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1  | INTRODUC TION

Kidney disease may be generally classified clinically into two catego-
ries: acute kidney injury (AKI) and chronic kidney disease (CKD), both 
of which are tightly interconnected.1–3 AKI can often develop in clin-
ical settings in critically ill patients, leading to increased morbidity 
and mortality.4,5 AKI is manifested by a rapid decline in the glomeru-
lar filtration rates (GFRs)6 and its pathogenesis is complex, involving 
ischemia, sepsis, drug toxicity, and trauma.7 If left unmanaged, AKI 

can develop into CKD, which is characterized by a progressive de-
crease in GFR, culminating in a gradual loss of renal function.8 The 
transition from AKI to CKD can also be hastened by numerous risk 
factors such as obesity, hypertension, diabetes, and chronic inflam-
mation.9–11 Currently, there are no effective treatments for either 
AKI or CKD, stressing a continual need to elucidate the underlying 
pathological mechanisms of AKI and CKD. In this regard, animal 
models of kidney disease have been invaluable in that utilization of 
these animal models not only facilitates our understanding of the 
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Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and 
chronic kidney disease (CKD) which can be caused by numerous risk factors such 
as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and 
diabetes. In spite of the advances in our understanding of the pathogenesis of AKI 
and CKD as well AKI transition to CKD, there is still no available therapeutics that 
can be used to combat kidney disease effectively, highlighting an urgent need to fur-
ther study the pathological mechanisms underlying AKI, CKD, and AKI progression 
to CKD. In this regard, animal models of kidney disease are indispensable. This article 
reviews a widely used animal model of kidney disease, which is induced by folic acid 
(FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic 
to the kidneys. Following a brief description of the procedure for disease induction 
by FA, major mechanisms of FA-induced kidney injury are then reviewed, including 
oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mi-
tophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 
23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform 
for testing the efficacy of a variety of therapeutic approaches is also discussed. Given 
that this animal model is simple to create and is reproducible, it should remain use-
ful for both studying the pathological mechanisms of kidney disease and identifying 
therapeutic targets to fight kidney disease.
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pathogenesis of kidney disease, but also provides excellent platforms 
for disease intervention whereby efficacy of testing compounds or 
pharmacological agents can be quantitatively assessed.12–19

There are numerous animal models that have been used to elucidate 
the pathological mechanisms of kidney disease.19–21 Those induced by 
ischemia,14,22,23 lipopolysaccharide, 24–27 cisplatin,28–30 arsenic,31–33 ad-
enine,34–36 cadmium15,37–40 and diabetes41–46 are widely used as animal 
models of kidney disease. These models have also been used to test the 
therapeutic effect of a given drug or compound.19,21,47,48 However, this 
article will focus on a very popular kidney disease animal model, the 
folic acid (FA)-induced rodent model involving the use of both mouse 
and rat.49–53 A comparison of the FA model with other chemically in-
duced kidney injury animal models is given in Table 1.

It is worth noting that among all the animal models of kidney 
disease induced by the variety of approaches highlighted in Table 1, 
the FA-induced model provides certain advantages that are lacking 
in other models. First, FA is a vitamin and is not environmentally 
toxic, therefore routine handling in laboratories does not pose any 
hazards. Second, unlike ischemic surgery of kidney injury, of FA is 
administered as a simple injection, which does not require surgery 
and is noninvasive and animal friendly. Third, unlike the cadmium 
and cisplatin toxicity models, which induce multiple organ injury, the 
FA model mainly injures the kidney and has no deleterious effects on 
other organs.99 Fourth, depending on the experimental needs, one 
can investigate AKI or CKD or the AKI–CKD transition using a single 
injection of FA.55 Undeniably, the FA-induced kidney injury model 
has its own disadvantages. These include the high dose of FA that 
needs to be injected and the failure as yet to identify a specific bio-
marker of FA-induced kidney injury. Moreover, although FA-induced 
kidney injury occurs mainly to proximal tubules,54,100 a detailed mo-
lecular and biochemical mechanism underlying FA-induced nephron 
injury remains to be unraveled. It should be noted that the FA kidney 
injury model does not mimic patients with membranous nephropathy 
or glomerulonephritis101,102 or IgG4-immuned kidney disease.103–106

2  | FOLIC ACID AND THE KIDNE YS

FA is also known as vitamin B9.107,108 It is a cofactor involved in 
one-carbon metabolism that is essential for cellular proliferation 
and growth.109–111 FA can be derived from egg yolk, animal livers, 
leafy vegetables, and yeast.112,113 FA is usually absorbed in the small 
intestine, and converted intracellularly to tetrahydrofolate by dihy-
drofolate reductase.112,113 FA deficiency can cause megaloblastic 
anemia and neural tube defect in the fetus due to its indispensable 
role in the synthesis of RNA and DNA molecules.113–115

As a small molecular weight compound, FA or folate is freely fil-
tered by the glomerulus.109 In fact, little folate renal excretion can 
be observed under normal folate concentrations and renal reabsorp-
tion of folate is nearly 100%. Renal reabsorption of folate is achieved 
by a high affinity folate receptor (folate receptor 1) that is abundant 
on the luminal side of proximal tubular epithelial cells.109 Once fo-
late is bound to the receptor, an endocytosis process occurs which 

is followed by release of folate via vesicle budding and recycling of 
the receptor onto the epithelial cell membranes. The released folate 
is believed to be trapped in endosomal vesicles, as no freely floating 
folate has been observed in the cytosol.109 Subsequently, these en-
dosomal vesicles could fuse with the membranes of other organelles 
and release folate, thereby leading to functional impairment of these 
organelles. Such is the case for mitochondria which can accumulate 
folate.55 It should be noted that non-endocytosis-dependent folate 
transport systems also exist on tubular epithelial membranes but fo-
late receptor-mediated folate endocytosis is the most well elucidated 
mechanism. In mice lacking folate receptor due to folate receptor 
gene knockout,116 folate clearance is nearly 100% and no reabsorp-
tion of folate could be observed, indicating that folate renal toxicity, 
as well as downstream signaling, is mediated by the folate receptor.109

As mentioned above, FA can accumulate in larger amounts in the 
kidney than in other tissues because of the high content of folate re-
ceptors in the kidneys.117,118 It is stored as folate derivatives that are 
cell membrane impermeable.119 Importantly, while folate distributes 
in all cellular compartments, mitochondria can take up to 40% of the 
folate pool,119,120 which can cause mitochondrial oxidative stress 
and mitochondrial abnormalities.121–125 Moreover, as folate reduc-
tion by dihydrofolate reductase to form tetrahydrofolate uses large 
amounts of NADPH as a reducing power,110 high levels of folate in 
the kidneys can severely compromise cellular antioxidative systems 
that also require NADPH,126,127 leading to aggravated redox imbal-
ance and oxidative stress in this organ.128,129

3  | HIGH DOSES OF FA AND RENAL 
INJURY

While low doses of FA (usually less than 10 mg/day) are beneficial and 
against oxidative stress,130–133 high doses of FA, e.g., 250 mg/day,  
as widely used in the induction of animal kidney disease, are 
highly toxic.134,135 A search in the PubMed database indicates that 
the first report of a renal problem caused by FA was published in 
1968,136 and described renal hypertrophy induced by FA. The first 
report of kidney injury induced by FA was published in Germany in 
1969.137 These studies led to the concepts of “renal folate toxicity” 
and “folate nephropathy” in 1970s.138–144 Now, the procedures of 
FA-induced kidney injury in mice and rats are well established and 
widely used. As outlined in Figure 1, in both mouse and rat models of 
acute kidney injury, a single injection of FA at a dosage of 250 mg/kg  
body weight intraperitoneally can cause AKI,145–147 resulting in 
proteinuria and increased blood urea nitrogen (BUN) and creati-
nine.148,149 AKI can be studied within 72 h of FA administration.55 
If left untreated, CKD will develop and can be studied more than 
4 weeks or beyond after FA injection (Figure 1).55 Multiple injections 
of a lower dose of FA (125–150 mg/kg body weight)150,151 or a single 
injection of lower dose of FA (less than 200 mg/kg body weight) can 
also produce symptoms of kidney disease that can be used to inves-
tigate the pathological mechanisms of AKI or CKD.152–154 Moreover, 
progression of AKI to CKD can also be investigated after a single 
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TA B L E  1   Comparison of animal models of kidney injury induced by a variety of approaches

Models Species Does range/duration GFR/BUN/Cre Comments/advantages/disadvantages Refs.

Folic acid Mouse/rat 250 mg/kg, 1 time I.P.
Injection, 24–48 h AKI
BUN: 65–80 AKI
BUN: 300–350 (CKD)
Cre: 1.2–1.4 (AKI)
Cre: 6–7 (CKD)
GFR: N.D.

Reproducible and simple, useful for studying 
AKI–CKD transition but no clinical 
correlation

54, 55

LPS Mouse/rat 10–15 mg/kg, single I.P. usually for AKI
BUN: 38–45
Cre: 0.5–0.7
GFR: N.D.

Inexpensive, simple
Response may vary between models

19

Cisplatin Mouse/rat Single I.P. injection with widely ranging dose, 6–20 mg/kg, up 
to 3 days for AKI

BUN: 70–80
Cre: 2.4–2.8; GFR: N.D.

Reproducible and simple toxic to other 
organs, high dose needed for AKI 
induction

56–58

Cadmium Mouse/rat 1.2–6 mg/kg/day, oral administration or injection up to 
weeks for CKD induction

BUN: 13–15
Cre: 1.4–1.8; GFR: N.D.

Varying dosage and duration toxic to other 
organs, epidemiological relevant, single 
I.P. injection for AKI

15, 59–62

Arsenic Mouse/rat Varying dosage I.P injection for AKI induction, chronic 
drinking for CKD induction

BUN: 28–38
Cre: 1.7–1.9; GFR: N.D.

Varying dosage and duration, toxic to other 
organs, epidemiological relevant

63–65

Adenine Mouse/rat 0.15%−0.75% (w/w) in diet, Up to 16 weeks for CKD
BUN: 90–120
Cre: 2.8–3.1; GFR; N.D.

Not for AKI induction, time-consuming for 
CKD

66–68

Ischemia Mouse/rat 30–40 min ischemia,
6–48 h reperfusion, AKI
BUN: 160–280
Cre: 0.9–1.5; GFR: N.D.

Requires surgery, reproducibility maybe an 
issue, clinical relevant

69–73

DKD Mouse/rat Streptozotocin, 60–65 mg/kg
single I.P. injection for rats, 30–40 mg/kg 5 injections for 

mice, type 2 diabetes can be induced by high fat diet-
streptozotocin administration

BUN: 25–30 mM
Cre: 58–65 µM, GFR: N.D.

Not for AKI, time-consuming, duration varies 
from lab to lab, streptozotocin handled 
with care, genetic models also available

42, 74–80

5/6 Nx Mouse/rat Invasive surgery required, for CKD induction, at least 1 week 
duration

BUN: 17–19 mM
Cre: 45–60 µM; GFR: N.D.

Infection and kidney bleeding may occur 81–84

Nicotine Mouse/rat 0.6–2.5 mg/kg I.P. injection up to 4 weeks for CKD induction
BUN: 36–45
Cre: 0.75–0.82; GFR: N.D.

Noninvasive and simple, good model for 
podocyte injury, requires long term 
treatment

85–88

c-BSA Mouse/rat 50 mg/kg c-BSA via tail vein injection for up to 5 weeks for 
CKD induction, c-BSA dosage and duration could vary

BUN: 18–25
Cre: 2.3–2.6; GFR: N.D.

Good model for membrane 
glomerulonephritis, chronic treatment 
required, c-BSA

Needs to be self-prepared

89–93

UUO Mouse/rat 7–14 days, longer time for induction of kidney fibrosis
BUN: 3.5–4.5 mM
Cre: 42–58 µM, GFR: N.D.

Facile, reproducible, requires surgery, not 
popular for creating an AKI model

19, 94–98

Note: This table is not meant to cover all the animal models of kidney injury in the literature. Rather, only popular and widely used animal models 
are listed. It should also be noted that when rats or mice are used, most investigators choose to use young adult animals aged from 4 to 8 weeks. 
Therefore, the reported kidney dysfunctional parameters may be different from those derived from old animals. Nonetheless, for a given age group 
of the same gender in a particular animal species, data may be comparable. For example, in the same lab setting, if every experimental condition is 
strictly followed, the severity of kidney disease induced by a single injection of FA may be classified based on BUN content as: mild, 40–80 mg/dl; 
moderate, 100–200 mg/dl; severe, greater than 200 mg/dl.54 The values shown in the Table for blood BUN and creatinine as well as GFR, if any, are 
for reference only as these numbers may vary from investigator to investigator.
The unit for BUN and Cre is mg/dl unless otherwise indicated.
Abbreviations: 5/6 Nx, 5/6 nephrectomy; BUN, blood urea nitrogen (mg/dl); c-BSA, cationic bovine serum albumin; Cre, creatinine (mg/dl); DKD, 
diabetic kidney disease; GFR, glomerular filtration rate; LPS, lipopolysaccharide; N.D., not determined; UUO, unilateral ureteral obstruction.
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high dose FA injection.55 Therefore, FA-induced kidney disease can 
cover AKI, CKD, and the AKI–CKD transition.54 Additionally, as FA 
is water-soluble and the injection is intraperitoneal, the procedure 
of kidney disease induction is simple and straightforward, without 
the need for surgery. Importantly, FA-induced kidney disease can 
recapitulate the clinical symptoms of human kidney disease and the 
model is highly reproducible.128,155

With respect to the FA-induced AKI–CKD transition, the FA 
model may provide certain advantages over other models of AKI–
CKD transition including the ischemic reperfusion injury model, the 
cisplatin toxicity mode, the diphtheria toxin model and the aristo-
lochic acid model. As described above, the major advantage of the 
FA model is the one-time administration of a high FA concentration, 
which leads to reproducibility. In contrast, in ischemic reperfusion 
injury studies of AKI–CKD transition, more ischemic surgeries may 
be required following the initial surgery, which can cause precon-
ditioning effects and may also result in loss of animals during the 
study, thereby causing reproducibility issues.18 The low dose cispla-
tin model, the diphtheria toxin model, and the aristolochi acid model 
all require repeated dosing of the animals in order for AKI to progress 
to CKD. An excellent review of animal models of AKI–CKD transition 

is provided by Fu et al.18 Given that the mechanisms underlying AKI–
CKD transition still remain elusive, cross-examination and com-
parison of different AKI–CKD models may provide comprehensive 
insights into the mechanisms of AKI–CKD transition. Nonetheless, in 
the FA-induced AKI–CKD transition model, it is clear that mitochon-
drial abnormalities, redox imbalance, oxidative stress, and deranged 
fatty acid oxidation are involved in AKI–CKD transition.3,55,156,157

With respect to which site or region in the nephron is vulner-
able to FA-induced damage, it has been well established that FA  
damage occurs mainly to the proximal tubular epithelial cells 
(Figure 2).151,158–161 After FA injection, urinary volume shows a de-
crease, as does GFR and the filtration fraction. This is followed by 
an elevation in the concentration of blood urea nitrogen and creati-
nine.99,100 It should be noted that the concentration of folic acid used 
for intraperitoneal injection at a dose of 250  mg/kg body weight 
should not be higher than 12.5 mg/ml, as death of the animals has 
been observed when 25 mg/ml or 50 mg/ml of folic acid solution 
was used for AKI induction.100 For administration doses of folic acid 
solution at 12.5 mg/ml, the death rate of animals beyond 28 days has 
not been well documented because the duration of studies after FA 
injection varies from laboratory to laboratory.

F I G U R E  1   General experimental 
scheme of folic acid (FA)-induced acute 
kidney injury (AKI) and chronic kidney 
disease (CKD). FA, usually at a dose of 
250 mg/kg body weight, is prepared 
in 300 mM NaHCO3 and injected 
intraperitoneally. AKI may be investigated 
within 3 days of FA injection while CKD 
may be studied up to or beyond 28 days 
following FA injection [Colour figure can 
be viewed at wileyonlinelibrary.com]

F I G U R E  2   Diagram showing the 
proximal convoluted tubule in the 
nephron as the most vulnerable region to 
folic acid (FA)-induced damage. The blue 
highlighted tubule depicts the proximal 
convoluted region [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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One question arising herein is that, if FA mainly damages the 
proximal tubules, then how does this damage lead to the lowered 
GFRs that have been observed in the FA rodent model.100 This is 
likely caused by a tubular-glomerular interplay response to intratu-
bular pressure created collectively by FA crystallization in the renal 
tubules, blockage of the proximal tubules, and induction of tubular 
injury and cell death,152,162 In fact, this tubular-glomerular response is 
a well-known feedback mechanism that also occurs in drug-induced 
kidney toxicity163–165 and ureteral obstruction kidney disease.166,167

It should also be noted that the FA-induced kidney injury model is 
only an experimental animal model because high levels of FA have not 
been observed in patients with CKD or associated with kidney disease 
progression. Nonetheless, the FA model recapitulates all the human 
AKI pathologies observed in the clinic.55 Moreover, the FA model is 
highly reproducible.55 In these respects, the FA experimental animal 
model is similar to streptozotocin-induced type 1 diabetes animal 
models,74,75 in that STZ does not exist at high levels in type 1 diabetic 
patients yet STZ diabetes induction recapitulates many of the clinical 
manifestations of these patients. As is inherent in all animal models of 
human diseases, any animal model of kidney disease will serve only as 
a proxy and will never be identical to human kidney disease.

Despite the inherent drawbacks, the FA model is also clinically 
relevant because accidental folic acid overdose can occur and 
cause AKI in humans that shares the major pathological processes 
of inflammation, fibrosis, cell death and proliferation seen in the FA 
mouse model.168,169 Another clinical factor that supports the ex-
perimental utilization of the FA kidney disease model is use of the 
broadly employed anti-cancer drug methotrexate, which is a deriva-
tive of folic acid and is highly toxic to the kidneys.170,171

4  | MA JOR MECHANISMS OF FA- INDUCED 
KIDNE Y INJURY

After a high dose of FA administration via IP injection, FA can quickly 
form crystals in the kidney within renal tubules, followed by acute 
tubular necrosis, epithelial regeneration, and renal cortical scarring, 
culminating in renal injury reflected by decreased glomerular filtra-
tion rates (GFRs), renal inflammation,172–174 and renal fibrosis.175,176 
While this sequence of events sounds simple, the underlying bio-
chemical and molecular mechanisms are complex and multifaceted. 
In general, after FA injection, renal hypertrophy occurs, serum BUN 
and creatinine are elevated,128 clinical symptoms of acute renal fail-
ure such as attenuated alertness, fatigue or lethargy, and bristling 
of the coat can also be observed.128 Here, the major mechanisms 
involved in FA-induced kidney disease are summarized.

4.1 | Oxidative stress

Numerous studies demonstrate renal oxidative stress in the FA-
induced kidney disease model.55,128,155 For example, in FA-AKI 
mouse model, Gupta et al.128 found that lipid peroxidation was 

increased with a decreased level of the reduced form of glutathione. 
In the meantime, levels of hydrogen peroxide were increased, SOD 
activity was decreased, and glutathione peroxidase activity was also 
decreased, so was glutathione-s-transferase. These results indicate 
a redox imbalance status induced by FA injection.

4.2 | Ferroptosis

Martin-Sanchez et al.177 demonstrated the involvement of ferrop-
tosis in FA induced AKI. When ferroptosis was inhibited by ferro-
statin-1, a ferroptosis inhibitor, renal injury induced by FA could be 
prevented, together with a decreased occurrence of lipid peroxida-
tion. The authors also found that ferroptosis triggered inflammation 
in the kidney upon FA injection was also attenuated by ferropstatin-
1 treatment, further demonstrating the role of ferroptosis in FA-
induced AKI. Moreover, when apoptosis or necrosis was targeted, 
no protection against AKI was observed, indicating that ferroptosis 
plays a more important role in AKI induced by FA, at least in the au-
thors' experimental settings. It should be noted that other types of 
cell death such as pyroptosis and apoptosis have also been reported 
in FA-induced kidney disease.178,179

4.3 | Impairment of mitochondrial bioenergetics

In an elegant study exploring the mechanisms of AKI–CKD transition 
after FA injection, Aparicio-Trejo et al.55 demonstrated that impaired 
mitochondrial bioenergetics was involved in FA-induced renal injury. 
The authors analyzed mitochondrial complex I-linked respiration 
using isolated mitochondria and found that state 3 respiration (in the 
presence of ADP) was decreased at the acute stage of renal injury, 
but returned to normal after 7 and 14 days, respectively, indicating 
that decreased complex I-linked respiration could last up to 7 days. 
There was also a progressive electron leakage from AKI to CKD, fur-
ther demonstrating the involvement of mitochondrial uncoupling 
in kidney disease transition from AKI to CKD. During this process, 
fatty acid β-oxidation was also impaired, which may also contribute 
to the AKI–CKD transition process as well as renal fibrosis.180 This 
study demonstrates that impairment of mitochondrial bioenergetics 
is involved in AKI, CKD, and AKI–CKD transition, further highlight-
ing a key role of mitochondrial dysfunction in FA-induced kidney 
disease.181

4.4 | Increased levels of fibroblast growth factor 23 
(FGF23)

FGF23 is a protein that regulates phosphate homeostasis and vita-
min D metabolism.182 The content of this protein has been shown 
to increase rapidly upon FA-induced AKI.183–185 This upregulation 
of FGF23 is likely controlled by interleukin-6 (IL-6) as IL-6 inhibition 
by dexamethasone abolished FGF23 upregulation in FA-induced 
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AKI.185 In contrast, overexpression of IL-6 could further increase 
FGF23 levels both in vivo and in vitro. These results demonstrate 
the involvement of increased FGF23 content in FA-induced AKI, 
likely due to dysregulation of phosphate homeostasis and vitamin 
D metabolism. However, whether there is a link between increased 
FGF23 and elevated oxidative stress in the FA-induced AKI model 
remains elusive at the present time.

4.5 | Impaired mitophagy

Mitophagy is a mechanism by which damaged mitochondria are elim-
inated within a cell after stress challenges.186,187 It is regulated by, 
among others, PINK1 (PTEN-induced putative kinase 1)28,188 and au-
tophagy proteins microtubule-associated protein 1A/1B-light chain 
3I (LC-3I) and p62 in proximal tubules.188,189 Using rat as an FA-AKI 
model, Aparicio-Trejo et al.155 demonstrated that PINK1 and p62 
were increased 24  h after FA injection with concurrent decreases 
in LC-3I and LC-3II contents, indicating an impaired process of mi-
tophagy. Moreover, the authors also demonstrated a compromised 
process of mitochondrial fission and fusion process that is regulated 
by Opa1 and mitofusion-1, as increased levels of mitochondrial frag-
ments could be clearly detected in the FA-AKI model. This study 
suggests that impaired mitophagy and mitochondrial dynamics are 
involved in FA-induced AKI. Interestingly, N-acetylcysteine pretreat-
ment could prevent all these impairments,155 implying the involve-
ment of oxidative stress in the pathogenesis of AKI-induced by FA. 
All the above-described potential mechanisms of FA-induced AKI or 
CKD are schematically represented in Figure 3.

Overall and mechanistically, it should be pointed out that FA 
injection mainly damages the kidney and does not affect other or-
gans,99 and the damage mainly occurs to the proximal tubules. While 
it is well established that oxidative damage reflected by enhanced 

lipid peroxidation and deceased levels of glutathione and antioxi-
dant capacity is the culminating event leading to cell death of tu-
bular epithelial cells including apoptosis, necrosis, and ferroptosis, 
the upstream signaling processes are multifactorial. These include 
downregulation of klotho,177,190 and increased expression of FGF21 
and FGF23,183,184,191 the latter of which is likely regulated by inter-
leukin-6.185 FGF21 also relies on beta-klotho protein to bind fibro-
blast growth factor receptor to exert its biological function in the 
kidney.191 In addition, among the genes affected by FA-induced kid-
ney injury, c-myc and c-fos, involved in initiating cell cycle events, 
are believed to be the primary response genes.192 Nonetheless, the 
exact roles of these response genes in FA-induced kidney injury re-
mains to be comprehensively evaluated.

5  | APPLIC ATION OF THE FA- INDUCED 
KIDNE Y DISE A SE MODEL IN TESTING THE 
THER APEUTIC EFFEC TS OF A VARIET Y OF 
PHARMACOLOGIC AL COMPOUNDS

In addition to being used to elucidate the pathological mechanisms 
underlying kidney disease, the FA-induced animal model of kidney 
disease, like many other animal models, has also been used to test 
the therapeutic effects of pharmacological agents, chemicals, and 
natural compounds. Table 2 lists selectively some of the tests using 
the FA-induced animal model of kidney disease as a platform It 
should be noted that all the listed compounds are at a pre-clinical 
stage as the tests of their beneficial effects on kidney disease all 
involve laboratory animals.

Relevant to Table 2, all animal models of kidney disease, regard-
less of the inducers or triggers applied, may end up with increased 
oxidative damage as a common mechanism that leads to renal inflam-
mation and fibrosis, followed by kidney functional decline reflected 

F I G U R E  3   Major pathological 
mechanisms of folic acid (FA)-induced 
acute kidney injury (AKI) and chronic 
kidney disease (CKD). These include 
oxidative stress, impairment of mitophagy 
and mitochondrial bioenergetics, 
ferroptosis, apoptosis and pyroptosis 
as well as increased expression of 
fibroblast growth factor 23 (FGF23). 
These mechanisms together result in renal 
inflammation and renal fibrosis, eventually 
leading to renal dysfunction or kidney 
disease. Please note that this figure and 
this article do not mean to exhaust all the 
mechanisms implicated in FA-induced 
kidney disease [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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by decreased GFR, and increased BUN and creatinine.213,214 
Therefore, natural products possessing antioxidant powers, such 
as those listed in Table 2, could offer potential benefits in treating 
FA-induced kidney injury. One caveat is that while the FA-induced 
kidney injury model can be used to test numerous natural products, 
identification of the most potent one would be challenging because 
testing conditions and experimental designs vary from laboratory to 
laboratory and no single laboratory can test all the available natural 
products. It is likely that administration of multiple products that are 
tolerable will offer synergistic benefits to CKD patients.

6  | MISCELL ANEOUS

As well as being an experimental tool for elucidating the mecha-
nisms underlying kidney injury, the FA-induced animal model has 

also been used for identification of biomarkers of kidney injury. 
For example, using a proteomic approach Rattanasinganchan et al. 
reported biomarkers of tubulointerstitial fibrosis from urinary ex-
osomes derived from FA-treated rats, demonstrating the feasibil-
ity of using this model for renal fibrosis biomarker identification.99 
FA-induced CKD can also cause anemia in mouse.215 Additionally, 
in terms of CKD model creation, the FA-induced model will cer-
tainly take less time than does the adenine-induced CKD model, 
which requires at least 16 weeks of adenine (0.25%) administra-
tion.68 It should also be noted that while most studies using this 
FA animal model involve young adult mice or rats, FA-induced kid-
ney injury in aged animals has also been investigated. Marquez-
Exposito et al. have found that aging can aggravate AKI induced by 
FA,216 indicating that age should be factored into an experimental 
design when the FA-induced kidney injury model is to be utilized. 
Future studies using the FA-induced animal model may also shed 

Compound/or chemical Model Mechanism References

Ancrod CKD/mouse Decreased renal fibrosis 193

Cyclosporine A AKI/mouse Decreased apoptosis 194

Fraxinellone CKD/mouse Decreased renal fibrosis 195

Ibudilast AKI/mouse Blocking pyroptosis 179

Nicorandil AKI/mouse Decreased oxidative stress 196

Curcumin AKI/rat Improved kidney structure 197

Nuciferine AKI/mouse Inhibition of ferroptosis 198

Fluorofenidone AKI/mouse Decreased ROS/NLRP3 199

Lactoferrin AKI-CKD/
patients

Autophagy activation 178

Curcuminoid AKI/mouse Inhibition of apoptosis 190

Nilotinib AKI/mouse Hsp70 activation 200

Salidroside AKI/mouse MAPK signaling 201

Celastrol AKI/mouse Increased cannabinoid 
receptor 2

202

Metformin CKD/mouse Attenuation of renal fibrosis 203

Nintedanib AKI-CKD/
mouse

Decreased renal fibrosis 153

Melatonin AKI/mouse HMGB1 translocation 151

Tanshinone IIA AKI/mouse Attenuation of renal fibrosis 204

Tanshinone IIA AKI-CKD/
mouse

Targeting GSK3β 205, 206

N-acetylcysteine AKI/mouse Increased glutathione 207

N-acetylcysteine AKI/rat Mitophagy activation 155

Angiopoietin-1 AKI/mouse Enhancing fibrosis 208

Anti-TNF antibody AKI/mouse Inhibition of cell death 209

PFI-2 CKD/mouse Decreased renal fibrosis 166

Citrus pectin AKI/mouse Decreased renal fibrosis 210

Quercetin AKI/mouse Inhibition of ferroptosis 211

Roxadustat AKI/mouse Anti-ferroptosis 212

Abbreviations: GSK3β, glycogen synthase kinase 3β; HMGB1, high mobility group box 1;  
PFI-2, 8-Fluoro-N-(1-oxo-1-(pyrrolidin-1-yl)-3-(3-(trifluoromethyl)phenyl)propan-2-yl)-1,2,3,4-
tetrahydroisoquinoline-6-sulfonamide hydrochloride.

TA B L E  2   FA-induced animal model of 
kidney disease as a platform for testing 
the therapeutic effects of pharmacological 
agents, chemicals, and natural products
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light on effects of other risk factors such as hypertension, obesity 
and diabetes on FA-induced kidney disease. It is conceivable that 
such risk factors would also exacerbate FA-induced kidney injury. 
Sex-linked susceptibility of the kidneys to FA-induced injury, if 
any, should also be investigated.

It should be emphasized once again that while high doses of FA 
administered intentionally can cause renal diseases including AKI 
and CKD, the nutritional and therapeutic value of low levels of FA or 
purposefully fortified FA supplements cannot be discounted. In fact, 
given that high levels of blood homocysteine occur in approximately 
85% of CKD patients,217 FA deficiency may serve as a diagnostic 
indicator and FA administration can slow down the progression of 
CKD.217–219 This is due to the mechanism whereby FA is involved 
in lowering the blood levels of homocysteine by converting it to 
methionine in a methionine cycle pathway.220,221 High homocyste-
ine is known to pose an independent risk factor for cardiovascular 
disease.217,222,223

7  | SUMMARY

High doses of FA can induce both AKI and CKD in mice and rats. This 
FA-induced animal model can also be used to study the AKI–CKD 
transition or progression. The procedure for establishing the model is 
easy as FA is water soluble and its administration is achieved by intra-
peritoneal injection. More importantly, the model is reproducible and 
can recapitulate most, if not all, of the human kidney disease pheno-
types. Therefore, this model should continue to play a key role in the 
field of kidney disease research. In addition, future studies are needed 
to evaluate any potential cardiovascular disease caused by FA-induced 
CKD, and will require analysis of changes in the profiles of blood min-
eral including phosphate, calcium, and magnesium. Any detrimental 
effects of FA-induced kidney disease on other organs such as the liver 
and the brain will also need to be comprehensively evaluated.
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