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With increasing resolution of microbial diversity at the genomic level, experimental

and modeling frameworks that translate such diversity into phenotypes are highly

needed. This is particularly important when comparing drug-resistant with drug-sensitive

pathogen strains, when anticipating epidemiological implications of microbial diversity,

and when designing control measures. Classical approaches quantify differences

between microbial strains using the exponential growth model, and typically report a

selection coefficient for the relative fitness differential between two strains. The apparent

simplicity of such approaches comes with the costs of limiting the range of biological

scenarios that can be captured, and biases strain fitness estimates to polarized extremes

of competitive exclusion. Here, we propose a mathematical and statistical framework

based on the Lotka-Volterra model, that can capture frequency-dependent competition

between microbial strains within-host and upon transmission. As a proof-of-concept,

the model is applied to a previously-published dataset from in-vivo competitive mixture

experiments with influenza strains in ferrets (McCaw et al., 2011). We show that for the

same data, our model predicts a scenario of coexistence between strains, and supports

a higher bottleneck size in the range of 35–145 virions transmitted from donor to recipient

host. Thanks to its simplicity and generality, such framework could be applied to other

ecological scenarios of microbial competition, enabling a more complex and nuanced

view of possible outcomes between two strains, beyond competitive exclusion.

Keywords: microbial interactions, influenza, competitive mixture, relative transmission fitness, bottleneck size,

multiple strains, frequency dependence, coinfection

1. INTRODUCTION

Microbial fitness estimation is an active area of research. Recent studies show expanded interest to
connect in-vitro with in-vivo measurements (Mohapatra et al., 2012; Govorkova, 2013; Skurnik
et al., 2013), within-host to between-host level processes (Hurt et al., 2010), and anticipating
evolutionary trajectories of pathogens in response to host immunization or interventions, such
as drugs and vaccines (Łuksza and Lässig, 2014; Neher et al., 2016). In viral research, given the
increase in drug-resistance evolution (Oh and Hurt, 2014), vaccine escape, viral emergence, and
host jumps, understanding viral fitness has become crucial (Wargo and Kurath, 2012; Domingo
et al., 2019). Viral fitness estimation is typically based on statistical methods to compare replicative

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.572487
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.572487&domain=pdf&date_stamp=2020-09-22
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:erida.gjini@tecnico.ulisboa.pt
https://doi.org/10.3389/fmicb.2020.572487
https://www.frontiersin.org/articles/10.3389/fmicb.2020.572487/full


Dimas Martins and Gjini Lotka-Volterra Model for Competitive Mixtures

fitness of two viruses, in cultured cells, tissues, or in individual
hosts. The field has expanded to include more sophisticated
mathematical frameworks that consider particular life-history
traits, and quantify replicative differences (Holder et al., 2011;
Pinilla et al., 2012), as well as transmission fitness and subtle
variation between strains (McCaw et al., 2011; Butler et al.,
2014; Petrie et al., 2015). Estimating the transmission bottleneck
size (Gutiérrez et al., 2012), which describes the size of
the pathogen population transferred from the donor to the
recipient host, has also received increasing attention (Leonard
et al., 2017), because it may affect the rate of pathogen
adaptation within host populations and their epidemiologic
fitness. Ultimately, epidemiologic fitness of viruses (Domingo,
2010) and pathogens more generally results from the complex
interplay with host immunity, heterogeneity, lifespan, and other
environmental factors.

To address the challenge of bridging between within-host and
between-host fitness of viruses, a novel experimental framework
has been developed, known as the competitive mixture model
(Hurt et al., 2010). The competitive mixtures model involves
the infection of ferrets with a mixture of two different viruses
[e.g., a wild-type (sensitive) and mutant (NAI-resistant) virus]
and subsequent daily measurement of the relative proportions of
those viruses to quantify whether one virus is replicating faster
than the other. Typically, experiments involve the infection of
“donor” ferrets with either a mixture (e.g., 80:20%, 50:50%, and
20:80%) or the pure virus, then, after 24 h, the infected donor
is cohoused with a naive ferret (recipient 1). Once recipient
1 becomes infected, another round of transmission is enabled
by cohousing it with another naive ferret (recipient 2). Daily
nasal samples are collected and analyzed from ferrets to test
whether the proportion of the two viruses within-host is changing
over the course of infection, and upon transmission. Such data
have been interpreted with mathematical models (Hurt et al.,
2010; McCaw et al., 2011) to obtain a quantitative estimate
of both the “within- host” (replication) and “between-host”
(transmission) fitness of the mutant virus (compared to the
wild type). A more recent modeling paper revisited this dataset
(Petrie et al., 2015) with an explicit life-history modeling of
viral dynamics within host and transmission. However, none
of these frameworks accounts for the possibility of frequency-
dependent fitness advantage of one strain over the other, in the
chain of events from growth in donor to transmission to growth
in recipient. In particular, by not including possible asymmetric
interaction and density-dependent feedbacks between viral
strains, such models can only describe scenarios of mutual
exclusion.

In the present study we are motivated by such a limitation
and propose to use a slightly more complex but yet simple and
general enough model to account for more possible scenarios
between two strains (Figure 1), namely the classical 2-species
Lotka-Volterra model (Volterra, 1926). This model and its
generalized form have a long history of use and application
in the ecology of multi-species communities (MacArthur, 1970;
May, 2001), and in particular also in microbial ecology and
biology in recent years (see for example Stein et al., 2013; Shen
et al., 2019). Given the generality of this framework, we believe
it could prove useful also to understand interaction dynamics

FIGURE 1 | Diagram illustrating the range of models to capture relative fitness

differences between strains at the growth-transmission interface. Linking the

measured strain frequencies in the donor host (p) to the observed strain

frequencies in recipient host after transmission, requires the specification of a

model (here abstractly denoted by the function f ) encapsulating multiple

biological processes, and parameters encoding strain phenotypes θ as well as

population size of viral load N. In order to harness the full information in

competitive-mixture experiments (e.g., Hurt et al., 2010), alternatives to the

purely exponential model for evaluating relative fitness between strains can be

the Lotka-Volterra model formulation, as we advocate here, as well as more

sophisticated models encoding explicit infection life-history traits. Complex

models can capture more ecological scenarios, including bistability and

coexistence, which lead to different predictions for within-host vs.

between-host diversity in strain prevalences, and are likely to explain a wider

range of epidemiological patterns.

between viruses within-host, at least in the early time-scale before
the immune response leading to infection clearance has been
sufficiently activated (Tamura and Kurata, 2004). As a proof-of-
concept, we apply this framework to the same dataset analyzed
by McCaw et al. (2011) and estimate different parameters for
fitness differences between the two influenza virus variants.
Accounting for the possibility of stochastic transmission, with
this model, we also estimate an average bottleneck size in the
range of 45–135 virions, compatible with the larger estimates
expected from the literature (Poon et al., 2016; Leonard et al.,
2017).

By virtue of its simplicity, versatility and generality, we
propose the Lotka-Volterra model to be used more widely in
interpreting competitive-mixture experiments as the logical next-
order extension, beyond the binary exponential model. We
foresee applications of such quantitative framework for viral or
bacterial strain transmission.

2. MATERIALS AND METHODS

2.1. Classical Exponential Model
Our study was motivated by a series of experiments (Hurt
et al., 2010), in which influenza strain transmission from donor
to recipient was quantified in ferrets. The innovative nature
of this experimental design was in quantifying the differences
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FIGURE 2 | The competitive-mixtures data and the exponential model. (A) The donor-recipient data for competitive mixture transmission of influenza viruses analyzed

by McCaw et al. (2011) (reproduced using the R software, after Figure 7 in Hurt et al., 2010). The abscissa shows the mutant proportion of the infecting ferret’s viral

load on the day preceding confirmed transmission. The ordinate shows the mutant proportion of the infected ferret’s viral load within the first 24 h post-infection. Thus,

the time passed between the two observations can be approximated to be 2 days. (B) The exponential model possibilities depending on the selection coefficient s:

(s < 0) Mutant advantage, or (s > 0) WT advantage, thus expecting all the points above or below the diagonal, in a competitive exclusion scenario.

in transmission fitness between two strains using competitive
mixtures. In particular, the study focused on an antiviral
susceptible H1N1 strain and a resistant mutant strain (H274Y
H1N1). Ferrets were inoculated with different proportions of
these two strains and put in contact with other naive ferrets.
In a later theoretical study, McCaw et al. (2011) modeled the
relation between recipient ferret mutant proportion and donor
ferret mutant proportion (see Figure 2A) with a simple model of
mixture transmission, using the following expression:

P =
p

p+ (1− p)es
, −∞ < s < ∞ (1)

where P is the mutant proportion in the recipient, p the
mutant proportion in the donor and s a parameter of relative
fitness advantage of the mutant strain relative to the wild-type
strain, where s encompasses several layers of within-host and
transmission fitness differences (probability to escape extinction,
different growth rates, etc.) If s < 0, the mutant has a net
fitness advantage relative to the wild-type, and the opposite if
s > 0, the WT wins. This framework is a simple and useful
approximation to compare the relative transmissibility fitness of
two influenza strains. Indeed, with this framework, McCaw et al.
(2011) were able to estimate a selection coefficient of s = −0.25,
but for this particular data, with rather wide confidence intervals
(−1.3509, 0.8329), including 0. Furthermore, when estimating
the bottleneck size, the model structure inevitably biases the
estimate to very small bottleneck size (Nb = 3.8), assigning
the spread in the data to stochasticity, a finding that has been
challenged as too low by other studies modeling influenza
transmission in horses and pigs (Stack et al., 2013) and humans
(Poon et al., 2016; Leonard et al., 2017).

This model provides one of the first rigorous investigations
of transmission fitness for a virus that is directly transmitted
between vertebrate hosts. However, due to its simplicity, this

model also leaves out certain components of this biological
system that could prove to be informative and helpful in
interpreting the result. The main limitation in assuming viral
exponential growth is that such formulation does not allow
for the possibility that the success of one strain may depend
on its frequency, thus preventing the possibility of mutant
proportions in the recipient being lower/higher than in the
donor for only some values of mixture proportion (i.e., data
appearing on both sides of the x = y diagonal) (see Figure 2B).
By having no implicit or explicit interaction between strains,
only two scenarios of competitive exclusion are possible in this
model: either strain 1 always wins (all points above the diagonal
x = y) or strain 2 outcompetes strain 1 (all points below
the diagonal), leaving no room for coexistence or bistability.
This problem has persisted even in later adopted mechanistic
formulations, e.g., Target cell -Infected cell-Virus (TIV) models,
as they typically implemented the fitness variation between
strains in a single parameter, e.g., through a difference in
the production rate of infectious virus from infected cells
(Butler et al., 2014), where again the principle of competitive
exclusion applies.

2.2. A More Complex Alternative: The
Lotka-Volterra Competition Model
One way to accommodate more complexity and generality
into the system, is to develop an alternative approach for this
type of competitive mixture data. We propose the next-order
approximation away from the exponential model: a dynamic
model based on the well-known Lotka-Volterra competition
equations (Volterra, 1926), and interpret the transmission event
as a snapshot from such competition dynamics. Let n1(t) and
n2(t) be the number of virions of strain 1 and 2, respectively, at
time t in the recipient host. They change with time according to
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the following equations:

dn1

dt
= r1n1 − c11n

2
1 − c12n1n2 (2)

dn2

dt
= r2n2 − c22n

2
2 − c21n2n1 (3)

At any given time, virions of strain i grow at a constant rate ri,
compete with virions of the same strain with strength cii and
compete with virions from the other strain with strength cij, for
i = 1, 2 and j = 2, 1. The strain-specific growth rate ri could
be seen as how quickly each strain reaches its carrying capacity,
here represented by Ki = ri/cii. A strain grows bounded by its
carrying capacity due to limiting factors such as finite resources
or space, according to a logistic growth in the absence of the
other strain. Explicit viral infection kinetics is known to involve
target cell limitation, which can play a key role in competition
within and between strains. Different tissue tropism could be a
mechanism for strain-specific target cell limitation. Intra-strain
interactions could, on the other hand, be mediated via subtle
antigenic cross-reactivities among strains, or susceptibilities of
infected cells to coinfection by competitor virus. Here, for the
sake of generality, we chose to only represent the net effect of
such processes abstractly via the nonlinear competition terms.
The values of the parameters are assumed to be constant in
time. The transmission event is interpreted as an instantaneous
inoculation from the donor at time t = 0, where the proportion
of each strain is known/fixed from the experimental setup (p). In
other words, by denoting the mutant as strain 1 and the WT as
strain 2, we assume the proportion of the mutant strain in the
donor as n1/(n1 + n2) at time t = 0, and the proportion of the
mutant strain in the recipient host as n1/(n1 + n2) at time t, the
observation point.

In order to reduce the number of parameters, a non-
dimensionalization of the model is carried out. This implies
re-writing the original parameters in Equations (2)–(3) as
combinations of each other, thus reducing the total number of
parameters from 6 to only 4. The model then becomes:

du1

dτ
= u1(1− u1 − a12u2) (4)

du2

dτ
= ρu2(1− u2 − a21u1) (5)

where the new variables u1 = n1
K1

and u2 = n2
K2
, denote

relative densities of each strain with respect to their competitive
exclusion carrying capacities K1 = r1/c11 and K2 = r2/c22.
The new parameters ρ = r2/r1 and a12 = c12

K2
r1

and a21 =

c21
K1
r2
, capture the growth rate ratio between strains, and their

relative competition indices. The ratio between the two carrying
capacities is denoted by β = K1/K2. Notice that time in the
rescaled model is also scaled to the new time-scale τ = r1t.
The asymptotic analysis of this classical system is well-known,
and only summarized here. In particular, this model allows for
4 scenarios (see Figure 3), depending on parameter values:

1. If a12 < 1 and a21 > 1, strain 1 outcompetes strain 2
(competitive exclusion of 2)

2. If a12 > 1 and a21 < 1, strain 2 outcompetes strain 1
(competitive exclusion of 1)

3. If a12 < 1 and a21 < 1, both strains coexist at a stable
coexistence fraction (coexistence)

4. If a12 > 1 and a21 > 1, coexistence is unstable, and either
strain 1 or 2 wins, depending on initial conditions (bistability).

There is an interesting prediction in relation to the coexistence
threshold that this model makes for the last two scenarios. In
particular, in the case of coexistence (Figure 3C), for any initial
proportion below the stable coexistence fraction, the mutant will
grow, and for any initial proportion above it, the mutant will
decline, until it tends to the final equilibrium. In contrast, in
the bistability case (Figure 3D) for any initial proportion below
the unstable coexistence point, the mutant will decline toward 0,
while for any initial proportion below such threshold, the mutant
will grow toward 1.

Note that the rescaled variables u1 and u2 do not correspond
to exact within-host proportions anymore. For the proportion
of the mutant in the recipient at time τ we have p1(τ ) =

u1(τ )/(u1(τ ) + u2(τ )/β), which is the model prediction from
dynamics (Equations 4–5) in the recipient.

Assuming for the initial time point that p1(0) = u1(0), in the
re-scaled model, this translates to an initial condition u2(0) =

β[1 − u1(0)], where β corresponds to the ratio of the carrying
capacities K1/K2. To apply this model to data, requires an
assumption about the time of observation of mutant proportions
in the recipient, which is typically experimentally-informed,
and we assume a single snapshot exists. There are thus only 4
constituent parameters θ = (ρ, a12, a21,β), that can inform us
about the behavior of this system in very distinctive way.

With this setup, we first carried out a simulation approach to
validate the parameter estimation and their identifiability from
a mixture dataset like the one modeled by McCaw et al. (2011),
thus assuming only data on proportions are available, at a single
time-point (we assumed τ = 1 without loss of generality), and
no total counts of strain-specific viral loads. The error function
to minimize between model and data is given by

MSE(θ) =
1

M

M
∑

i=1

(Pmodel
i (θ)− Pdatai )2, (6)

where Pdatai denote the i − th observation in the recipient for
mixture proportion i in the donor (i = 1, ..M withM the number
of data points), and Pmodel

i (θ) denote the model-prediction for
that condition. Errors are assumed to be normally distributed.
Using simulations with known parameters, we found that with
such dataset, having sufficient mixture conditions around the 50–
50% in the donor, the model and optimization algorithm could
reliably estimate all 4 model parameters, and accurately classify
the ecological competition scenario that applies between two
strains (Figure S1). Except where stated, all data and numerical
analyses were carried out in MATLAB and its optimization
toolbox (MathWorks, 2011).
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FIGURE 3 | Four possible outcomes between 2 strains in transmission using the Lotka-Volterra model. The system of Equations 4–5 was numerically integrated using

the deSolve package in R to represent the four ecological scenarios in terms of p1(τ ) in the recipient. (A) Competitive exclusion where the mutant wins (strain 1). (B)

Competitive exclusion where the WT wins (strain 2). (C) Coexistence between strains. (D) Bistability, where mutant or WT may win, depending on initial frequency. The

different shading from red to green corresponds to later time-points over the donor-to-recipient dynamics (τ ∈ [0, 20]). As time increases, the system tends to

approach more closely the equilibrium. Parameters values: (A) ρ = 1, a12 = 0.9, a21 = 1.3,β = 1. (B) ρ = 1, a12 = 1.3, a21 = 0.9,β = 1. (C) ρ = 1, a12 = 0.7,

a21 = 0.7,β = 1. (D) ρ = 1, a12 = 1.3, a21 = 1.3,β = 1.

3. RESULTS

3.1. Fitting the LV Model to Data
With the above setup and preliminary validation, the non-
dimensionalized Lotka-Volterra model was fitted to the H274Y
experimental data in McCaw et al. (2011) (Figure 4A). We
denote the mutant influenza strain by u1 and the wild-type
by u2, with M = 8 data points, namely mixture proportions
tested experimentally. The time assumed for observations in
the recipient was τ = 2. Considering that the time passed
since strain measurement in the donor ferret and measurement
in the recipient ferret was about 2 days in the experiments
(Hurt et al., 2010), fixing rescaled time τ = 2 in the
model corresponds to assuming a reference r1 = 1 for the
mutant strain.

The best-fitting parameters (see first row of Table 1) yielded
a mean-squared-error (MSE) of 0.022 (Figure 4A). Notice this
mean-squared-error of the model fit to data is 40% lower than
the best-fitting model parameters in the McCaw et al. (2011)

exponential framework (MSE = 0.037), indicating a higher-
quality fit of this model to the same data. The non-dimensional
Lotka-Volterra model fit for these data is consistent with the
scenario of coexistence within-host between the two strains of
influenza, where although there is no fitness advantage of theWT
in growth (ρ ≈ 1), the competition coefficients (a12 < 1 and
a21 < 1) with a12 < a21 are compatible with mutual coexistence
and a slight advantage of themutant. This model is able to flexibly
capture the pattern of some mutant proportions in the recipient
being higher and some lower than in the donor, and predicts that
over time the competition between strains should settle at

u∗1 =
1− a12

1− a12a21
, u∗2 = 1− a21u

∗
1 (7)

which leads to an expected equilibrium mutant proportion of

p∗1 =
u∗1

u∗1 + u∗2/β
(8)
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FIGURE 4 | Lotka-Volterra model fit to the (McCaw et al., 2011) ferret transmission data. (A) Fit result with best parameter estimate [ρ, a12, a21, β] = [1.00,

0.25, 0.31, 0.94], MSE = 0.022. The squares indicate the data, the blue line the model fit, and the dashed purple line the predicted within-host coexistence equilibrium

between the two strains. (B) Maximum-likelihood bottleneck size estimation N after filtering simulations and fits. The values of N ∈ [10, 200] were ranked based on: (i)

the model quality of fit (mean-squared-error of new fit within 20% of the original MSE) and (ii) the capture of the data (proportion of original data points contained within

the range of ten N-based stochastic simulations). We multiplied the two criteria for ranking N, and applied a moving average to smooth over N, and a standard

normalization to transform the values into probabilities. The mean value estimated for the bottleneck is N = 90 (vertical red line) and the standard deviation is 45, thus

suggesting the range N ∈ (45, 135) as the most compatible with these data and this model. The mode of the distribution is N = 70. (C) Visualization of 200 model fits

(gray lines) to simulated data, varying the initial proportion transmitted from donor to recipient according to bottleneck sizes N sampled from the distribution in (B). The

dashed blue line indicates the mean over all the simulation fits. The squares indicate the data. (D) Model predictions for the within-host prevalence of the mutant strain

in coexistence (Equation 8), integrating stochasticity and variation expected from N in (C).

TABLE 1 | Summary of parameter estimates from nonlinear least squares optimization, applying the model to the original data (Figure 4A), without considerations of

bottleneck size, and fits to simulations with an explicit bottleneck size N (Figure 4C), all leading to similar mean-squared-error (MSE) and predictions for within-host

prevalence between the two strains.

ρ a12 a21 β MSE Equilibrium p∗

1

Point fit to original data 1.0016 0.2494 0.3154 0.9365 0.0221 0.5066

Mean (fits to simulations with N) 1.1170 0.2852 0.3273 0.9930 0.0255 0.5085

95%CI (fits to simulations with N)
1.0000 0.0839 0.0652 0.8339 0.0181 0.4541

2.7328 0.5923 0.5695 2.0000 0.0337 0.5723

Where the mutant proportion is denoted by p∗1.

which is ≈ 0.50 in our model (see horizontal dashed line in
Figure 4A), at least in the early time-frame until immunity has
not yet been activated, usually 2–5 days post-infection (Tamura
and Kurata, 2004; Baccam et al., 2006; Smith et al., 2010).
The model also infers that the ratio of within-host carrying
capacities of the two strains is around 1 (β = K1/K2 = 0.93),
thus suggesting that density-dependent regulation when each
strain grows alone, acts quantitatively in similar way. In fact,
these estimates capture the pattern of initial mutant growth
advantage when rare, because it experiences less competition
from the wild-type (points above the diagonal x = y for
low mixture proportions, in Figure 2), and growth disadvantage

when frequent (points below the diagonal for higher mixture
proportions). Coexistence results from intra-strain competition
being relatively weaker than within-strain competition. The net
effect that the two strains coexist in nearly equal proportions
within host, is an outcome that could also be seen as very
little fitness difference between the two strains, in line with the
interpretation of results by McCaw et al. (2011).

3.2. Estimating the Transmission
Bottleneck
Next, we extended the model to include the possible stochastic
effects of a transmission bottleneck. The estimation of the
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bottleneck size is inevitably model-dependent. To include
explicitly the number of virions transmitted N, between donor
and recipient host, we added a stochastic sampling step in the
x− component of the data. We thus implemented the following
change for initial conditions, depending on N, based on the
binomial model:

u1(0) =
Bin(N, p)

N
. (9)

Keeping the mutant proportions in the recipient fixed, we
then refitted the model to these resampled data, simulating 10
realizations for a given N (Figure S2). We investigated how
much variability this model element would introduce into the
dynamics, when varying N discretely between 10 and 200 (see
Figure S3). We analyzed the simulations and model fits for each
N based on how well their range captured the original data, and
also on their mean-squared-error (MSE).

For each N, we thus computed how many stochastic
realizations yielded fits with MSE within 20% of the MSE of
the original fit. This produced a ranking for N skewed toward
high values. When considering the other criterion, based on
how many of the original data points were contained within
the range of stochastic realizations with a given N, we observed
the opposite trend: smaller values of N were favored, because
of the higher spread induced by stochasticity at low population
size. Combination of the two criteria, was implemented as a
multiplication between these two trends, which led us to obtain
a single final ranking for N, analogous to a likelihood. We found
an intermediate range for N as most appropriate to capture the
data points, while preserving sufficient accuracy (Figure 4B). The
mean value we estimated for the bottleneck is N = 90, with a
standard deviation of 45, which indicates the rangeN ∈ (45, 135)
as the most probable number of virions transmitted from donor
to recipient, compatible with this dataset and this model.

Using this distribution for N in stochastic simulations, we
were able to finally obtain an uncertainty interval for model
predictions (Figure 4C) and confidence intervals for the model
parameters (Table 1). In all cases, the predicted scenario by the
model was one of coexistence within host between the two strains
(mutant and wild-type in our case), with an expected prevalence
of about 50% of the mutant strain (Figure 4D), independently of
initial conditions. This reinforces our conclusion that these data
strongly indicate equalizing net fitness between the two influenza
strains of McCaw et al. (2011) upon transmission among ferrets
and their early growth dynamics, despite the presence of some
differences in their intrinsic competition phenotypes.

Overall, our proposed classical Lotka-Volterra competition
model and proof-of-concept application to this competitive
mixture dataset with influenza strains, highlight how variation in
model sensitivity and ability to deal with frequency-dependence
shapes data interpretation, as well as parameter estimates
encapsulating fitness differences or transmission bottlenecks.
This frameworkmay enable stronger quantitative inferences to be
drawn from other studies of virus dynamics in vivo in the future.

4. DISCUSSION

Aggregation of microbial life-history details into net average
parameters is important and necessary in all mathematical
models of infection dynamics. As a consequence, any
parametrization that leads to a specific model structure
inevitably biases fitness assessment from data and phenotype-
based comparative analyses between different strains. While
the exponential growth model, motivated from population
genetics, has found a wide use in relative fitness assessment
between viral strains, recent studies are highlighting the need
for more nuanced approaches, and calling for more mechanistic
descriptions of pathogen dynamics within-host, and the multiple
fitness dimensions driving growth and transmission (Holder
et al., 2011; Pinilla et al., 2012; Petrie et al., 2015).

In this work, we follow the same spirit. In contrast to the
more detailed models, we have advocated for the use of the well-
known Lotka-Volterra equations to model competitive mixture
dynamics and transmission of viral strains (Figure 1). The
advantages of this framework are its simplicity (4 parameters),
generality (4 ecological scenarios), and wide-applicability, despite
being only a next-order extension to the classical exponential
model. Such model can serve as an intermediate tool of optimal
complexity between the binary exclusionmodel for two strains on
one extreme (McCaw et al., 2011), andmore detailed mechanistic
explicit resource-based within-host approaches, similar to Petrie
et al. (2015) on the other extreme, which can become particularly
cumbersome and hard to parameterize especially when extended
to transmission fitness estimation between strains. In fact, the
Lotka-Volterra model, by virtue of its generality and simplicity,
beyond its well-known role in multi-species ecology (May, 2001),
has increasingly started to be applied to multi-type microbial
competition scenarios (Stein et al., 2013; Shen et al., 2019;
Tepekule et al., 2019) to bridge with data and offer robust and
easily interpretable parametrization for experiments.

Our study has implications for the epidemiology of
coinfection, mathematical modeling, and for understanding
experimental results in competitive-mixture designs in general.
By embedding in the model the possibility of frequency-
dependent competition and hierarchies between strains, we
match in scope the original experimental design of Hurt et al.
(2010), which by definition, uses multiple ratios between two
strains to initiate an infection, and anticipates qualitative and
quantitative differences in transmission precisely based on such
frequencies. Notice that a classical exponential model, in order
to detect frequency-independent fitness differences between two
strains could rely on a single (e.g., 50:50) mixture experiment,

and its mathematical solution for s: ŝ = ln

(

(1−P)p
P(1−p)

)

where

P and p represent proportions observed in the recipient and
donor, respectively.

Thus, the Lotka-Volterra model expands the range of possible
scenarios that can occur between strains in the absence of (or
prior to) explicit immune control, mediated by their phenotypic
differences, including coexistence and bistability. With mutual
coexistence as a plausible outcome for the competition dynamics
between two strains at the within-host level, the population-level
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coexistence and evolutionary patterns should become even
easier to explain, taking into account their simultaneous co-
transmission from host to host (Alizon, 2013). Interestingly, the
other scenario of bistability within-host suggests that depending
on initial frequencies and stochasticity upon contact, one strain
or the other may win and be transmitted, creating more
population heterogeneity.

These two alternative scenarios, beyond competitive exclusion
at the single host level, suggest high within-host diversity and
low between-host diversity in one case (within-host coexistence
at a typical fraction p∗), and low within-host diversity but
high between-host diversity in the other (bistability within host
yielding “0” and “1” host types at the population level). In
a recent study of influenza B transmission fitness differences
between strains, even though the classical exponential model was
applied, the data contained a signature of possible bistability for
MUT-Y273, (Figure 4C of Farrukee et al., 2018). Such signature
may indeed be missed without an a-priori framework by which
it can be detected. Correctly quantifying and disentangling
these two scenarios of maintenance of pathogen diversity:
coexistence vs. bistability, also based on their clear signatures
in competitive mixture data as shown in Figure 3, may be of
paramount importance when designing control strategies for
different pathogens.

Until now coinfection models for respiratory viruses (Pinilla
et al., 2012; Petrie et al., 2015; Pinky and Dobrovolny, 2016;
Pinky et al., 2019) have not exposed clearly the four outcomes
between two strains that we highlight here. Mechanistically, these
four outcomes could be potentially mediated by competition for
target cells and mutually altered susceptibilities to coinfection
by pairs of strains (see Gjini et al., 2016 for an epidemiological
example). Increasing evidence supports the notion that viruses
do not propagate as independent virions among cells, but instead
interact through subtle mechanisms and structures that can lead
to social-like virus-virus interactions (Sanjuán, 2017). It remains
an open avenue for the future to derive these four scenarios
in an explicit Target cell-Infected cell-Virus (TIV) model, and
investigate which parameter differences would be necessary and
sufficient for their generation.

Furthermore, estimation of bottleneck size, another crucial
quantity at the within-to between-host interface (Gutiérrez
et al., 2012; Li and Handel, 2014), is very tightly linked to the
assumptions of the underlying model. The more flexible a model
is to capture intricate non-linearity in the data, the less room
there is for patterns to be assigned to stochasticity, for example
to low starting inoculum size. Here we have shown that assuming
Lotka-Volterra dynamics, we can estimate a bottleneck size for
number of virions transmitted between hosts most likely in the
range of 45–135 virions, a number able to generate enough
stochastic variation to capture the majority of the spread in
the data around the deterministic prediction line, and more
consistent with recent literature (Poon et al., 2016; Leonard et al.,
2017).

One caveat in the parameter estimation with our model, is
that time of observation enters explicitly in the equations, and
does not cancel out as in Equation (1). Although we assumed
τ = 2, motivated by the experimental setup, and took a reference

of r1 = 1, if we change the assumption for time passed from
measurement of strain proportions in the donor to measurement
in the recipient, we see that longer time assumptions tend to
increase slightly the growth rate ratio between strains ρ =

r2/r1 in the model, and also the absolute value of competition
coefficients, although their ratio, and in general the coexistence
scenario, remain stable (see Table S1). This is not surprising,
since we know that as time increases, the system is naturally
pulled further away from the diagonal line tending closer to
its equilibrium (whichever it is), even for very small fitness
differences between strains. If we had prior knowledge on the
reference net growth rate r1 of one strain for example, this
confounding factor could be disentangled, because then the units
of time would become explicit (τ = r1t).

A way forward to indirectly calibrate the timescale in our
model may be to use estimates of influenza virus R0 from
previous models applied to in-vivo settings (e.g., Petrie et al.,
2013), and link those to the exponential growth rate within-
host (r0, i.e., r in our model) using the analytical approximation
(Nowak et al., 1997; Lee et al., 2009). R0 denotes the number
of productively infected cells derived from each productively
infected cell at the beginning of infection, and so far, estimates
for influenza R0 vary between 3 and 75 in humans (Baccam
et al., 2006; Smith et al., 2010), 300-103 in ferrets (Petrie et al.,
2013), and around 9 in mice (Smith et al., 2018). The associated
estimates for the viral exponential rate of growth in host within
the first 2 days post infection, suggest a rate of 5–18 per day
in humans (Smith et al., 2010), and 11 per day in mice (Smith
et al., 2018). As the exact calibration of r falls beyond our
immediate scope here, in Table S1, varying τ ∈ [2, 6], we
provide a crude sensitivity analysis for the time of observation
effect, where model fits remain consistent with coexistence
around 50%.

Other viral competition models have considered explicit
target cell infection rate, viral production rates, and other
detailed parameters (Perelson, 2002; Petrie et al., 2013, 2015;
Butler et al., 2014), which complicate translation to the
parameters of our formulation. However, alternative approaches
(Smith et al., 2010), in contrast to such multi-parameter
mechanistic formulations, have also recognized the utility of
approximate analytic representations for different phases of
viral kinetics within host (exponential growth, exponential
decay), and used regression analysis to obtain the slope of
viral growth and decay. Subsequently, these estimates have
been related to intracellular infection parameters or the basic
reproduction number. More recently, density-dependence has
been suggested as an important element to be added to
the classical exponential model, in support of a biphasic
viral decay (Smith et al., 2018). Given this context, our
addition of the Lotka-Volterra model, to the toolbox of
simpler viral models, follows the same top-down aggregation
spirit, and helps bring quantitative insight on key features of
competition dynamics at the growth-transmission interface of
mixed infections.

We remark that the Lotka-Volterra formulation for
the initial phase of viral (or microbial) growth can be
combined with subsequent action of the immune response
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FIGURE 5 | The Lotka-Volterra model can be augmented with action of the immune response to capture later infection stages. (A) Scenario of competitive exclusion

(Equations 2–3 in this paper). Parameters, chosen to represent a realistic influenza infection kinetics (e.g., Farrukee et al., 2018; Smith et al., 2018):

r1 = 6; r2 = 0.8r1, c22 = r2/10
6, c11 = r1/10

6, a12 = 0.9; a21 = 1.3 (blue: n1, red n2). n1 (0) = pN0, with p = 0.5 (50:50 ratio for strains 1:2) and N0 = 1. (B) Scenario

of competitive exclusion but with the addition of an immune response, besides Equations 2–3. A third equation for immune response growth kinetics can be:

dI/dt = σ (n1 + n2) with I0 = 0, and σ = 0.01. The rest of parameters as in (A), but adding a mass-action killing term :−dIni to each strain dynamics in Equations 2–3,

where d = 10−2.8 denotes the rate of viral elimination by the immune response. Such increasing immune response as a function of viral load leads to an acute

infection profile, and a total duration of about 8 days. Here viral load is represented in abstract units; in practice, it may be measured in units of TCID50 or rRT-PCR. (C)

Scenario of coexistence (Equations 2–3 in this paper) Parameters: r1 = 6; r2 = 0.8r1, c22 = r2/10
6, c11 = r1/10

6, a12 = 0.2; a21 = 0.5 and initial conditions as in (A).

(D) Scenario of coexistence adding immune response (as in B). The initial dynamics within 3 days post infection (shaded region) are very well captured by the

Lotka-Volterra model also in the presence of an immune response leading to ultimate infection clearance.

to obtain more refined acute infection dynamics at later
stages. As shown in Figure 5, with or without immunity
(as assumed in our model) the initial phase of a mixed
strain infection (within 3 days post-infection) is quite well-
captured by our model (Equations 2–3), thus lending support
to its more general suitability and applicability for later
infection stages, as an alternative to the purely exponential
growth model (Smith et al., 2010; McCaw et al., 2011).
Recall that exponential growth is just a special case in the
Lotka-Volterra model, when all competition coefficients cij
are zero.

We based the estimation of the rescaled model parameters
just on the availability of proportion data at one snapshot
in time, like in McCaw et al. (2011), to highlight more the
discriminatory power of the framework, even with minimal
data. This precludes the full identification of the six parameters
of the explicit model (Equations 2–3). When using both
proportion data and total viral count data, over more time

points, full parameter identifiability should be possible (see Text
S1), with no need for rescaling and non-dimensionalization.
Naturally, separating signal from noise remains a challenging
problem in all areas of parameter estimation and model fitting
to data, but when using a more complex model and when
having confidence in the quality of the data, one can test
for more complex biological signal and examine more refined
hypotheses. Thus, although this work is a step forward in
terms of proposing alternatives to modeling, it should also
be taken as a call for higher-resolution data to probe more
complex scenarios of fitness differences and outcomes between
pathogen strains.
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