). The difference of $7.4 \AA$ in these P-to-P distances exemplifies the most extended conformation of cA4 observed among known cA4 receptors (Fig. S4). Furthermore, $\mathrm{A}_{2 \mathrm{a}}$ and $\mathrm{A}_{2 \mathrm{~b}}$ adenines adopt a conformation parallel to the plane of cA4 backbone (hereafter called planar adenines), whereas $A_{1 a}$ and $A_{1 b}$ adenines face outside of this plane pointing away from the binding pocket (hereafter called nonplanar adenines [Fig. $2 A$ inset]). Similarly, 2^{\prime} hydroxyls in $\mathrm{R}_{1 \mathrm{a}}$ and $\mathrm{R}_{1 \mathrm{~b}}$ and both unbonded oxygens in $\mathrm{P}_{2 \mathrm{a}}$ face away from the binding pocket (Fig. $2 A$ inset). Three of the phosphoryl groups in cA4 (labeled $\mathrm{P}_{1 \mathrm{a}}, \mathrm{P}_{1 \mathrm{~b}}$, and $\mathrm{P}_{2 \mathrm{~b}}$) are planar, whereas $P_{2 a}$ faces away from the binding pocket (hereafter called nonplanar phosphoryl). Furthermore, the 2^{\prime} hydroxyl oxygen (O^{\prime}), phosphorous (P), and 5^{\prime} - ribosyl oxygen ($\mathrm{O}^{\prime \prime}$) of $\mathrm{R}_{1 \mathrm{a}}, \mathrm{R}_{1 \mathrm{~b}}$, $\mathrm{R}_{2 \mathrm{a}}$, and $\mathrm{R}_{2 \mathrm{~b}}$ exhibit $\mathrm{O}^{\prime}-\mathrm{P}-\mathrm{O}^{\prime \prime}$ angles of $125^{\circ}, 141^{\circ}, 158^{\circ}$, and 94°, respectively (Fig. 4C).

$c A_{4}$ recognition by $\mathrm{Csa}_{\text {sso }}$

Superimposition of our cA4-bound structure with the apo$\mathrm{Csa} 3_{\text {sso }}$ structure (PDB 2WTE) revealed that the cA4-binding pocket is largely preformed upon dimerization of the CARF domain (residues 1-132) (Fig. 2). Owing to symmetry in this pocket, overlapping sets of CARF residues from both the $\mathrm{Csa} 3_{\text {Sso }}$ protomers make equivalent interactions with the two halves of cA4. More specifically, CARF residues from protomers A and B of the $\mathrm{Csa} 3_{\text {sso }}$ dimer (labeled with subscripts A and B in this text) interact almost exclusively with adenine-, ribose-, and terminal phosphoryl groups labeled " a " (for $\mathrm{A}_{1 \mathrm{a}}$, $\mathrm{A}_{2 \mathrm{a}}, \mathrm{R}_{1 \mathrm{a}}, \mathrm{R}_{2 \mathrm{a}}$, and $\mathrm{P}_{1 \mathrm{a}}$) and " b " ($\mathrm{A}_{1 \mathrm{~b}}, \mathrm{~A}_{2 \mathrm{~b}}, \mathrm{R}_{1 \mathrm{~b}}, \mathrm{R}_{2 \mathrm{~b}}$, and $\left.\mathrm{P}_{1 \mathrm{~b}}\right)$, respectively (Fig. 4, $A-D$). Our structural analysis of the $\mathrm{Csa} 3_{\mathrm{Sso}}-\mathrm{cA} 4$ interface as well as sequence alignment of ten archaeal $\mathrm{Csa} 3_{\text {Sso }}$ homologs refined the two previously predicted ligand-binding motifs within the $\mathrm{Csa}_{\text {Sso }}$ CARF domain (Figs. 4 and 5, also see Discussion) (61). The first motif (named cA4 binding motif 1) comprises residues 8 to 14 (from the $\beta 1-\alpha 1$ loop and the $\alpha 1$ helix), and the second motif (named cA4 binding motif 2) comprises residues 94 to 99 (located in the $\beta 4-\alpha 4$ loop and $\alpha 4$ helix). Residues from these motifs as well as other regions in $\mathrm{Csa} 3_{\text {sso }}$ make an extensive network of hydrogen bonding and hydrophobic interactions with different cA4 groups (Fig. 4, A and B) as described below.

Csa3sso interactions with cA4 adenine rings

Extensive hydrophobic interactions from residues in cA4 binding motifs 1 and 2 stabilize all four cA4 adenine rings. The nonplanar A_{1} adenines ($\mathrm{A}_{1 \mathrm{a}}$ and $\mathrm{A}_{1 \mathrm{~b}}$) dock into shallow hydrophobic pockets formed by Thr $13_{\mathrm{A} \& \mathrm{~B}}$ and Phe $14_{\mathrm{A} \& \mathrm{~B}}$ (from cA4 binding motif 1), whereas the planar A_{2} adenines ($\mathrm{A}_{2 \mathrm{a}}$ and $\mathrm{A}_{2 \mathrm{~b}}$) occupy much elaborate and deep hydrophobic pockets. In the planar adenine pocket, one face of the adenine is stabilized by a fully conserved Phe $10_{\mathrm{A} \& \mathrm{~B}}$ (cA4 binding motif 1) and the other face is docked onto lesser conserved Met97 ${ }_{\text {A\&B }}$ (cA4 binding motif 2), Pro35 ${ }_{\mathrm{A} \& \mathrm{~B}}$, Val39 ${ }_{\mathrm{A} \& \mathrm{~B}}, \operatorname{Thr} 42_{\mathrm{A} \& \mathrm{~B}}$, and $\mathrm{T} 13_{\mathrm{B}}$ (Fig. 4, A and B). The hallmark of all the adenine-binding pockets in $\mathrm{Csa} 3_{\text {sso }}$ are π-stacking interactions of Phe $14_{\text {A\&B }}$

Figure 4. Interactions of cA4 with Csa3 $_{\text {sso. }} A$ and B, symmetric interactions of the $C s a 3_{s \text { so }}$ protomers A and B with the two halves of $c A 4$. A, a LigPlot ${ }^{+}$ illustration of $\mathrm{Csa}_{\mathrm{s}_{\text {so }}}$ interactions with cA4 showing 2 -fold symmetry in the binding pocket. The cA4 and interacting Csa3 ${ }_{\text {sso }}$ residues are shown in a ball-and-stick representation with green, purple, and blue sticks representing cA4, promoter A, and promoter B, respectively. To depict the symmetric orientation of cA4 and its interactions with $\mathrm{Csa}_{\mathrm{sso}}$ residues with respect to CARF dimerization interface, the corresponding Csa3sso protomer regions are shown by blue (protomer A) and purple (protomer B) backgrounds. B, a top view of the Csa3 ${ }_{\text {sso }}{ }^{\circ} \mathrm{CA} 4$ complex structure showing interactions of cA4 with CARF domains from the two $C s a 3_{\text {soo }}$ protomers. $C s a 3_{\text {soo }}$ protomers A and B are depicted in blue surface and purple cartoon representations, respectively. For simplicity of illustration, only the hydrophobic interactions from protomer B (purple residues in ball-and-stick representation) and only the polar interactions from protomer A (blue residues in ball-and-stick representation) are shown. The hydrogen bonds are depicted as solid yellow (B) and dashed green (A) lines with

Figure 5. Structure-guided sequence alignment of Csa3 homologs. The $\mathrm{Csa}_{\mathrm{s} \text { so }}$ residues at the $\mathrm{Csa}_{\mathrm{s}_{\mathrm{so}}} \bullet \mathrm{CA} 4$ structural interface are identified by circles below the alignment. The $\mathrm{Csa3}_{\mathrm{sso}}$ residues marked with stars at the bottom of alignment identify cA4 binding motif identified in the nuclease receptors of cOAs containing the CARF domain. Blue rectangles depict cA4 binding motifs 1 and 2 as determined from the $\mathrm{Csa} 3_{\text {sso }}{ }^{\circ}$ cA4 structure. Circles filled with green triangles identify conserved ($>65 \%$ similarity among ten Csa3 homologs) residues at the cA4 interfaces in both the Csa3 ${ }_{\text {sso }}$ protomers that showed significant loss or gain of function in the cA4 binding assay (Fig. $4 E$). Empty circles and those filled with smaller circles represent the interfacial residues present in one or both protomer(s) in the $\mathrm{Csa3}_{\text {soo }}$ dimer, respectively, and were not subjected to mutagenesis. Circles filled with red color identify interfacial residues that are conserved but were not subjected to mutagenesis in this study. The numbering is based on the residue positions of the Csa3 ${ }_{\text {sso }}$ (gene accession number: Sso1445). The conservation of residues at each position is depicted by the size of the letters in the sequence logo on top of alignment, where the most conserved residues are highlighted by a larger-sized letter and a by a black background. Logo letters colored blue, green, red, and black indicate basic, polar, acidic, and hydrophobic residues, respectively. The secondary structure elements are derived from the $\mathrm{Csa} 3_{\text {sso }}{ }^{\circ} \mathrm{CA} 4$ structure (in which a-helices are shown as magenta cylinders and β-sheets are shown as yellow arrows). The sequence alignments of the Csa3 homologs were performed using the T-Coffee method (107) and were edited using Geneious Prime software (https://www.geneious.com) and Adobe Illustrator (version 25.3). Each homolog is identified by its accession number and bacterial source.
and Phe10 $0_{A \& B}$ with the nonplanar $\left(\mathrm{A}_{1 \mathrm{a}}\right.$ and $\left.\mathrm{A}_{1 \mathrm{~b}}\right)$ and planar ($\mathrm{A}_{2 \mathrm{a}}$ and $\mathrm{A}_{2 \mathrm{~b}}$) adenine rings, respectively. More specifically, Phe 14_{A} and Phe 10_{B} stabilize adenines $\mathrm{A}_{1 \mathrm{a}}$ and $\mathrm{A}_{2 \mathrm{~b}}$ by T-shaped π-stacking interactions, and sandwich-type π-stacking interactions from Phe 14_{B} and Phe 10_{A} engage $\mathrm{A}_{1 \mathrm{~b}}$ and $\mathrm{A}_{2 \mathrm{a}}$, respectively (Fig. 4C). Both Phe14 and Phe10 are significantly conserved in Csa3 $3_{\text {sso }}$ homologs; Phe14 is conserved in six of the ten Csa $3_{\text {sso }}$ homologs, and Phe10 is conserved as a Phe or

Tyr in all ten homologs (Fig. 5). Furthermore, structural superimposition of cA 4 -bound $\mathrm{Csa} 3_{\text {sso }}$ with apo $\mathrm{Csa}_{\text {Sso }}$ shows linear movement of Phe $14_{\text {A }}$ or 90° rotation of Phe 14_{B} likely facilitating interactions with cA4 (data not shown). To analyze the contribution of Phe14 and Phe10 to cA4 binding, we mutagenized these residues to alanines and investigated their ability to bind cA4 by MST. The alanine mutants of both Phe14 and Phe10 showed a complete loss of cA4 binding
in vitro highlighting their important role in cA4 stacking (Fig. 4E).

Among the polar interactions of $\mathrm{Csa} 3_{\text {sso }}$ with the cA4 adenines, side chains of Asn $11_{\mathrm{A} \& \mathrm{~B}}$ hydrogen bond to N 7 in the nonplanar adenines ($\mathrm{A}_{1 \mathrm{a}}$ and $\mathrm{A}_{1 \mathrm{~b}}$). Since Asn11 is conserved as an Asn, Asp, or His in most of the Csa3 homologs (Fig. 5), it is conceivable that the side-chain carboxylic oxygen or ring nitrogen atoms in these homologs could instead hydrogen bond to the nonplanar adenines (Fig. 4, A and B). Furthermore, the main-chain oxygen atoms of Met8 A_{AB} (cA4 binding motif 1) and Glu122 $2_{\text {A\&B }}$ ($35-\beta 6$ loop) also hydrogen bond N3 in the planar $\left(\mathrm{A}_{2 \mathrm{a}}\right.$ and $\left.\mathrm{A}_{2 \mathrm{~b}}\right)$ and nonplanar $\left(\mathrm{A}_{1 \mathrm{a}}\right.$ and $\left.\mathrm{A}_{1 \mathrm{~b}}\right)$ adenines, respectively (Fig. 4, A and B).
$\mathrm{Csa3}_{\text {so }}$ interactions with phosphate and ribose groups at distal ends of CA4

The P_{1} phosphoryls ($\mathrm{P}_{1 \mathrm{a}}$ and $\mathrm{P}_{1 \mathrm{~b}}$) and R 2 ribosyls ($\mathrm{R}_{2 \mathrm{a}}$ and $R_{2 b}$) at the distal ends of the elongated ${c A_{4}}$ are hydrogen bonded by main-chain atoms of many residues in the cA4 binding motifs 1 and 2 (Fig. 4, A and B). More specifically, the main-chain nitrogen atoms of Phe $10_{\mathrm{A} \& \mathrm{~B}}$ hydrogen bond with 2^{\prime} ribosyl oxygens of R_{2} groups ($\mathrm{R}_{2 \mathrm{a}}$ and $\mathrm{R}_{2 \mathrm{~b}}$) as well as with P_{1} phosphoryl oxygens ($\mathrm{P}_{1 \mathrm{a}}$ and $\mathrm{P}_{1 \mathrm{~b}}$). The main-chain nitrogen atoms of $\mathrm{Gly} 9_{\mathrm{A}}$, Asn $11_{\mathrm{A} \& \mathrm{~B}}$, and Gly $96_{\mathrm{A} \& \mathrm{~B}}$ hydrogen bond with the P_{1} phosphoryl oxygens ($\mathrm{P}_{1 \mathrm{a}}$ and $\mathrm{P}_{1 \mathrm{~b}}$). Among hydrophobic interactions, main-chain atoms of $\mathrm{Gly} 9_{\mathrm{B}}, \mathrm{Gly} 96_{\mathrm{A} \& \mathrm{~B}}$, and Met $95_{\mathrm{A} \& \mathrm{~B}}$ further stabilize the P_{1} and R_{2} groups. Of interest, Gly 9 and Gly 96 are parts of $\beta 1-\alpha 1$ and $\beta 4-\alpha 4$ loops in motifs 1 and 2 , respectively, and are completely conserved among Csa3 homologs (Fig. 5). It is therefore possible that these glycines add flexibility to these loops to facilitate binding of the P_{1} phosphoryl groups in an extended cA4 conformation (Fig. S4). Furthermore, $\mathrm{Csa}_{\text {Sso }}-\mathrm{Met} 95$ is conserved as a glycine in most of the Csa3 homologs, which may further be adding to the flexibility of the $\beta 4-\alpha 4$ loop to accommodate this cA4 conformation (Fig. 5). To test whether small glycine residues play a role in binding, we mutagenized Gly96 to a slightly bulkier residue alanine. Indeed, the G96A mutant completely lost the ability to bind cA4 in our MST assay, confirming the requirement of a small residue at this position (Fig. $4 E$).

Csa3 ${ }_{\text {sso }}$ interactions with proximal cA4 phosphoryls

The inward-facing phosphoryl group in the middle of the elongated cA4 $\left(\mathrm{P}_{2 \mathrm{~b}}\right)$ was found to hydrogen bond with highly conserved Arg98 A\&B (cA4 binding motif 2) and Glu122 ${ }_{\mathrm{A}}$ ($\beta 5-\alpha 5$ loop) residues in $\mathrm{Csa}_{\text {Sso }}$. The interactions with $\operatorname{Arg} 98$ involve hydrogen bonds to $\mathrm{P}_{2 \mathrm{~b}}$ oxygens using either two (for Arg98 ${ }_{B}$) or one (for $\operatorname{Arg} 98_{A}$) of its side-chain nitrogen atoms (Fig. 4, A and B). Arg98 is completely conserved in all the $\mathrm{Csa} 3_{\text {Sso }}$ homologs (Fig. 5). Accordingly, our alanine mutant of Arg98 completely lost cA4 binding in vitro (Fig. 4E). Since Arg98 also contributes significantly to dimerization interface of $\mathrm{Csa} 3_{\text {Sso }}$ (buried surface area per $\operatorname{Arg}=256.14 \AA^{2}$), we confirmed that this mutant is still dimeric in solution using SV-AUC (Figs. 3 and S3 and Table S1).

Of interest, the cA4 phosphoryl interacting surface of the $\mathrm{Csa} 3_{\text {sso }}$ pocket is largely positively charged except for the conserved Glu122 residue that hydrogen bonds with cA4 central phosphoryl ($\mathrm{P}_{2 \mathrm{~b}}$) oxygen via its side-chain carboxyl in the protomer A (Fig. 4, A and B). Such interactions of Glu122 side chains could create an electrostatic repulsion with central phosphoryls ($\mathrm{P}_{2 \mathrm{a}}$ and $\mathrm{P}_{2 \mathrm{~b}}$) likely constraining them close to each other in the elongated cA4 conformation (Fig. 4D). The Glu $122_{\mathrm{A} \& \mathrm{~B}}$ side-chain carboxyl also hydrogen bonds with the main-chain nitrogen of $\operatorname{Arg} 98_{\mathrm{B} \& \mathrm{~A}}$ in the alternate protomer across the dimerization interface (Fig. 4C). Given the role of Arg98- and Gly96-containing motif 2 in cA4 binding discussed above, we wondered if Glu122 interactions with Arg98 main chain help position these motif 2 residues to affect cA4 binding. We therefore hypothesized that substitution of the Glu122 side chain to an Ala should remove electrostatic Glu122 repulsion to the central phosphoryls and disrupt polar interactions with motif 2 , which should facilitate $\mathrm{Csa} 3_{\text {Sso }}$ binding to cA4. Indeed, a mutation of Glu122 to alanine (E122A) dramatically improved the binding affinity of $\mathrm{Csa}_{\text {Sso }}$ for cA4 (K_{D} of $38.3 \mathrm{nM}, \sim 145$-fold higher affinity over wildtype) (Fig. $4 E$). To further dissect whether this cA4 binding gain is due to removal of side chain charge, or to the disruption of interactions with Arg98 main chain, we mutagenized Glu122 to a neutral Gln residue, which should still be able to make polar interactions with $\operatorname{Arg} 98$ (and $\mathrm{P}_{2 \mathrm{~b}}$). An E122Q mutation was also found to drastically increase the cA4 binding affinity in vitro (K_{D} of $44.5 \mathrm{nM}, \sim 125$-fold over wildtype) showing a more significant role of electrostatic repulsion by Glu122 as compared with its coordination of Arg98 (Fig. 4E). In summary, these results reveal the mechanistic basis underlying the inability of wildtype $\mathrm{Csa}_{\text {Sso }}$ to strongly bind cA4 and further confirm that we have identified a biologically important Csa 3 protein surface.

Csa3 ${ }_{\text {sso }}$ lacks ring nuclease activity

In the CARF-containing ring nucleases, the motif I is primarily implicated in the catalytic activity (67). Nevertheless, a conserved cOA-binding lysine in motif II of cA4 ring nucleases (Lys168 in Sso1393 and Lys106 in Sso2081) (67) was predicted to participate in cOA catalysis by stabilizing the transition state (68). Given $\operatorname{Arg} 98_{\mathrm{A} \& B}$ coordination with $\mathrm{P}_{2 \mathrm{~b}}$ at the end of the $\beta 4-\alpha 4$ loop in $\mathrm{Csa}_{\mathrm{Sso}}{ }^{\circ} \mathrm{cA} 4$ structure, we tested cA4 ring nuclease activity of $\mathrm{Csa} 3_{\text {Sso }}$ in two different conditions (Figs. 6 and $\mathrm{S} 5, A$ and B). A C18 HPLC analysis of the reaction components after removal of $\mathrm{Csa} 3_{\text {sso }}$ showed no sign of cA4 hydrolysis products (Fig. 6). Consistent with this, $\mathrm{P}_{2 \mathrm{~b}}$ exhibits an $\mathrm{O}^{\prime}-\mathrm{P}-\mathrm{O}$ " angle of 94° in the $\mathrm{Csa}_{\mathrm{Sso}}{ }^{\circ} \mathrm{cA} 4$ structure, which is inconducive for an inline nucleophilic attack by the 2^{\prime} ribosyl hydroxyl.

In a few CARF-containing ring nucleases, polar interactions of a conserved Glu or Asp residue have been proposed to position their catalytic loop for activity (67). To further determine whether Glu122 ${ }_{\mathrm{A}}$ side chain coordination of $\operatorname{Arg} 98$ main chain and/or negative charge of Glu 122_{A} side chain around central phosphoryl $\left(\mathrm{P}_{2 \mathrm{~b}}\right)$ prevents ring nuclease activity

Figure 6. Csa3ssons lacks ring nuclease activity. No changes in the time-dependent stability of cA4 were observed in the reaction mixture containing $5 \mu \mathrm{M}$ $\mathrm{Csa} 3_{\text {sso }}$ and $500 \mu \mathrm{McA4}$ in buffer G (see Experimental procedures) at $60^{\circ} \mathrm{C}$ for 3 h . Buffer G has previously been used for detecting the ring nuclease activity in Csm6 (84). The reactions were analyzed by C18 HPLC analysis after quenching and deproteination by phenol-chloroform extractions.
in $\mathrm{Csa} 3_{\text {Sso }}$, we tested cA4 hydrolysis activity of the E122A and E122Q mutants, respectively. However, no ring nuclease activity was observed for these mutants (Fig. S5C). Overall, our $\mathrm{Csa} 3_{\text {Sso }}$ data are consistent with the proposal that CARF motif 2 is involved in cA4 binding and not catalysis (67).

Solution structure reveals cA4-induced wHTH domain rearrangements in $\mathrm{Csa}_{\text {sso }}$

The high overall similarity of the $\mathrm{Csa} 3_{\mathrm{Sso}} \bullet \mathrm{cA} 4$ complex structure with the apo $\mathrm{Csa}_{\text {Sso }}$ structure (61) suggested no significant $\mathrm{Csa} 3_{\text {Sso }}$ conformational changes upon cA4 binding (Fig. S2). This was perplexing to us specially since conformational differences in $\mathrm{Csa} 3_{\text {sso }}$ could be the only other way to understand functional relevance of the cA4 binding given cA4 did not change the oligomerization state of $\mathrm{Csa}_{\text {Sso }}$ in our SVAUC experiments. Also, cA4 binding has been previously shown to induce conformational changes in Can1 nuclease receptor of cA4 (69). To determine if the $\mathrm{Csa} 3_{\text {Sso }}{ }^{\circ}$ cA4 crystal structure accurately represents the solution state of this complex, we conducted small-angle X-ray scattering (SAXS) analysis of $\mathrm{Csa} 3_{\text {sso }}$ in the presence and absence of cA4. In the presence of excess cA4 (sufficient to saturate all cA4-binding sites), the shape of dimeric $\mathrm{Csa}_{\text {Sso }}$ changed significantly. The data for $\mathrm{Csa} 3_{\text {sso }}$ both in the presence and absence of cA4 displayed linearity in the classical Guinier analysis (Fig. S6), with an observed increase in the radius of gyration $\left(\mathrm{R}_{\mathrm{g}}\right)$ in both the Guinier and inverse Fourier transform (GNOM) analyses (Fig. 7 and Table 2). Mass calculations from this data are consistent with in-solution dimers from both the states (Table 2). By Pr analysis, these differences coincide with increases in R_{g} and $\mathrm{D}_{\text {max }}$ and a redistribution of interatomic vectors to greater values (Fig. 7A). The numerical values
derived from these analyses correlate very well with SAXS measurements made previously for apo $\mathrm{Csa}_{\text {Sso }}$ (61). This suggested that there is a significant conformational difference between the bound and apo states of $\mathrm{Csa}_{\text {sso }}$ in solution.

Model-independent analyses including Guinier, Kratky, Porod-Debye, and mass calculations indicate that the cA4induced conformation of the dimer is not due to changes in flexibility and disorder, or mass, but rather discrete differences in the configurations of the structural domains (Figs. $7 B$ and S6 and Table 2). Although low in resolution, SAXS analysis allows for the rigorous testing of atomic models against their solution properties. These model-independent analyses would indicate that single atomistic models (ab initio or atomistic) could be reliably tested against the solution data to discern the nature of these conformational changes.

Crystallographic $\mathrm{Csa} 3_{\text {Sso }}$ models only provide atomic inventory for 212 of the 248 a.a. in the His_{6}-tagged $\mathrm{Csa} 3_{\text {Sso }}$ construct used in this study, including the disordered C terminus (~ 25 a.a.). To model this missing atomic inventory against its solution data, we employed the CORAL program, which uses coarse-grain beads for missing amino acids in a hybrid bead-atomistic modeling approach (70). When the method was applied, $\mathrm{Csa} 3_{\text {sso }}$ in its unbound form could be readily reconciled against the SAXS data ($\chi_{\text {Crysol }}=1.5$). No improvement was observed when allowing for the C-terminal wHTH domain positions to be refined via rigid-body docking, without symmetry constraints (Fig. 7C). In contrast, a significant preference was shown for a large asymmetric wHTH domain positioning over its symmetric crystallographic configuration in the cA4-bound state ($\chi_{\text {Crysol }}=2.9$ versus 1.1) (Fig. 7D). Therefore, the binding of cA 4 to the $\mathrm{Csa}_{\text {Sso }}$ dimer was found to induce large asymmetric conformational changes in the position of the two wHTH domains in solution

Figure 7. SAXS analysis of cA4-induced conformational changes in Csa3 sso dimers. A, shape distribution function analysis for Apo (blue line) and cA4bound (red line) Csa3 sso dimers, performed using the program GNOM (101). Parameters derived from this analysis are provided in Table 2. In the bound form, a redistribution of interatomic vectors from ~ 38 to $\sim 80 \AA$ is observed, consistent with rearrangement of globular domains in response to a ligand. B, dimensionless Kratky Plot analysis (105), where the intensity of scattering is plotted as $q R_{g}{ }^{2 *} I(q) / I(0)$ versus $q R_{g}{ }^{2} . R_{g}$ is the radius of gyration in \AA, I is the scattering intensity in arbitrary units, and q is the scattering angle ($q=4 \pi \sin (\theta) / \lambda$, where λ is the X-ray wavelength and 2θ is the scattering angle). Both Apo (blue line) and cA4-bound (red line) $\mathrm{Csa}_{\mathrm{sso}}$ dimers show a characteristic bell-shaped peak at low-q that returns to near baseline at wider scattering angles, indicative of a more compact, globular macromolecule. C and D, CORAL analysis (70) of Csa3 $3_{\text {so }}$ dimers, which employs a rigid body approach to optimize crystallographic models against experimental SAXS data. In this approach, missing and flexible atomic inventory are represented as beads in coarse grain fashion and flexibly fit. Shown on the left are the experimental SAXS data for both Apo (C, blue) and cA4-bound (D, red) as gray circles in a log-log plot, where intensity I is plotted as a function of q. In this analysis, two modeling approaches were considered in each state: a "fixed" approach, where the C-terminal wHTH domains were fixed in their crystallographic configuration, and a "refined" calculation, where the C-terminal domains were additionally refined in atomic position. In the Apo state (C), the fixed configuration (cyan dotted line) showed a slightly better agreement ($x^{2}=1.5$) than the calculations where wHTH positions were refined (blue solid line, $x^{2}=1.9$). Conversely, in the cA4-bound state (D), the fixed configuration (pink dotted line) showed worst agreement with the solution data ($\mathrm{X}^{2}=2.9$) than the calculations where the wHTH positions were refined (red solid line, $\mathrm{X}^{2}=1.1$). The corresponding structural models derived are shown to the right for both the apo and cA4-bound states. A gallery of representative calculations ($n=10$) in each state is provided in Fig. S7.
(Fig. 8). These in-solution conformational changes involved asymmetric, but significant, rotations and displacements of the wHTH domains from chains $\mathrm{A}\left(\mathrm{wHTH}_{\mathrm{A}}\right)$ and $\mathrm{B}\left(\mathrm{wHTH}_{\mathrm{B}}\right)$ (Fig. 8). More specifically, the $\mathrm{wHTH}_{\mathrm{A}}$ domain exhibited an 83.1° rotation and $20.9 \AA$ displacement (left inset in Fig. 8), whereas the $w H T H_{B}$ domain exhibited a 107.6° rotation and $29.8 \AA$ displacement (right inset in Fig. 8). This results in what we refer to as a "closed" $\mathrm{Csa}_{\text {sso }}$ state. We envisage that $\mathrm{Csa} 3_{\text {Sso }}$ samples between this closed and open (equivalent to apo conformation) states. Although it is possible that apo
$\mathrm{Csa} 3_{\text {Sso }}$ populates a complex population of open and closed states, the closed conformation is stabilized upon cA4 binding. Overall, our data demonstrate significant allosteric repositioning of $w \mathrm{HTH}_{\mathrm{A}}$ and $\mathrm{wHTH} \mathrm{H}_{\mathrm{B}}$ domains upon cA4 binding, which may underlie cA4 regulation of Csa3 signaling.

cA4 does not affect specific DNA binding by Csa3sso

$\mathrm{Csa}_{\mathrm{a}}^{\mathrm{Sis}}{ }^{(\mathrm{a} \mathrm{Csa}} 3_{\text {Sso }}$ ortholog from S. islandicus REY15A) has been shown by Liu et al. to regulate transcription by binding to

Table 1
Structural data collection and refinement statistics

Data	Csa3Sso-cA4 complex
Protein Data Bank ID	6 WXQ
Data collection	
Space group	$\mathrm{P} 2_{1} 2_{1} 2$
Cell dimension	$74.79,118.83,64.05$
A, b, c (A)	90
$\alpha=\beta=\gamma(D e g)$	0.92009
Wavelength (A)	$35.67(2.09-2.05)$
Resolution (A)	$9.2(37.1)$
$\mathrm{R}_{\text {merge }}(\%)$	$19.6(5.9)$
I/I(σ)	$99.9(9.9)$
Completeness (\%)	$8.0(7.4)$
Multiplicity	$69,259(3464)$
Total number of observed reflections	$36,695(1810)$
Unique reflections	$99.8(92.3)$
CC1/2 (\%)	53.9
Solvent content (\%)	
Refinement	$16.0 / 20.52$
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}(\%)$	
RMS deviation	0.008
Bond length (Å)	0.998
Bond angle (Deg)	3767
Number of atoms	3371
Protein	112
Ligand	284
Water	
Ramachandran plot	99.03
Favorable (\%)	0.97
Additionally allowed (\%)	0
Outlier (\%)	

$R_{\text {work }}=\Sigma\left\|\mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}} \| / \Sigma\right| \mathrm{F}_{\mathrm{o}}\right|\right.$, calculated with a working set of reflections. $\mathrm{R}_{\text {free }}$ is $\mathrm{R}_{\text {work }}$ calculated with only the test set with 10% of reflections. Data for the highest resolution shell are given in parentheses. The structure was determined using single crystals.
a pseudopalindromic consensus region upstream of CRISPR leader and spacer acquisition operon (viz., cas1, cas2, cas4, and csa1/cas4a genes) $(59,60)$. We therefore evaluated the effect of the cA4-induced repositioning of wHTHs observed in our cA4-bound solution structure on the DNA binding by $\mathrm{Csa}_{3}{ }_{\text {sso }}$. Our superpositional docking of the DNA fragments from homologous OhrR-DNA complexes (PDB ID: 1Z9C) (71) onto these apo state structures showed no change in DNA conformations (Fig. 9A left panel) (61). However, the "closedstate" (cA4-bound) models exhibited drastically different docked DNA conformations for both $w \mathrm{HTH}_{\mathrm{A}}$ and $w \mathrm{HTH}_{\mathrm{B}}$. More specifically, the fragment docked onto the $\mathrm{wHTH}_{\mathrm{A}}$ in the closed state sterically clashed with the $\mathrm{CARF}_{\mathrm{B}}$, and the one docked onto $\mathrm{wHTH} \mathrm{H}_{\mathrm{B}}$ showed an $\sim 90^{\circ}$ rotation with respect to its position in the apo state model (Fig. 9A right panel). Since each docked DNA fragment here represents one of the two palindromes $\mathrm{Csa}_{\text {Sso }}$ is expected to bind, we considered experimental evaluation of a possibility of DNA binding
disruption by cA4 binding to $\mathrm{Csa} 3_{\text {Sso }}$. For this, we performed initial electromobility shift assays (EMSAs) using the cas $4 a$ (accession ID: sso1451) promoter fragment ($\mathrm{P}_{\text {Cas4a }}$) originally predicted by Liu et al. (59) in S. solfataricus P2 genome to conserve the Csa3a-binding site (Fig. S8, A and B). Our negative controls lacking predicted Csa3-binding sites included a similarly long leader A as well as a DNA fragment unrelated to CRISPR systems (Fig. S8). Unexpectedly, Csa3 $3_{\text {sso }}$ interacted with all these fragments in a sequence-independent way generating protein-DNA precipitates that did not enter the gel (Fig. S8C). Furthermore, crude visualization of these $\mathrm{Csa} 3_{\text {Sso }}-\mathrm{P}_{\text {Cas4a }}$ complex precipitates in microcentrifuge tubes showed that presence of excess of cA4 prevented their formation (Fig. 9B). To analyze if this cA4-mediated effect is due to a possible alteration in the physicochemical composition of the binding reaction by cA4, we used cA4 binding-deficient $\mathrm{Csa} 3_{\text {Sso }}$-R98A mutant in this examination and found that cA4 could not rescue the $\mathrm{Csa} 3_{\text {Sso }}$-R98A mutant from precipitating with the DNA (Fig. 9B). To analyze the effect of cA4 addition on the sequence-specific DNA binding by $\mathrm{Csa} 3_{\text {sso }}$, we chose $\mathrm{P}_{\text {Cas4a }}$ that additionally revealed a small proportion of the shifted probe representing soluble protein-DNA complexes (Fig. S8C). Surprisingly, however, we did not see a significant effect of cA4 on the levels of the minor soluble $\mathrm{Csa} 3_{\text {Sso }}$-DNA complex population (faint shifted band), even using a more sensitive EMSA utilizing a Cy5-labeled $\mathrm{P}_{\text {Cas4a }}$ probe. However, the levels of the insoluble complex population were reduced in a cA4 concentration-dependent manner as indicated by an increase in the amount of the free probe in lanes with excess cA4 added (Fig. 9C).

To further analyze whether binding of cA4 affected specific DNA binding by $\mathrm{Csa} 3_{\text {Sso }}$, we performed MST-based binding affinity analysis of $\mathrm{Csa} 3_{\text {Sso }}$ using $\mathrm{P}_{\text {Cas4a }}$ as a ligand where we removed precipitated material before the fluorescence measurements. This analysis depicted a K_{D} of $1.62 \pm 0.17 \mu \mathrm{M}$ for binding of $\mathrm{Csa}_{\text {sso }}$ to $\mathrm{P}_{\text {Cas4a }}$, which is moderately better than that observed previously for $\mathrm{Csa}^{3} \mathrm{~b}_{\text {Sis }}$ binding to an analogous S. islandicus $\mathrm{P}_{\text {Cas4a }}$ promoter (57). However, the addition of excess of cA4 (or cA6) did not significantly change the $\mathrm{P}_{\text {Cas4a }}$ binding affinity (K_{D} S of 3.20 ± 0.36 and $2.4 \pm 0.17 \mu \mathrm{M}$ in the presence of cA4 or cA6, respectively) (Fig. 9D).

In conclusion, these analyses showed that binding of cA4 increases solubility of the $\mathrm{Csa}_{\text {Sso }}$ in the presence of DNA. However, in our assays using the selected binding regions, the specific DNA binding affinity of $\mathrm{Csa} 3_{\text {Sso }}$ was unaltered in vitro

Table 2
Parameters derived from SAXS analysis of $\mathrm{Csa3}_{\text {sso }}$

Sample	Concentration (mg/ml)	Guinier		GNOM		$\mathbf{P}_{\mathbf{x}}{ }^{\text {a }}$	MM (kDa) ${ }^{\text {b }}$
		qRg	$\operatorname{Rg}(\AA)^{\text {c }}$	Rg (\AA)	Dmax (\AA)		
$\mathrm{Csa}_{3}{ }_{\text {sso }}$	8.3	0.38-1.23	28.7 ± 0.1	28.2 ± 0.1	100	3.9	58.9 (56)
	6.7	0.23-1.28	28.4 ± 0.1	28.1 ± 0.2	101	3.9	58.9 (56)
$\mathrm{Csa} 3 \mathrm{Sso}+180 \mu \mathrm{McA4}$	5.5	0.40-1.26	30.8 ± 0.2	30.9 ± 0.2	110	4.0	66.1 (56)
	4.4	0.44-1.34	31.3 ± 0.2	31.2 ± 0.3	110	4.0	66.4 (56)

[^1]

Figure 8. Comparison of apo and cA4-bound structures of $\mathbf{C s a 3}_{\text {sso }}$ dimers in solution. The central panel depicts superimposition of the apo (blue cartoon) and CA4-bound (brown cartoon) conformations of the Csa3 ${ }_{\text {sso }}$ dimer, and shows overall differences in the CARF-relative positions of the wHTH domains. The inset on the left (outlined with green dotted lines) illustrates conformational change in Protomer A wHTH that involves a rotation (shown as yellow lines along the solid black-line axis) and displacement (yellow arrow) of 83.1° and $21.0 \AA$, respectively. The inset on the right (outlined with red dotted lines) shows conformational change in Protomer B wHTH involving a rotation (shown as yellow lines along the solid black-line axis) and displacement (yellow arrow) of 107.6° and $29.8 \AA$, respectively. Views in the left and right insets were obtained by 45° rotations as indicated. Secondary structure elements in both insets are labeled following the scheme in Figure 2 with an inclusion of an asterisk $\left(^{*}\right)$ prefix for the elements for cA4-bound state.
by adding cA4 alone. Although we might have missed the physiologically relevant DNA target of $\mathrm{Csa}_{\mathrm{Sso}}$, this also brings up possibilities of alternate models of transcriptional regulation discussed below.

Discussion

The type I interference complexes are highly efficient in clearing infections associated with phage genomes containing an intact PAM sequence (72). The phages, on the other hand, have evolved escape strategies like the generation of escape mutations in the PAM sequences ($1,48,73,74$) and production of anti-CRISPR (Acr) proteins (75, 76). During infection by a resilient phage, a coexistent type III interference (csm/cmr) complex works independent of the type I Acr- and PAM motif to facilitate phage clearance (Fig. 1) ($25,48,49,77,78$). However, excessive activity of the csm/ cmr complexes and cOA receptors results in nonspecific genomic mutagenesis and RNA hydrolysis, respectively (54, 79). The type III interference therefore needs to prevent this aberrant fate during reinfection by the same virus. Consistent with this, the type III interference is bioinformatically predicted to trigger de novo spacer acquisition and crRNA production enabling the type I system for a future reinfection (Fig. 1, A and $B)(4,25)$. However, the regulatory mechanisms underlying such a reversal to type I interference are not clear.

A CARF domain is a variant of the Rossmann fold lacking the canonical G-X-G-X-(G/A) motif involved in binding $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ or FADH_{2} (80). Instead, CARF domains generally conserve a $(\mathrm{D} / \mathrm{N})-\mathrm{X}-(\mathrm{S} / \mathrm{T})-\mathrm{X}_{3}-(\mathrm{R} / \mathrm{K})$ motif in their $\beta \mathrm{N} 4-\alpha \mathrm{N} 4$ loop that is known to bind cOAs in many nucleic acid hydrolases (81). The $\beta \mathrm{N} 4-\alpha \mathrm{N} 4$ loop is conserved in the Csa3 transcription factors (residues marked with white stars in red background in Fig. 5), which, along with the $\beta \mathrm{N} 1-\alpha \mathrm{N} 1$ and β N5- β N6 loops, creates a potential nucleotide-binding pocket (61). However, biochemical and structural characterization of ligand binding specificity and regulation of Csa3 family
transcriptional factors has been missing $(4,57,61)$. Despite the low micromolar binding affinity we observed for cA4 binding to Csa3, we expect it to be physiologically relevant since high micromolar cA4 concentrations have been estimated to be attained in an infected Sulfolobus cell. More specifically, every phage transcript molecule detected by the type III interference complex produces an intracellular cA4 concentration of $\sim 6 \mu \mathrm{M}$. Thus, a concomitant synthesis of multiple phage RNA molecules could result in an intracellular cA4 concentration in the multiples of six to the number of RNA molecules detected (64). Therefore, a relevant biological scenario includes failure of type I CRISPR systems leading to the concomitant detection of several phage transcripts by the type III interference complexes, which then produce cA4 at a rate that significantly exceeds its hydrolysis by the ring nuclease effectors. As a lowaffinity cA4 receptor, $\mathrm{Csa} 3_{\text {Sso }}$ may therefore act only as a last resort to regulate spacer acquisition, crRNA synthesis, and DNA repair. Such a mechanism could help alleviate cellular toxicity known to increase upon extensive spacer acquisition (37). This is further supported by the fact that $\mathrm{Csa} 3_{\text {sso }}$ lacks any demonstratable ring nuclease activity in vitro (discussed below), which could reduce the effectiveness of such a system.

The previously predicted nucleotide-binding pocket in $\mathrm{Csa} 3_{\text {Sso }}$ involved 12 CARF domain residues. Seven of these constitute the motif $1\left(\mathrm{~T}_{7}-\Phi_{8}-\mathrm{G}_{9}-\mathrm{F}_{10}-(\mathrm{D} / \mathrm{N})_{11}-\mathrm{E}_{12}-\mathrm{X} 4-\mathrm{R}_{17}\right)$, which, along with E_{122}, forms two symmetry-related pocket walls, and the other four comprise motif 2 ($\mathrm{L}_{93}-\mathrm{X} 2-\mathrm{G}_{96}-\Phi_{97^{-}}$ R_{98}), which serves as the floor of this pocket (Φ stands for a hydrophobic residue) (61). Of the 12 residues from these regions, eight were found at the $\mathrm{Csa}_{3 \mathrm{sso}} \bullet^{\mathrm{cA}} 4$ structural interface, whereas four (namely, Thr7, Glu12, Arg17, and Leu93) were present outside of the interface (Figs. 4 and 5). Furthermore, we identified six additional $\mathrm{Csa}_{\text {sso }}$ residues at this interface (Thr13, Phe14, Pro35, Val39, Thr42, and Gly123). Of these, Phe14 is significantly conserved among Csa3 homologs (Fig. 5) and, along with Phe10 from motif 1, contributes substantially to hydrophobic stacking of cA4 adenines (Fig. 4C). Similar $\pi-\pi$

Figure 9. cA4 does not significantly affect specific DNA binding by Csa3sso in vitro. A, predictive docking of DNA fragments (orange backbone) onto the wHTH domains of SAXS-derived apo (blue protein model on left) and cA4-bound (light brown protein model on right) Csa3 sso dimers. The DNA fragment docked onto protomer A in the cA 4 -bound $\mathrm{Csa3}_{\text {sso }}$ dimer sterically clashed with a region in the CARF domain from protomer B in this dimer (encircled by a red dotted circle). The DNA fragment docked onto protomer B in this CA4-bound dimer exhibited a $\sim 90^{\circ}$ rotation instead. To obtain these models, wHTH domains of B. subtilis OhrR (PDB code: 1Z9C (71), RMSD: $1.7 \AA$ A) were individually superimposed onto wHTH domains of the Csa3 ${ }_{\text {sso }}$ dimer and OhrR was omitted from the view for clarity. A single and straight model of B-form DNA with two copies of the palindromes could not be modeled with the apo Csa3 ${ }_{\text {sso }}$ dimer owing to a slight misorientation (not shown) between $\mathrm{Csa}_{\mathrm{ssso}}$ wHTH domains (possibly requiring a bend in the DNA). B, precipitation of $\mathrm{Csa} 3_{\text {sso }}$ in the presence of $\mathrm{P}_{\text {Cas4a }}$ DNA and its solubilization by cA4 binding to the Csa3 ${ }_{\text {sso }}$ CARF domain. Before taking the photograph, $50 \mu \mathrm{M}$ Csa3 ${ }_{\text {sso }}$ (WT or R98A mutant), $10 \mu \mathrm{M} \mathrm{P}_{\text {Cas } 4 \text { a }}$, and/or $500 \mu \mathrm{McA4}$ were added in the binding buffer without Tween 20 (see Experimental procedures) and incubated for 30 min at $20^{\circ} \mathrm{C}$. C and $D, c A 4$ does not significantly affect the binding of $C s a 3_{\text {sso }}$ to the $P_{\text {Cas } 4 \mathrm{a}}$ promoter in vitro. EMSA shows no effect of cA4 on the specific binding of $\mathrm{Csa}_{\text {sso }}$ to $\mathrm{P}_{\text {Cas4a }}(C)$ that drives spacer acquisition in S . solfataricus P 2 . Cy5-labeled $\mathrm{P}_{\text {Cas } 4 a r} 50 \mathrm{nM}$, was added to different Csa3 ${ }_{\text {sso }}$ concentrations ranging from 500 nM to $25 \mu \mathrm{M}$ in the presence or absence of cA4 added in a 50:1 ratio of cA4:Csa3 $\mathrm{s}_{\text {so }}$. D, microscale thermophoresis binding affinity analysis also shows no significant effect of cA4 (as well as cA6) on the Csa3 ${ }_{\text {sso }}$ binding to the $\mathrm{P}_{\text {Cas4a }}$. For microscale thermophoresis, Csa3 sso was held constant at 500 nM, and $\mathrm{P}_{\text {Cas4a }}$ concentration was varied from 763 nM to $25 \mu \mathrm{M}$ in the absence or presence of 50 -fold excess of cOAs $(25 \mu \mathrm{M})$ to $\mathrm{Csa} 3_{\text {sso }}$.
stacking contributions of a Trp residue (Trp42) in a Thermus thermophilus Can1 receptor of cA4 have previously been proposed to stabilize cA4 in an asymmetrical conformation (69), which may also be true for the extended cA4 conformation bound to $\mathrm{Csa} 3_{\text {Sso }}$. Furthermore, the essential interactions of the highly conserved $\mathrm{Csa} 3_{\text {Sso }}$-Gly96 with the terminal cA4 phosphoryl moieties may additionally contribute
to this stabilization (Fig. 4). Finally, our observed contribution of $\mathrm{Csa} 3_{\text {Sso }}-\operatorname{Arg} 98$ interactions with the central phosphoryl moieties in cA4 is consistent with a previously reported loss of the binding of the cA4 analog to a multisite $\mathrm{Csa}^{2} 3 \mathrm{~b}_{\text {Sis }}$ mutant encompassing an $\mathrm{Csa}_{\text {Sso } \text { - } \operatorname{Arg} 98 \text {-equivalent residue (57). }}^{\text {(5) }}$ These residues' functional relevance in Csa3a and Csa3b homologs for binding cA4 further confirms the validity of our

cA4-induced allostery in Csa3

observed $\mathrm{Csa}_{\mathrm{Sso}}{ }^{\bullet} \mathrm{cA} 4$ structural interface to both these homologs. Therefore, based on our structure-function analysis, we propose following revised motifs facilitating cA4 binding to Csa3 proteins: $\Phi_{8}-\mathrm{G}_{9}-\mathrm{F}_{10}-(\mathrm{N} / \mathrm{D})_{11}-\mathrm{X} 1-\zeta_{13}-\mathrm{F}_{14}$ (cA4 binding motif 1) and $\pi_{94}-(\pi / \Phi)_{95}-\mathrm{G}_{96}-\Phi_{97}-\mathrm{R}_{98}$) (cA4 binding motif 2), where subscripted numbers denote residue positions in $\mathrm{Csa} 3_{\text {sso }}$ and the symbols ζ, π, and X denote hydrophilic, small, and noninteracting amino acids, respectively (Fig. 5) (82). The cA4 binding motif 2 interacts primarily with the phosphoryl groups, whereas the cA4 binding motif 1 engages all the adenine rings in cA4 (Fig. 4, A and B). Of interest, the cA4 binding motif 2 is also conserved in other CARF proteins including Csx1, Csm6, and SiRe_0244 (a ring nuclease) (61, 68, 83, 84), whereas the cA4 binding motif 1 is unique to the Csa3 homologs (Fig. 5).

A conserved Glu122 from the $\beta \mathrm{N} 5-\beta \mathrm{N} 6$ loop (outside of the above two motifs) was found to significantly limit the cA4 binding affinity in $\mathrm{Csa}_{\text {Sso }}$ via electrostatic repulsion to the central cA4 phosphoryls; substituting Glu122 with an Ala, or more conservatively with a Gln residue, drastically increased cA4 binding affinity of $\mathrm{Csa}_{\text {Sso }}$ (~ 145 - or 125 -fold, respectively) (Figs. 4 and 5). The conservation of Glu122 during evolution further indicates that it might be limiting Csa3 response only to high cellular cA4 concentrations during type III phage interference. This is also supported by the lack of a self-limiting ring nuclease activity in $\mathrm{Csa}_{\text {Sso }}$. Nevertheless, this represents an interesting example of a rational surface design that increases ligand binding affinity and has potential applications in engineering an amplified Csa3 response to phage infections.

Owing to variation in the identity of the catalytic residues in the active sites of the known ring nucleases, the mechanistic details of ring nuclease activity are still emerging (67). Except for Crn3 that requires metal ions for ring nuclease activity, most of the cOA receptors employ a metal-independent nucleophilic substitution mechanism where a general base deprotonates a ribosyl 2^{\prime} hydroxyl (attacking group) for a nucleophilic attack on the scissile phosphorous atom and/or stabilizes a pentacovalent transition state by coordinating scissile phosphoryl oxygens (68, 85). Ultimately, these interactions position the 2^{\prime} hydroxyl oxygen (O^{\prime}), phosphorous (P), and 5^{\prime} - ribosyl oxygen ($\mathrm{O}^{\prime \prime}$) in-line (with an ideal $\mathrm{O}^{\prime}-\mathrm{P}-\mathrm{O}$ " angle $\sim 180^{\circ}$) for the phosphodiester bond hydrolysis (86, 87). Enterococcus italicus cA6 ring nuclease (EiCsm6), however, is an exception where alternate residues in the protein sterically force cA6 O'-P-O" in a compatible in-line conformation (88). Although originally postulated to be involved in catalysis, the motif $2 \mathrm{Arg} /$ Lys residues from CARF-containing ring nucleases have recently been found only to mediate cOA binding (67,85). Instead, residues in another conserved motif GxS/T have been recently implicated in the catalysis, where Ser/Thr and a Trp residue conserved adjacent to this motif participate in the catalysis (68, 83-85, 88). Furthermore, a Glu or Asp residue conserved in a few CARF domain proteins coordinates the Gly to position the GxS/T motif adjacent to the scissile phosphoryl group, which is hypothesized to facilitate
hydrolysis (67). Despite the essential interactions of the central cA4 phosphoryl ($\mathrm{P}_{2 \mathrm{~b}}$) with the motif 2 residues in $\mathrm{Csa} 3_{\text {Sso }}$ (Gly96 and Arg98), it lacks a demonstratable cA4 ring nuclease activity (Fig. 6). This could be due, at least in part, to the absence of the $\mathrm{GxS} / \mathrm{T}$ motif in Csa 3 proteins. Also, the active site interactions of Arg98 and Glu122 with the target cA4 phosphoryl ($\mathrm{P}_{2 \mathrm{~b}}$) results in an O^{\prime} - $\mathrm{P}^{\prime}-\mathrm{O}^{\prime \prime}$ angle of 94° presenting with a stereochemistry inconducive for nucleophilic attack by the 2^{\prime} ribosyl hydroxyl (Fig. 4C). By contrast, the nonplanar $\left(\mathrm{P}_{2 \mathrm{a}}\right)$ and distal phosphates ($\mathrm{P}_{1 \mathrm{a}}$ and $\mathrm{P}_{1 \mathrm{~b}}$) that have $\mathrm{O}^{\prime}-\mathrm{P}^{\prime}-\mathrm{O}^{\prime \prime}$ angles of $158^{\circ}, 125^{\circ}$, and 141°, respectively, lack coordination by side chain of a basic residue to stabilize the transition state. The lack of ring nuclease activity in the $\mathrm{Csa} 3_{\text {sso }}$ proteins, unlike most self-limiting cOA ring nucleases, could allow for a long-term potentiation of the cA4 signal in an infected cell.

It is intriguing why X-ray crystallography data did not depict cA4-induced conformational changes revealed by our SAXS analysis. This could be explained, at least in part, by immobilization of the $w \mathrm{HTH}_{\mathrm{B}}$ by its symmetry-related crystallographic interactions with $\mathrm{CARF}_{\mathrm{A} \& B}$ from the next $\mathrm{Csa} 3_{\text {sso }}$ dimer in our $\mathrm{Csa}_{\mathrm{Sso}}{ }^{\bullet} \mathrm{cA} 4$ complex crystals. A significantly large interface constituted by these packing interactions could have driven selection of biologically infrequent $\mathrm{Csa} 3_{\text {sso }}$ conformer we observed in the crystal structure (Fig. S9).
$\mathrm{Csa} 3 \mathrm{~b}_{\text {Sis }}$ (a Csa3b homolog) regulation of type I interference (cas) genes and CRISPR spacer acquisition complex has been recently studied $(57,58)$. In the absence of an MGE, the subtype I-A interference (cas) genes are kept repressed by $\mathrm{Csa} 3 \mathrm{~b}_{\text {Sis }}$-mediated recruitment of the Cascade-crRNA complex at the $\mathrm{P}_{\text {Cas }}$ promoter. During MGE invasion, recognition of a protospacer sequence by the Cascade-crRNA complex facilitates its release from the $\mathrm{P}_{\text {Cas }}$ resulting in derepression of the cas gene expression (58). Furthermore, ~ 10-fold increase in $\mathrm{Csa}^{3} \mathrm{~b}_{\text {Sis }}$ binding affinity to the $\mathrm{P}_{\text {csa1 }}$ promoter has been reported in the presence of the cA4 analog in vitro, which suggests a further repression of the adaptation gene expression upon phage transcript clearance by the type III interference complex (57). cA4-induced conformational changes we observed using SAXS bring DNA binding face of the wHTH A_{A} (specifically helix $\alpha \mathrm{C} 3$ that is expected to dock into the major groove of DNA) in proximity to the CARF domain ($\alpha \mathrm{N} 3$ and $\beta \mathrm{N} 2$) from chain B (Fig. 8 left panel). Although this could potentially disrupt $\mathrm{Csa} 3_{\text {sso }}$ interactions with at least one copy of the two palindromes in its binding site (Fig. 9 right panel), our attempts to analyze the effects of cA4 on the binding of $\mathrm{Csa}_{\text {Sso }}$ to $\mathrm{P}_{\text {Cas4a }}$ promoter showed no significant change in specific DNA binding by $\mathrm{Csa} 3_{\text {Sso }}$. Although this unexpected observation does not fully align with previously published transcriptional regulation of the acquisition operon in S. islandicus by $\mathrm{Csa}^{2} \mathrm{a}_{\text {Sis }}$, it could simply be because the two Csa3a orthologs utilize alternate regulatory mechanisms. For example, cA4 binding could improve stability of DNA-bound $\mathrm{Csa} 3_{\text {sso }}$ or alter its DNA binding mode in vivo, which is supported by our increased $\mathrm{Csa}_{\text {Sso }}$-DNA complex solubility in vitro. Alternatively, $\mathrm{Csa} 3_{\text {Sso }}$ may need to interact with other
similar ligand(s) or novel protein partner(s) for its transcriptional regulation. The latter mechanism, however, would be more intricate and distinct from a more common and straightforward regulatory model where ligand binding alone regulates DNA binding affinity of transcription factors to recruit RNA polymerase. Such an alternate mechanism could further harness different binding partners to differentially regulate a vast variety of CRISPR loci that S. solfataricus genome encodes in comparison with S. islandicus. Need for a $\mathrm{Csa} 3_{\text {Sso }}$ partner is also indicated by in vitro instability of the $\mathrm{Csa} 3_{\text {Sso }}-\mathrm{DNA}$ complexes we observed in the absence of cA4 in vitro (Figs. 9, B and C and S8C). Consistent with this, Csa3a proteins have been hypothesized to recruit transcription factor B to a noncanonical TATA box coexistent with the Csa3a promoters for spacer acquisition in Sulfolobales (59). Furthermore, such a cooperative interaction of $\mathrm{Csa}_{3 \text { soo }}$ with protein partners may also further improve $\mathrm{Csa}_{\text {Sso }}$ binding affinities with cA4 and/or target DNA. Although we anticipate involvement of our observed cA4-induced $\mathrm{Csa} 3_{\text {sso }}$ conformations to underlie any sort of functional regulation, an additional possibility of DNA-dependent oligomerization cannot be ruled out with the existing data. Therefore, more work needs to be done to appreciate the binding of cA4 to $\mathrm{Csa} 3_{\text {sso }}$.

Finally, although possibilities always exist for other highaffinity ligands for Csa3 (that could also better regulate DNA binding by Csa3 in vitro), it is unlikely for a Csa3 CARF domain dimer with four binding pockets aptly engaged in recognizing a four-nucleotide ligand to accommodate a completely different ligand structure. In this context, it is of high interest to characterize Csa3a homologs from organisms that are reported to lack Cas10 and CRISPR-Cas loci to identify such possible alternate Csa3a ligands (67). Nonetheless, our data and coevolution of csa3 genes with CRISPR loci in most prokaryotes support a cross talk between the type III and type I CRISPR systems in the form of cA4 binding to Csa3a homologs. This may underlie the regulation of spacer acquisition, crRNA gene expression, and (type I) Cascade -mediated clearance of re-infection by the same virus (Fig. 1B).

Experimental procedures

Cloning, expression, and purification

The full-length N -terminally His_{6}-tagged constructs for cloning wildtype csa3 Sso (accession number: Sso1445) and $c s a 3_{\text {Sso }}$ (R98A) mutant were synthesized from Twist Bio, Inc, and cloned into the NdeI and EcoRI sites of a pBB75 vector using In-Fusion Cloning (Takara Bio USA) generating plasmids $\mathrm{pBB} 75\left(\mathrm{His}_{6}-\mathrm{Csa}_{\text {Sso_ }} \mathrm{WT}\right)$ and $\mathrm{pBB75}\left(\mathrm{His}_{6}{ }^{-}\right.$ $\mathrm{Csa} 3_{\text {Sso_ }}$ R98A), respectively. For the generation of other csa3 $3_{\text {Sso }}$ mutants targeting the $\mathrm{Csa} 3_{\text {Sso }} \bullet \mathrm{CA} 4$ structural interface (F10A, F14A, G96A, E122A and E122Q), the His ${ }_{6}$-tagged csa3 Sso (WT) was first cloned into NdeI and EcoRI sites of pET21b plasmid by PCR amplification from $\mathrm{pBB}_{2} 75 \mathrm{His}_{6}{ }^{-}$ $\mathrm{Csa}_{\text {Sso_ }} \mathrm{WT}$) using primers pET21($\left.\mathrm{N}-\mathrm{His}_{6}-\mathrm{Csa}_{\text {sso_ }} \mathrm{WT}\right)_{-} \mathrm{F}$ and pET21(N-His ${ }_{6}$-Csa3 sso_ WT)_R (Table S2). The plasmid thus generated, $\mathrm{pET} 21\left(\mathrm{His}_{6}\right.$-Csa3_WT), was then subjected to

Q5 site-directed mutagenesis (New England Biolabs) using manufacturer's protocol and custom mutagenesis primers (identified with the prefix pET21 in Table S2).

For protein expression, the recombinant His_{6}-tagged plasmids (pBB75 [His ${ }_{6}$-Csa3] and pET21b [His_{6}-Csa3]) were transformed into BL21(DE3)-pLysS E. coli cells and selected on LB plates containing $0.03 \mathrm{mg} / \mathrm{ml}$ Kanamycin (for recombinant pBB75 plasmids) or $0.1 \mathrm{mg} / \mathrm{ml}$ Ampicillin (for recombinant pET21b plasmids). For the expression of the native and mutant $\mathrm{Csa} 3_{\text {Sso }}$ proteins, a single E. coli transformant colony was grown in ZYP-5025 autoinduction media (89) containing $0.03 \mathrm{mg} / \mathrm{ml}$ Kanamycin (for recombinant pBB75 plasmids) or $0.1 \mathrm{mg} / \mathrm{ml}$ Ampicillin (for recombinant pET21b plasmids) at $22^{\circ} \mathrm{C}$ for 44 to 48 h . Cells were harvested and resuspended in buffer A $(20 \mathrm{mM}$ Tris- HCl pH 8.0 and 400 mM NaCl$)$ containing $0.1 \mathrm{mg} / \mathrm{ml}$ DNase I (Sigma-Aldrich), 5 mM β-mercaptoethanol, and $1 \% \mathrm{v} / \mathrm{v}$ protease inhibitor cocktail (Sigma-Aldrich). Cells were lysed using Emulsiflex-C3 (Avestin, Inc), and the lysates of His_{6}-Csa3 were preheated for 30 min at $65^{\circ} \mathrm{C}$, respectively, and centrifuged at $14,000 \mathrm{rpm}$ for 40 min to remove the cell debris.

The supernatants containing all the wildtype and mutant $\mathrm{His}_{6}-\mathrm{Csa} 3_{\text {sso }}$ preparations were applied to a HisTrap Fast Flow column (Cytiva Life Sciences, Inc) pre-equilibrated in buffer A. Following a wash with five column volumes (CVs) of buffer A, $\mathrm{Csa} 3_{\text {Sso }}$ was eluted with a three-step gradient of buffer B (20 mM Tris- HCl pH 8.0 and 50 mM NaCl) to buffer C (20 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,50 \mathrm{mM} \mathrm{NaCl}$, and 500 mM Imidazole): (i) 0% to 10% (v/v) buffer C in ten CVs, (ii) 10% to 40% (v/v) buffer C in ten CVs, and (iii) 40% to 100% (v/v) buffer C in 20 CVs . The fractions containing $\mathrm{Csa} 3_{\text {sso }}$ were pooled and applied to a Mono-Q anion exchange chromatography column (Cytiva Life Sciences, Inc) equilibrated with buffer D (50 mM Tris- HCl pH 9.0). The flow-through containing $\mathrm{Csa} 3_{\text {sso }}$ was collected and subjected to a Cibacron Blue 3GA column (Sigma Aldrich) equilibrated with buffer D. Bound proteins were eluted using a linear gradient of buffer D and buffer E (50 mM Tris- HCl pH 9.0 and 1.5 M NaCl).
His_{6}-tagged $\mathrm{Csa}_{\text {Sso }}$ preparations obtained above were concentrated and applied onto a Superdex 200 16/70 gel filtration column pre-equilibrated with buffer F (20 mM TrisHCl pH 8.0 and 50 mM NaCl). The $\mathrm{Csa} 3_{\text {Soo }}$-containing fractions were concentrated using an Amicon Ultra-10 kDa cutoff centrifugal filter (Millipore) and stored at $-80^{\circ} \mathrm{C}$.

Microscale thermophoresis

The ligand-binding specificity of $\mathrm{Csa}_{\text {Sso }}$ (WT) and the role of $\mathrm{Csa} 3_{\text {Sso }}$ residues in ligand binding were determined by microscale Thermophoresis (MST). Wildtype or mutant His 6^{-} $\mathrm{Csa}_{\text {Sso }}$ (200 nM) was fluorescently labeled in $2 \times$ binding buffer ($10 \mathrm{mM} \mathrm{Na} / \mathrm{K}$ phosphate, $\mathrm{pH} 5.8,10 \mathrm{mM} \mathrm{MgCl}_{2}$, 25 mM NaCl , and 0.05% Tween 20) using 100 nM RED-Tris NTA His-Tag labeling dye (Nanotemper Technologies, Inc) and incubated in the dark at room temperature for 30 min . Two millimolar stocks of synthetic ligands including cA3, cA4, and cA6 (Biolog Life Science Institute) or linear ribonucleotide

cA4-induced allostery in Csa3

5^{\prime}-rCrArArArA-3' (Bio-Synthesis Inc) were serially diluted in a 1:1 ratio with nuclease-free water. The labeled proteins were then mixed with ligands in a 1:1 ratio. Only cA4 was used in the MST experiments with the $\mathrm{Csa} 3_{\text {sso }}$ mutants (2 mM stocks of cA4 were used for F10A, F14A, G96A, and R98A mutants, and $20 \mu \mathrm{M}$ stocks were used for E122A and E122Q mutants). The mixtures of proteins and ligands were incubated in the dark at room temperature for 30 min . The precipitated material was removed by centrifugation at 6000 rpm for 5 min . The supernatants were then loaded into Monolith NT. 115 Series Premium capillaries in triplicate, and the thermophoresis was detected with 40% excitation power and 40% IR-laser power for an on-time of 20 s at $25^{\circ} \mathrm{C}$.

The MST experiment and data analysis for ligand-induced changes in Csa_{3} sso binding affinity with $\mathrm{P}_{\text {Cas } 4 \mathrm{a}}$ was performed as mentioned above except for the following: $1 \mu \mathrm{M}$ of $\mathrm{His}_{6}{ }^{-}$ $\mathrm{Csa} 3_{\text {sso }}$ (WT) was fluorescently labeled in $2 \times$ binding buffer with 40 nM RED-Tris NTA His-Tag labeling dye in the absence or presence of cA4 or cA6. The labeling mixtures were incubated in the dark at room temperature for 30 min . A $50 \mu \mathrm{M}$ stock of $\mathrm{P}_{\text {Cas4a }}$ was serially diluted in 1:1 ratios with nuclease-free water. The labeled proteins \pm ligands were then mixed with diluted $\mathrm{P}_{\text {Cas4a }}$ in a 1:1 ratio and incubated in the dark at room temperature for 30 min . The supernatants obtained after removal of precipitated material were then loaded into Monolith NT. 115 Series Premium capillaries in triplicate, and the thermophoresis was detected with 100% excitation power and 60% IR-laser power for an on-time of 20 s at $25^{\circ} \mathrm{C}$.

The binding affinities of oligonucleotides and $\mathrm{P}_{\text {Cas4a }}$ to $\mathrm{Csa}_{\text {Sso }}$ (WT and mutants) were analyzed according to the law of mass action in a standard fitting mode of MO.Affinity analysis software (version 2.3).

Crystallization, X-ray data collection, data processing, model building, and refinement

Our high-throughput crystallization screen using His $_{6}{ }^{-}$ Csa 3 sso in the presence of 2-fold molar excess of cA4 identified a crystallization condition yielding cA4-dependent His 6^{-} $\mathrm{Csa} 3_{\text {Sso }}$ crystals. The crystallization condition was optimized to obtain crystals growing up to $400 \mu \mathrm{~m}$ size. $\mathrm{Csa}_{\mathrm{Sso}}{ }^{\bullet} \mathrm{cA} 4$ complex crystals were produced by the vapor diffusion method at $20{ }^{\circ} \mathrm{C}$ using a $1: 2$ mixture of $\mathrm{Csa}_{\mathrm{Sso}}{ }^{\bullet}{ }^{\text {cA4 }} 4\left(300 \mu \mathrm{M} \mathrm{His}_{6^{-}}\right.$ $\mathrm{Csa}_{\text {Sso }}$ and $600 \mu \mathrm{M}$ cA4) in gel filtration buffer (buffer F: 20 mM Tris- HCl pH 8.0 and 50 mM NaCl) and well solution ($0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}, 0.1 \mathrm{M} \mathrm{Na} / \mathrm{K} 5.8$, 16% PEG3350). X-ray diffraction data were collected in NSLS-II using AMX beamline at wavelength $0.92009 \AA$. The diffraction data were indexed, integrated, and scaled in HKL2000 (90). The initial phase information was obtained by molecular replacement in phenix phaser (91) using the native Csa3 structure (PDB ID: 2WTE) as template. The crystal belongs to $\mathrm{P} 2_{1} 2_{1} 2$ and two molecules of Csa 3 are in an asymmetric unit. A strong difference density was observed on inspection of the $\mathrm{F}_{\mathrm{O}}-\mathrm{F}_{\mathrm{C}}$ map at the CARF domain dimeric interface and was identified as
bound cA4. The molecular model for the ligand cA4 (CHEBI:142457) was obtained from the ChEBI EMBL database (92). The ligand restraints were generated in Phenix ReadySet, and cA4 has been manually modeled on the difference density map. Iterative rounds of manual model building in Coot and refinement in Phenix refinement generated the final model with $\mathrm{R}_{\text {work }}=16.0$ and $\mathrm{R}_{\text {free }}=20.5$ (93, 94). The stereochemical quality of the final structure was verified using Ramachandran plot, and 99.03% of the residues are found to have favorable conformation, whereas only 0.97% of residues have allowed conformation; no outlier was found. The structure is submitted to PDB with a PDB ID 6WXQ. The data processing and refinement statistics are reported in Table 1.

Ring nuclease activity assays

The ring nuclease activity assays of cA4 were performed in two different conditions. In the first condition (used for Fig. S5, A and $B), 50 \mu \mathrm{M} \mathrm{Csa} 3_{\text {Sso }}$ and/or $250 \mu \mathrm{M}$ cA4 was incubated (in a cA4:Csa3 $3_{\text {sso }}$ molar ratio of $5: 1$) at $55^{\circ} \mathrm{C}$ for 3 h either in (i) $1 \times$ binding buffer or (ii) the buffer G (20 mM Tris$\mathrm{HCl}, \mathrm{pH} 7.5,50 \mathrm{mM} \mathrm{KCl}$, and 50 mM NaCl) previously used to demonstrate the ring nuclease activity of Csm6 (84). The reaction mixtures were deproteinized by ultrafiltration with an Amicon Ultra 3 kDa cutoff centrifugal filter (Millipore). In the second condition (used for Figs. 6 and S5C), $5 \mu \mathrm{M} \mathrm{Csa} 3_{\text {Sso }}$ (wildtype or its E122A/E122Q mutants) and/or $500 \mu \mathrm{M} \mathrm{cA}_{4}$ was incubated (in a cA4:Csa3 sso molar ratio of 100:1) in the buffer G or $1 \times$ binding buffer at $60^{\circ} \mathrm{C}$ for 3 h . The reactions were quenched and deproteinized by phenol-chloroform extractions (84). For both conditions, the products and controls were collected and analyzed with High Performance Liquid Chromatography system (UltiMate 3000, Thermo Scientific) equipped with the C18 column ($4.6 \times 100 \mathrm{~mm}, 5 \mu \mathrm{M}$ particle size, Thermo Scientific) and C18 column, ($15 \mathrm{~cm} \times 4.6 \mathrm{~mm}$, $3 \mu \mathrm{M}$ particle size, Supelco), for the first and second conditions, respectively.

Analytical ultracentrifugation

Sedimentation velocity analytical ultracentrifugation (SVAUC) experiments were performed at $20^{\circ} \mathrm{C}$ with an XL-A analytical ultracentrifuge (Beckman-Coulter) and a TiAn60 rotor with two-channel charcoal-filled Epon centerpieces and quartz windows. Data were collected with detection at 280 nm . Complete sedimentation velocity profiles were recorded every 30 s at $40,000 \mathrm{rpm}$. Data were fit using the $c(S)$ implementation of the Lamm equation as implemented in the program SEDFIT (95) and corrected for $S_{20, w}$. Direct fitting of association models was performed using SEDPHAT (96). Calculated hydrodynamic properties for homology models were determined using WinHYDROPRO (97). The partial specific volume ($\overline{\text { U }}$), solvent density (ρ), and viscosity (η) were derived from chemical composition by SEDNTERP (http://www.rasmb.bbri. org/). Figures were created using the program GUSSI (98). All measurements were performed in $10 \mathrm{mM} \mathrm{Na} / \mathrm{KPO}_{4}$ (pH 5.8), $10 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM} \mathrm{MgCl} 2$.

Small-angle X-ray scattering data collection

SAXS data were collected at beamline 16-ID (LiX) of the National Synchrotron Light Source II (99). Data were collected at a wavelength of $1.0 \AA$ in a three-camera conformation, yielding accessible scattering angle with $0.013<\mathrm{q}<3.0 \AA^{-1}$, where q is the momentum transfer, defined as $\mathrm{q}=4 \pi \sin (\theta) / \lambda$, where λ is the X-ray wavelength and 2θ is the scattering angle. The data to $\mathrm{q}<0.5 \AA^{-1}$ were used in subsequent analyses. Samples were loaded into a $1-\mathrm{mm}$ capillary for ten 1 -s X-ray exposures. All measurements were performed in 10 mM Na / $\mathrm{KPO}_{4}(\mathrm{pH} 5.8), 10 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM} \mathrm{MgCl} 2$.

SAXS analysis

Data were analyzed in the program RAW (100). When fitting manually, the maximum diameter of the particle $\left(\mathrm{D}_{\max }\right)$ was incrementally adjusted in GNOM (101) to maximize the goodness-of-fit parameter, to minimize the discrepancy between the fit and the experimental data, and to optimize the visual qualities of the distribution profile.

Hybrid bead-atomistic modeling of Csa3 was performed using the program CORAL (70), where the known structure was fixed in composition and inventory not resolved by X-ray crystallography was modeled as coarse-grain beads. Ten independent calculations for each protein were performed and yielded comparable results. The final models were assessed using the program CRYSOL. The models were rendered using the program PYMOL (102).

Electromobility shift assays

Top and bottom DNA oligonucleotide strands used for EMSA were purchased from Sigma-Aldrich (Table S2). The oligonucleotide strands were annealed by mixing them in 1:1 molar ratio followed by heating at $98^{\circ} \mathrm{C}$ for the unlabeled, or $70^{\circ} \mathrm{C}$ for the Cy5-labeled, DNA fragments for 15 min . Slow cooling to room temperature was used to anneal the fragments. Unlabeled probe-containing samples used for Fig. S8C were electrophoresed using a $2 \%(\mathrm{w} / \mathrm{v})$ agarose Tris-BorateEDTA (TBE) gel at 100 V for 30 min at room temperature. Probes were stained with ethidium bromide and visualized using Gel Doc XR+ Molecular Imager (Bio-Rad). EMSAs shown in Figure $9 C$ were performed using the Cy5-labeled $\mathrm{P}_{\text {Cas4a }}$ probe. A 5^{\prime} amino-modified $\mathrm{P}_{\text {Cas4a }}$ top strand was obtained from Biosearch technologies. The Cy5-coupled oligo fraction was purified from unlabeled oligos and loose dye in C18 reverse-phase HPLC using already established protocols $(103,104)$. The Cy5-labeled probes were electrophoresed in a 5% acrylamide TBE gel at 100 V for 1 h at $4^{\circ} \mathrm{C}$. DNA bands were visualized using FluorChem R gel imager (Protein Simple, Inc).

Data availability

Coordinates and structure factors for the $\mathrm{Csa}_{\mathrm{Sso}}: \mathrm{cA} 4$ structure have been deposited in the RCSB Protein Data Bank (http://www.rcsb.org) with the accession code 6WXQ. Strains and plasmids are described in this article, and the raw data for
the binding analyses in Figures $1 D, 4 E$ and $9 D$ and Fig. S1 are available upon request.

Supporting information-This article contains supporting information (59, 61, 101, 102).

Acknowledgments-Analytical ultracentrifugation analyses were performed at the Johnson Foundation Structural Biology and Biophysics Core at the Perelman School of Medicine (Philadelphia, PA) with the support of an NIH High-End Instrumentation Grant (S10-OD018483). The crystallographic data were obtained at the 17-ID-1 beamline, whereas the SEC-SAXS data were obtained at 16-ID (LIX) at the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

Author contributions-V. P. conceptualization; P. X. and K. G. methodology; P. X., A. D., K. G., and V. P. validation; P. X., A. D., and K. G. formal analysis; V. P. data curation; V. P. writing original draft; P. X., A. D., K. G., M. B., and V. P. writing - review \& editing; M. B. and V. P. supervision; M. B. and V. P. project administration; V. P. funding acquisition.

Funding and additional information-This research was supported by National Institutes of Health Grant R35GM119504 (to V. P.). K. G. acknowledges the support of the Johnson Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest-The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations-The abbreviations used are: cA4, cyclic tetra-adenylate; CARF, CRISPR-associated Rossmann fold; Cascade, CRISPR-associated complex for antiviral defense; cOA, cyclic oligoadenylate; Crn, CRISPR ring nuclease; Csa3, CRISPR Apern 3; $\mathrm{Csa}^{2 \mathrm{~b}}{ }_{\text {Sis }}$, Sulfolobus islandicus Csa3b; Csa $3_{\text {sso }}$, Saccharolobus solfataricus Csa3; CV, column volume; EMSA, electromobility shift assay; MGE, mobile genetic element; MST, microscale thermophoresis; PAM, protospacer adjacent motif; RNP, ribonucleoprotein; SAXS, small-angle X-ray scattering; SV-AUC, sedimentation velocity analytical ultracentrifugation; wHTH, winged helix-turnhelix.

References

1. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., and Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712
2. Grissa, I., Vergnaud, G., and Pourcel, C. (2007) CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35, W52-W57
3. van der Oost, J., Westra, E. R., Jackson, R. N., and Wiedenheft, B. (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12, 479-492
4. Yu, Z., Jiang, S., Wang, Y., Tian, X., Zhao, P., Xu, J., Feng, M., and She, Q. (2021) CRISPR-Cas adaptive immune systems in Sulfolobales: Genetic studies and molecular mechanisms. Sci. China Life Sci. 64, 678-696
5. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-5433
6. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J., and Soria, E. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174-182
7. Jansen, R., Embden, J. D., Gaastra, W., and Schouls, L. M. (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565-1575
8. Hille, F., and Charpentier, E. (2016) CRISPR-Cas: Biology, mechanisms and relevance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150496
9. Nunez, J. K., Kranzusch, P. J., Noeske, J., Wright, A. V., Davies, C. W., and Doudna, J. A. (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528-534
10. Yosef, I., Goren, M. G., and Qimron, U. (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569-5576
11. Lee, H., Zhou, Y., Taylor, D. W., and Sashital, D. G. (2018) Cas4dependent prespacer processing ensures high-fidelity programming of CRISPR arrays. Mol. Cell 70, 48-59.e5
12. Bhaya, D., Davison, M., and Barrangou, R. (2011) CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45, 273-297
13. Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., Dickman, M. J., Makarova, K. S., Koonin, E. V., and van der Oost, J. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964
14. Carte, J., Wang, R., Li, H., Terns, R. M., and Terns, M. P. (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489-3496
15. Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., Terns, R. M., and Terns, M. P. (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956
16. Lintner, N. G., Kerou, M., Brumfield, S. K., Graham, S., Liu, H., Naismith, J. H., Sdano, M., Peng, N., She, Q., Copie, V., Young, M. J., White, M. F., and Lawrence, C. M. (2011) Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J. Biol. Chem. 286, 21643-21656
17. Zhang, J., Rouillon, C., Kerou, M., Reeks, J., Brugger, K., Graham, S., Reimann, J., Cannone, G., Liu, H., Albers, S. V., Naismith, J. H., Spagnolo, L., and White, M. F. (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell 45, 303-313
18. Reeks, J., Naismith, J. H., and White, M. F. (2013) CRISPR interference: A structural perspective. Biochem. J. 453, 155-166
19. Peng, W., Li, H., Hallstrom, S., Peng, N., Liang, Y. X., and She, Q. (2013) Genetic determinants of PAM-dependent DNA targeting and precrRNA processing in Sulfolobus islandicus. RNA Biol. 10, 738-748
20. Westra, E. R., Semenova, E., Datsenko, K. A., Jackson, R. N., Wiedenheft, B., Severinov, K., and Brouns, S. J. (2013) Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairingindependent PAM recognition. PLoS Genet. 9, e1003742
21. Anders, C., Niewoehner, O., Duerst, A., and Jinek, M. (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573
22. Li, M., Wang, R., and Xiang, H. (2014) Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation. Nucleic Acids Res. 42, 7226-7235
23. Wang, J., Li, J., Zhao, H., Sheng, G., Wang, M., Yin, M., and Wang, Y. (2015) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163, 840-853
24. Yamano, T., Zetsche, B., Ishitani, R., Zhang, F., Nishimasu, H., and Nureki, O. (2017) Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol. Cell 67, 633-645.e3
25. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J., Terns, R. M., Terns, M. P., et al. (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722-736
26. Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V., and van der Oost, J. (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147
27. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823
28. Doudna, J. A., and Charpentier, E. (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096
29. Burstein, D., Harrington, L. B., Strutt, S. C., Probst, A. J., Anantharaman, K., Thomas, B. C., Doudna, J. A., and Banfield, J. F. (2017) New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237-241
30. Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J., Wolf, Y. I., Yakunin, A. F., van der Oost, J., and Koonin, E. V. (2011) Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9, 467-477
31. Majumdar, S., Zhao, P., Pfister, N. T., Compton, M., Olson, S., Glover, C. V., 3rd, Wells, L., Graveley, B. R., Terns, R. M., and Terns, M. P. (2015) Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus. RNA 21, 1147-1158
32. Elmore, J. R., Sheppard, N. F., Ramia, N., Deighan, T., Li, H., Terns, R. M., and Terns, M. P. (2016) Bipartite recognition of target RNAs activates DNA cleavage by the type III-B CRISPR-Cas system. Genes Dev. 30, 447-459
33. Zink, I. A., Wimmer, E., and Schleper, C. (2020) Heavily armed ancestors: CRISPR immunity and applications in archaea with a comparative analysis of CRISPR types in Sulfolobales. Biomolecules 10, 1523
34. Deng, L., Garrett, R. A., Shah, S. A., Peng, X., and She, Q. (2013) A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 87, 1088-1099
35. Manica, A., and Schleper, C. (2013) CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus. RNA Biol. 10, 671-678
36. Zhang, J., and White, M. F. (2013) Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus. Biochem. Soc. Trans. 41, 1422-1426
37. Hille, F., Richter, H., Wong, S. P., Bratovic, M., Ressel, S., and Charpentier, E. (2018) The biology of CRISPR-Cas: Backward and forward. Cell 172, 1239-1259
38. Mulepati, S., Heroux, A., and Bailey, S. (2014) Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345, 1479-1484
39. Hayes, R. P., Xiao, Y., Ding, F., van Erp, P. B., Rajashankar, K., Bailey, S., Wiedenheft, B., and Ke, A. (2016) Structural basis for promiscuous PAM recognition in type I-E cascade from E. coli. Nature 530, 499-503
40. Li, Y., Zhang, Y., Lin, J., Pan, S., Han, W., Peng, N., Liang, Y. X., and She, Q. (2017) Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA. Nucleic Acids Res. 45, 11305-11314
41. Pan, S., Li, Q., Deng, L., Jiang, S., Jin, X., Peng, N., Liang, Y., She, Q., and Li, Y. (2019) A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. RNA Biol. 16, 1166-1178
42. Goldberg, G. W., Jiang, W., Bikard, D., and Marraffini, L. A. (2014) Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514, 633-637
43. Samai, P., Pyenson, N., Jiang, W., Goldberg, G. W., Hatoum-Aslan, A., and Marraffini, L. A. (2015) Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161, 1164-1174
44. Estrella, M. A., Kuo, F. T., and Bailey, S. (2016) RNA-activated DNA cleavage by the type III-B CRISPR-Cas effector complex. Genes Dev. 30, 460-470
45. Kazlauskiene, M., Tamulaitis, G., Kostiuk, G., Venclovas, C., and Siksnys, V. (2016) Spatiotemporal control of type III-A CRISPR-Cas immunity: Coupling DNA degradation with the target RNA recognition. Mol. Cell 62, 295-306
46. Han, W., Li, Y., Deng, L., Feng, M., Peng, W., Hallstrom, S., Zhang, J., Peng, N., Liang, Y. X., White, M. F., and She, Q. (2017) A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res. 45, 1983-1993
47. Liu, T. Y., Iavarone, A. T., and Doudna, J. A. (2017) RNA and DNA targeting by a reconstituted Thermus thermophilus type III-A CRISPRCas system. PLoS One 12, e0170552
48. Silas, S., Lucas-Elio, P., Jackson, S. A., Aroca-Crevillen, A., Hansen, L. L., Fineran, P. C., Fire, A. Z., and Sanchez-Amat, A. (2017) Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. Elife 6, e27601
49. Pyenson, N. C., Gayvert, K., Varble, A., Elemento, O., and Marraffini, L. A. (2017) Broad targeting specificity during bacterial type III CRISPRCas immunity constrains viral escape. Cell Host Microbe 22, 343-353.e3
50. Rouillon, C., Athukoralage, J. S., Graham, S., Gruschow, S., and White, M. F. (2018) Control of cyclic oligoadenylate synthesis in a type III CRISPR system. Elife 7, e36734
51. Kazlauskiene, M., Kostiuk, G., Venclovas, C., Tamulaitis, G., and Siksnys, V. (2017) A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357, 605-609
52. Niewoehner, O., Garcia-Doval, C., Rostol, J. T., Berk, C., Schwede, F., Bigler, L., Hall, J., Marraffini, L. A., and Jinek, M. (2017) Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543-548
53. Koonin, E. V., and Makarova, K. S. (2018) Discovery of oligonucleotide signaling mediated by CRISPR-associated polymerases solves two puzzles but leaves an enigma. ACS Chem. Biol. 13, 309-312
54. Athukoralage, J. S., and White, M. F. (2021) Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence. RNA 27, 855-867
55. Quax, T. E., Voet, M., Sismeiro, O., Dillies, M. A., Jagla, B., Coppee, J. Y., Sezonov, G., Forterre, P., van der Oost, J., Lavigne, R., and Prangishvili, D. (2013) Massive activation of archaeal defense genes during viral infection. J. Virol. 87, 8419-8428
56. Haft, D. H., Selengut, J., Mongodin, E. F., and Nelson, K. E. (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, e60
57. Ye, Q., Zhao, X., Liu, J., Zeng, Z., Zhang, Z., Liu, T., Li, Y., Han, W., and Peng, N. (2020) CRISPR-associated factor Csa3b regulates CRISPR adaptation and Cmr-mediated RNA interference in Sulfolobus islandicus. Front. Microbiol. 11, 2038
58. He, F., Vestergaard, G., Peng, W., She, Q., and Peng, X. (2017) CRISPRCas type I-A cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b. Nucleic Acids Res. 45, 1902-1913
59. Liu, T., Liu, Z., Ye, Q., Pan, S., Wang, X., Li, Y., Peng, W., Liang, Y., She, Q., and Peng, N. (2017) Coupling transcriptional activation of CRISPRCas system and DNA repair genes by Csa3a in Sulfolobus islandicus. Nucleic Acids Res. 45, 8978-8992
60. Liu, T., Li, Y., Wang, X., Ye, Q., Li, H., Liang, Y., She, Q., and Peng, N. (2015) Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Res. 43, 1044-1055
61. Lintner, N. G., Frankel, K. A., Tsutakawa, S. E., Alsbury, D. L., Copie, V., Young, M. J., Tainer, J. A., and Lawrence, C. M. (2011) The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J. Mol. Biol. 405, 939-955
62. Lowey, B., Whiteley, A. T., Keszei, A. F. A., Morehouse, B. R., Mathews, I. T., Antine, S. P., Cabrera, V. J., Kashin, D., Niemann, P., Jain, M., Schwede, F., Mekalanos, J. J., Shao, S., Lee, A. S. Y., and Kranzusch, P. J. (2020) CBASS immunity uses CARF-related effectors to sense $3^{\prime}-5^{\prime}$ - and 2'-5'-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182, 38-49.e17
63. Rostol, J. T., Xie, W., Kuryavyi, V., Maguin, P., Kao, K., Froom, R., Patel, D. J., and Marraffini, L. A. (2021) The Card1 nuclease provides defence during type III CRISPR immunity. Nature 590, 624-629
64. Athukoralage, J. S., Graham, S., Rouillon, C., Gruschow, S., Czekster, C. M., and White, M. F. (2020) The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. Elife 9, e55852
65. Krissinel, E. (2010) Crystal contacts as nature's docking solutions. J. Comput. Chem. 31, 133-143
66. Krissinel, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797
67. Makarova, K. S., Timinskas, A., Wolf, Y. I., Gussow, A. B., Siksnys, V., Venclovas, C., and Koonin, E. V. (2020) Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense. Nucleic Acids Res. 48, 8828-8847
68. Athukoralage, J. S., Rouillon, C., Graham, S., Gruschow, S., and White, M. F. (2018) Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562, 277-280
69. McMahon, S. A., Zhu, W., Graham, S., Rambo, R., White, M. F., and Gloster, T. M. (2020) Structure and mechanism of a type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nat. Commun. 11, 500
70. Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tria, G., Kikhney, A. G., Gajda, M., Gorba, C., Mertens, H. D., Konarev, P. V., and Svergun, D. I. (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342-350
71. Hong, M., Fuangthong, M., Helmann, J. D., and Brennan, R. G. (2005) Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol. Cell 20, 131-141
72. Hidalgo-Cantabrana, C., and Barrangou, R. (2020) Characterization and applications of type I CRISPR-Cas systems. Biochem. Soc. Trans. 48, 15-23
73. Semenova, E., Jore, M. M., Datsenko, K. A., Semenova, A., Westra, E. R., Wanner, B., van der Oost, J., Brouns, S. J., and Severinov, K. (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. U. S. A. 108, 10098-10103
74. Deveau, H., Barrangou, R., Garneau, J. E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D. A., Horvath, P., and Moineau, S. (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390-1400
75. Marino, N. D., Zhang, J. Y., Borges, A. L., Sousa, A. A., Leon, L. M., Rauch, B. J., Walton, R. T., Berry, J. D., Joung, J. K., Kleinstiver, B. P., and Bondy-Denomy, J. (2018) Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362, 240-242
76. Gussow, A. B., Park, A. E., Borges, A. L., Shmakov, S. A., Makarova, K. S., Wolf, Y. I., Bondy-Denomy, J., and Koonin, E. V. (2020) Machinelearning approach expands the repertoire of anti-CRISPR protein families. Nat. Commun. 11, 3784
77. Niewoehner, O., and Jinek, M. (2017) Specialized weaponry: How a type III-A CRISPR-Cas system excels at combating phages. Cell Host Microbe 22, 258-259
78. Watson, B. N. J., Steens, J. A., Staals, R. H. J., Westra, E. R., and van Houte, S. (2021) Coevolution between bacterial CRISPR-Cas systems and their bacteriophages. Cell Host Microbe 29, 715-725
79. Mo, C. Y., Mathai, J., Rostol, J. T., Varble, A., Banh, D. V., and Marraffini, L. A. (2021) Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature 592, 611-615
80. Hanukoglu, I. (2015) Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites. Biochem. Mol. Biol. Educ. 43, 206-209
81. Makarova, K. S., Anantharaman, V., Grishin, N. V., Koonin, E. V., and Aravind, L. (2014) CARF and WYL domains: Ligand-binding regulators of prokaryotic defense systems. Front. Genet. 5, 102
82. Aasland, R., Abrams, C., Ampe, C., Ball, L. J., Bedford, M. T., Cesareni, G., Gimona, M., Hurley, J. H., Jarchau, T., Lehto, V. P., Lemmon, M. A., Linding, R., Mayer, B. J., Nagai, M., Sudol, M., et al. (2002) Normalization of nomenclature for peptide motifs as ligands of modular protein domains. FEBS Lett. 513, 141-144
83. Molina, R., Stella, S., Feng, M., Sofos, N., Jauniskis, V., Pozdnyakova, I., Lopez-Mendez, B., She, Q., and Montoya, G. (2019) Structure of Csx1cOA4 complex reveals the basis of RNA decay in type III-B CRISPR-Cas. Nat. Commun. 10, 4302
84. Jia, N., Jones, R., Yang, G., Ouerfelli, O., and Patel, D. J. (2019) CRISPRCas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA4 cleavage with $A p A>p$ formation terminating RNase activity. Mol. Cell 75, 944-956.e6
85. Athukoralage, J. S., Graham, S., Gruschow, S., Rouillon, C., and White, M. F. (2019) A type III CRISPR ancillary ribonuclease degrades its cyclic oligoadenylate activator. J. Mol. Biol. 431, 2894-2899
86. Athukoralage, J. S., McQuarrie, S., Gruschow, S., Graham, S., Gloster, T. M., and White, M. F. (2020) Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. Elife 9, e57627
87. Athukoralage, J. S., McMahon, S. A., Zhang, C., Gruschow, S., Graham, S., Krupovic, M., Whitaker, R. J., Gloster, T. M., and White, M. F. (2020) An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572-575
88. Garcia-Doval, C., Schwede, F., Berk, C., Rostol, J. T., Niewoehner, O., Tejero, O., Hall, J., Marraffini, L. A., and Jinek, M. (2020) Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Nat. Comтип. 11, 1596
89. Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207-234
90. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326
91. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674
92. Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N., Muthukrishnan, V., Turner, S., Swainston, N., Mendes, P., and Steinbeck, C. (2016) ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res. 44, D1214-D1219
93. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., et al. (2010) PHENIX: A comprehensive Python-based system for
macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221
94. Emsley, P., and Cowtan, K. (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132
95. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606-1619
96. Vistica, J., Dam, J., Balbo, A., Yikilmaz, E., Mariuzza, R. A., Rouault, T. A., and Schuck, P. (2004) Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal. Biochem. 326, 234-256
97. Ortega, A., Amoros, D., and Garcia de la Torre, J. (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys. J. 101, 892-898
98. Brautigam, C. A. (2015) Calculations and publication-quality illustrations for analytical ultracentrifugation data. Methods Enzymol. 562, 109-133
99. DiFabio, J., Chodankar, S., Pjerov, S., Jakoncic, J., Lucas, M., Krywka, C., Graziano, V., and Yang, L. (2017) The life science x-ray scattering beamline at NSLS-II. AIP Conf. Proc. 1741, 030049
100. Hopkins, J. B., Gillilan, R. E., and Skou, S. (2017) BioXTAS RAW: Improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 50, 1545-1553
101. Semenyuk, A. V., and Svergun, D. I. (1991) Gnom - a program package for small-angle scattering data-processing. J. Appl. Crystallogr. 24, 537-540
102. DeLano, W. L. (2004) Use of PYMOL as a communications tool for molecular science. Abstr. Pap. Am. Chem. S 228, U313-U314
103. Batish, M., Raj, A., and Tyagi, S. (2011) Single molecule imaging of RNA in situ. Methods Mol. Biol. 714, 3-13
104. Batish, M., and Tyagi, S. (2019) Fluorescence in situ imaging of dendritic RNAs at single-molecule resolution. Curr. Protoc. Neurosci. 89, e79
105. Rambo, R. P., and Tainer, J. A. (2011) Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95, 559-571
106. Rambo, R. P., and Tainer, J. A. (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477-481
107. Poirot, O., O’Toole, E., and Notredame, C. (2003) Tcoffee@igs: A web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res. 31, 3503-3506

[^0]: * For correspondence: Vijay Parashar, parashar@udel.edu.

[^1]: values were determined using the program ScÅtter (https://bl1231.als.lbl.gov/scatter/).
 ${ }^{b}$ Mass determinations using the Q_{r} invariant (106) were determined using the program RAW. Expected dimeric mass is shown in parentheses.
 ${ }^{c}$ Errors reported reflect the uncertainty in the value for R_{g} determined using classical Guinier fitting.

