
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 24 December 2013

doi: 10.3389/fimmu.2013.00480

L-citrulline protects from kidney damage in type 1
diabetic mice
Maritza J. Romero1,2,3*, LinYao1, Supriya Sridhar 3, Anil Bhatta1, Huijuan Dou3, Ganesan Ramesh3,4,
Michael W. Brands5, David M. Pollock 1,4, Ruth B. Caldwell 3,6,7,8, Stephen D. Cederbaum9, C. Alvin Head 2,
Zsolt Bagi 3, Rudolf Lucas1,3,10 and Robert W. Caldwell 1,5

1 Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, USA
2 Department of Anesthesiology and Perioperative Medicine, Georgia Regents University, Augusta, GA, USA
3 Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
4 Department of Medicine, Georgia Regents University, Augusta, GA, USA
5 Department of Physiology, Georgia Regents University, Augusta, GA, USA
6 Department of Cell Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
7 Department of Ophthalmology, Georgia Regents University, Augusta, GA, USA
8 VA Medical Center, Georgia Regents University, Augusta, GA, USA
9 Intellectual and Developmental Disabilities Research Center/Neuropsychiatric Institute (IDDRC/NPI), University of California Los Angeles School of Medicine,

Los Angeles, CA, USA
10 Division of Pulmonary Medicine, Georgia Regents University, Augusta, GA, USA

Edited by:
Charles Dinarello, University of
Colorado Health Sciences Center,
USA

Reviewed by:
Daisuke Kamimura, Osaka University,
Japan
Yongsheng Li, Harvard Medical
School, USA

*Correspondence:
Maritza J. Romero, Departments of
Pharmacology and Toxicology and
Anesthesiology and Perioperative
Medicine, Vascular Biology Center,
Georgia Regents University, 1459
Laney Walker Blvd, Augusta, GA
30912-2300, USA
e-mail: mromerolucas@gru.edu

Rationale: Diabetic nephropathy (DN) is a major cause of end-stage renal disease, asso-
ciated with endothelial dysfunction. Chronic supplementation of L-arginine (L-arg), the
substrate for endothelial nitric oxide synthase (eNOS), failed to improve vascular func-
tion. L-Citrulline (L-cit) supplementation not only increases L-arg synthesis, but also inhibits
cytosolic arginase I, a competitor of eNOS for the use of L-arg, in the vasculature.

Aims: To investigate whether L-cit treatment reduces DN in streptozotocin (STZ)-induced
type 1 diabetes (T1D) in mice and rats and to study its effects on arginase II (ArgII) function,
the main renal isoform.

Methods: STZ-C57BL6 mice received L-cit or vehicle supplemented in the drinking water.
For comparative analysis, diabetic ArgII knock out mice and L-cit-treated STZ-rats were
evaluated.

Results: L-Citrulline exerted protective effects in kidneys of STZ-rats, and markedly reduced
urinary albumin excretion, tubulo-interstitial fibrosis, and kidney hypertrophy, observed in
untreated diabetic mice. Intriguingly, L-cit treatment was accompanied by a sustained
elevation of tubular ArgII at 16 weeks and significantly enhanced plasma levels of the
anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater blood
urea nitrogen levels, hypertrophy, and dilated tubules than diabetic wild type (WT) mice.
Despite a marked reduction in collagen deposition in ArgII knock out mice, their albu-
minuria was not significantly different from diabetic WT animals. L-Cit also restored nitric
oxide/reactive oxygen species balance and barrier function in high glucose-treated monolay-
ers of human glomerular endothelial cells. Moreover, L-cit also has the ability to establish an
anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1β and IL-12(p70)
generation in the human proximal tubular cells.

Conclusion: L-Citrulline supplementation established an anti-inflammatory profile and
significantly preserved the nephron function during T1D.

Keywords: arginase, L-citrulline, glomerulosclerosis, diabetic nephropathy, IL-10

INTRODUCTION
Patients with Type 1 diabetes (T1D) have a considerably worse
long-term prognosis than individuals without diabetes, due to
the high incidence of cardiovascular disease and end-stage renal
disease (ESRD). Diabetic nephropathy (DN), the leading cause
of chronic kidney disease in the United States, is responsible for
up to 40% of all ESRD cases (1). Since conventional or recently

proposed therapies toward DN are still under ongoing investiga-
tion, or lack major efficacy, the search for novel targets involved in
diabetes-induced renal damage is of primary importance.

It is now generally recognized that dysfunction of endothelial
nitric oxide synthase (eNOS) contributes to vascular pathology in
diabetes. An important cause of impaired endothelial nitric oxide
(NO) production is the reduced availability of the eNOS substrate
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l-arginine (l-arg). Patients with diabetes and cardiovascular dis-
ease were shown to benefit from acute l-arg supplementation (2),
but chronic l-arg therapy caused adverse effects (3).

Oral l-citrulline (l-cit, precursor of l-arg) increases circulating
levels of l-arg and augments NO-dependent signaling (4, 5), not
only by means of increasing l-arg synthesis but also by decreasing
l-arg catabolism (6). The latter activity occurs due to l-cit’s capac-
ity to allosterically inhibit arginase I (ArgI), an enzyme which can
impair eNOS function (7, 8). As such, this dual effect of l-cit makes
it a suitable supplemental amino acid to provide sufficient l-arg
for proper eNOS function. In this regard, l-cit has been shown
to prevent coronary vascular dysfunction in diabetic rats (8), with
concomitant reduction of endothelial ArgI activity, which was also
recently shown to contribute to coronary endothelial dysfunction
in patients with diabetes mellitus (9) and in diabetic mice (10).

The effects of l-cit on vascular endothelial function may also
positively influence the endothelial glycocalyx, thus contributing
to glomerular barrier preservation (11, 12). However, l-cit sup-
plementation has been neither evaluated in a model of diabetic
kidney disease, nor its effects on renal arginase. In the kidneys,
arginase II (ArgII) is the only isoform expressed in mouse and
humans (13). ArgII is present in the proximal tubules (PT) and in
the inner medullary collecting ducts (14) and plays an important
role in renal physiology and homeostasis (15). Arginase metabo-
lizes l-arg to urea and ornithine. Whereas urea has a key role in the
urinary concentrating mechanism (16), ornithine is the substrate
for the ornithine/polyamine and ornithine/proline pathways. Both
of these pathways play an important role in kidney physiology and
pathology (17–19). Indeed, production of polyamines enhances
progression of the cell cycle and is associated with cell survival
(20). Proline, on the other hand, is a precursor needed for collagen
synthesis (21). Thus, although these mechanisms are important
to maintain kidney function, they may also contribute to kidney
hypertrophy and glomerulosclerosis of diabetes. Up-regulation of
renal ArgII, proposed to be a mediator of DN, may play a role in
these processes (22). However, l-cit supplementation to newborn
rats was accompanied by enhanced ArgII expression in lungs, but
it still protected from pulmonary hypertension (23).

In this study, we determined whether l-cit supplementation to
streptozotocin (STZ)-diabetic rodents blunts the development of
DN, and whether l-cit has an effect on renal ArgII.

MATERIALS AND METHODS
ANIMALS AND DIABETIC MODEL
Experiments were performed with C57BL/6 wild type (WT) mice
(Jackson Laboratories, Bar Harbor, ME, USA), or ArgII homozy-
gous knockout mice on a C57BL/6 background (24, 25). Ten-week
old male mice (18–20 g) were rendered diabetic with intraperi-
toneal injections of STZ (65 mg/kg) (Sigma Aldrich, St. Louis,
MO, USA), on alternating days for up to four injections (10). A
group of control (vehicle) and diabetic mice were treated with
l-cit (50 mg kg-1 day-1, supplemented in drinking water) (8). Ani-
mals were housed in individual cages. The l-cit dose was adjusted
to each animal according to the daily water intake. Mice were
studied after 2 and 16 weeks with diabetes. In addition, male
Sprague-Dawley rats (Charles River Laboratories, Raleigh, NC,
USA), weighing between 225 and 250 g, were rendered diabetic
with a single dose of STZ (50 mg/kg, intraperitoneally). A group

of diabetic rats (≥350 mg/dl) was treated with l-cit, as indicated
above. Rats were studied after 8 weeks with diabetes. Animals
had free access to food and water throughout the study. All ani-
mals received humane care in compliance with federal laws and
institutional guidelines at Georgia Regents University.

MEASUREMENT OF KIDNEY HYPERTROPHY
Determination of kidney to body weight ratio was used as a
measure of kidney hypertrophy. The left kidney was removed,
decapsulated, placed on tissue paper for 1 min, and weighed.

ANALYTICAL METHODS
Mouse urinary albumin excretion (UAE), and rat proteinuria
were determined after 24 h urine collection, using an ELISA kit
(AssayPro, St. Charles, MO, USA), and a protein assay kit (BCA
Pierce, Rockford, IL, USA), respectively. Blood glucose levels were
measured by the Alpha Trak-Blood glucose monitoring system
(Abbott Laboratories, St. Clara, CA, USA). Plasma urea levels were
measured by colorimetric determination of urea at 540 nm in the
presence of α-Isonitrosopropiophenone (α-ISPF, 9% in ethanol)
(Sigma Aldrich, St. Louis, MO, USA). Results were expressed as
milligram per deciliter of blood urea nitrogen (BUN). Mouse
plasma samples, separated from heparinized whole-blood, were
used for the measurement of 32 cytokines and chemokines, using
a magnetic bead-based multiplex assay, as described in Ref. (26)
(32 Multiplex MCYTOMAG-70K assay, EMD Millipore).

TISSUE HISTOLOGY
After being excised and decapsulated, mouse kidneys were
immersed in 10% formalin for 24 h, embedded in paraffin and sec-
tioned at 4 µm thickness. Sections were deparaffinized in xylene,
rehydrated through graded ethanols to water, and stained with
periodic acid Schiff (PAS) for morphology evaluation. Picro-Sirius
red was used to stain for tissue collagen. Rat kidneys were frozen
in liquid nitrogen, and cryosections (5 µm) were air-dried for
30 min. Cryosections stained with Picro-sirius red were processed
as previously described in Ref. (27). All PAS and Picro-sirius red-
stained sections were visualized on a computer connected to a
light microscope (AxioVision; Carl Zeiss Meditec, Inc.). Quanti-
tative analysis of collagen was performed on photomicrographs of
kidney sections by using specific software (Image J). Seven to ten
non-overlapping fields per section were analyzed for each animal.
Tissue collagen content was assessed by a fibrosis index (%) that
indicated the ratio of the mean sirius red-stained area to the mean
whole area of the section, calculated as the mean of the fibrosis
indexes for each section for each animal.

RENAL ARGINASE ACTIVITY
Renal arginase activity (RAA) was measured in kidney cor-
tex homogenized in ice-cold lysis buffer (50 mmol/L Tris-HCl,
0.1 mmol/L EDTA and EGTA, pH 7.5) at 1:4 (wt:vol) ratio, con-
taining protease inhibitors. The homogenate was centrifuged at
14,000× g for 20 min. The supernatant was removed for enzyme
assay using a colorimetric determination of urea production from
l-arg, as previously described in Ref. (28). Samples were assayed
in triplicate. Values were corrected by adjusting for protein con-
centration in the homogenate and expressed as nanomole urea
per milligram protein per hour. Additional corrections were made
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after subtracting basal levels of urea obtained from each sample of
kidney cortex homogenates in the absence of MnCl2 and of l-arg.

WESTERN BLOT ANALYSIS
Mouse and rat frozen kidney cortex were pulverized and homog-
enized in RIPA lysis buffer (EMD Millipore, Billerica, MA, USA),
containing protease and phosphatase inhibitor cocktails (Sigma
Aldrich, St. Louis, MO, USA). Soluble protein extracts from tis-
sue homogenates were subjected to SDS-PAGE electrophoresis,
transferred to polyvinylidene fluoride membranes and reacted
with anti-ArgII primary antibody (1:500, Santa Cruz Biotech-
nology, St. Cruz, CA, USA), at 4°C overnight. Subsequently, the
bound antibody was detected by donkey anti-rabbit horseradish
peroxidase-labeled secondary antibody (1:6,000, GE Healthcare,
Pittsburgh, PA, USA), and visualized with ECL substrate (Amer-
sham, Buckinghamshire, UK). Membranes were then stripped and
re-probed with anti-GAPDH (Santa Cruz Biotechnology, St. Cruz,
CA, USA) to assess level of protein loading. Protein expression was
determined using densitometry analysis of films.

IMMUNOHISTOCHEMISTRY
Immunohistochemical detection of ArgII was performed in
deparaffinized and rehydrated mouse kidney sections by means
of light microscopy studies. Briefly, antigen retrieval was per-
formed by immersing the slides in 0.01 M citrate buffer (pH 6.0),
at 95°C for 30 min in a water bath. Endogenous biotin and peroxi-
dase activity were blocked before staining, by using commercial
avidin/biotin and peroxidase kits, respectively (Vector Labora-
tories, Burlingame, CA, USA). Slides were then incubated for
1 h with primary antibody against ArgII (1:500). The primary
antibody was localized using the VECTASTAIN ABC-Elite per-
oxidase detection system (Vector Laboratories, Burlingame, CA,
USA). Primary antibody against kidney injury molecule 1 (KIM-
1) (1:500, R&D Systems, Minneapolis, MN, USA), followed by
anti-goat secondary antibody (1:6,000, Invitrogen, Grand Island,
NY, USA), were used for immunofluorescent staining of rat frozen
sections. Nuclei were counterstained with DAPI. All sections were
examined by two different researchers in a blinded manner. The
number of tubules that exhibited positive red fluorescent staining
to KIM-1 was counted per field. Five to seven fields were exam-
ined in each kidney section. Sections of each kidney were processed
in parallel with the appropriate negative control tissue, processed
with omission of the primary antibody in the staining procedure.

HUMAN GLOMERULAR ENDOTHELIAL CELL CULTURE
Human glomerular endothelial cells (Lonza, Walkersville, MD,
USA) were grown in complete CSC medium, and maintained at
37°C in a humidified 5% CO2 incubator. Cells were used between
passages four and six for the experiments. Treatment of cells
with normal (5.5 mM, NG) or high [25 mM, high glucose (HG)]
d-glucose-supplemented medium was performed in basic CSC
medium. As control for the osmotic effect of high d-glucose, l-
glucose was added to the basic endothelial medium. Pre-treatment
of HGEC with l-cit (1 mM) was performed by adding the amino
acid 2 h prior to adding HG or iso-osmotic control. HGEC were
cultured under NG or HG conditions for either 24 h or 14 days,
before they were used for experiments.

MITOCHONDRIAL SUPEROXIDE
Human glomerular endothelial cells were seeded in 0.2% gelatin-
coated four well slide chambers at 1× 105 cells per well, and
allowed to reach confluence. Then cells were exposed to HG for
24 h as described above, with or without pre-treatment with l-
cit. At the end of incubation, MitoSOX (Invitrogen) 5.0 µM was
added to the cells and incubated further for 10 min at 37°C in
5% CO2 atmosphere, according to manufacturing instructions.
Subsequently, cells were washed in hanks balanced salt solution
(HBSS, with Ca/Mg) and used for confocal microscopy imag-
ing. The digital images were taken by an inverted confocal laser
scanning microscope LSM Pascal (Zeiss, Germany), with an exci-
tation/emission of 510/580 nm. Images were captured using 40×
oil immersion objective lens.

NITRIC OXIDE METABOLITE
Human glomerular endothelial cell were seeded at 1× 105 cells
per well in 24-well plates. Confluent quiescent cell monolayers
were exposed to HG or proper iso-osmotic control for 24 h. l-Cit
(1 mM) was applied 2 h prior to HG. Exposure was terminated by
removal of the supernatant. Fresh basic CSC medium was replaced
and cells incubated for additional 30 min. Supernatant was then
removed, subsequently centrifuged and stored at −80°C for NO
analysis. Cell supernatants containing nitrite

(
NO−2

)
the stable

breakdown product of NO in aqueous medium were refluxed in
glacial acetic acid containing sodium iodide. NO−2 is quantitatively
reduced to NO under these conditions, which can be quantified
by a chemiluminescence detector in a NO analyzer (Sievers) as
described in Ref. (8).

PERMEABILITY ASSAY OF HGEC MONOLAYERS
Human glomerular endothelial cell monolayer permeability to
high molecular mass proteins was assayed by using 2,000-kDa
FITC-dextran, based on the Transwell model (EMD Millipore).
For this, HGEC were seeded on collagen-coated Transwells at a
density of 1× 105 cells per well in 250 µl of CSC growth medium.
The inserts were placed into 24-well plates containing 500 µl of
medium. Upon reaching confluence, HGEC were exposed to HG
as described above, with or without pre-treatment with l-cit.
Transendothelial passage of dextran was determined after 14 days
of incubation in HG media as described previously (12). Briefly,
medium was aspirated and 150 µl of FITC-dextran was added into
the insert and incubated for 3 h. The insert was then removed,
and 100 µl of medium was collected from the bottom chamber
and transferred to a black 96-well plate. The fluorescent density
of samples was analyzed on a Paradigm Microplate Fluorome-
ter (Beckman-Coulter) at 485 nm excitation and 530 nm emission
wavelengths.

HUMAN PROXIMAL TUBULAR EPITHELIAL CELL CULTURE
Human proximal tubular epithelial cell (huPTEC) (Lifeline Cell
Technology, Frederick, MD, USA) were grown in the commer-
cial RenaLife medium, and maintained at 37°C in a humidi-
fied 5% CO2 incubator. Cells were used between passages two
and four for the experiments. Treatment of cells with normal
(5.5 mM, NG) or high (25 mM, HG) d-glucose-supplemented
medium was performed in six-well plates and maintained
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for 7 days, before they were used for experiments. As con-
trol for the osmotic effect of high d-glucose, l-glucose was
added to the culture medium. Pre-treatment of huPTEC with
l-cit (1 mM) was performed by adding the amino acid 2 h
prior to adding HG or iso-osmotic control, with or with-
out concurrent pre-treatment with a neutralizing anti-human
IL-10 antibody (5 µg/ml, R&D Systems). Upon completion of
treatment, culture medium supernatants were collected, cen-
trifuged, and freeze at −80°C until use for cytokine measure-
ment. Cells were lysed in RIPA buffer and protein extracts
were loaded for Western blot analysis of ArgII as described for
tissue extracts.

MULTIPLEX HUMAN CYTOKINE/CHEMOKINE MEASUREMENT
A panel of 13 pro-inflammatory cytokines [interferon-γ (IFN-γ),
IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, TNF,
and granulocyte-monocyte colony-stimulating factor (GM-CSF)]
was assessed in triplicates in 50 µl cultured medium supernatants
from cultured primary huPTEC, using a highly sensitive mag-
netic beads-based kit (MILLIPLEX MAP High Sensitivity Human
Cytokine Panel – Premixed 13 Plex, EMD Millipore) (29). This
assay has a high sensitivity, typically with a detection limit in the
range from 0.01 to 0.48 ng/l.

IMMUNOFLUORESCENCE STAINING OF CULTURED huPTEC
Cells were seeded in slide chambers at 1× 105 cells per well.
When cells reached about 75–80% confluence, HG was added
for 1 week as described above, with or without pre-treatment
with l-cit. Upon completion of treatment, cells were washed
twice with PBS and fixed with 4% paraformaldehyde for 15 min.
Then, a blocking solution (1X PBS/5% normal goat serum/0.3%
Triton™ X-100) was applied to the attached cells in the slide
chambers for 1 h, prior to addition of anti-caspase 6 anti-
body (1:800, Cell Signaling, Boston, MA, USA) for incuba-
tion overnight at 4°C. Cells were washed twice with PBS and
incubated with a fluorochrome-conjugated secondary antibody
(1:400, Cy5 goat anti-rabbit, Jackson ImmunoResearch). DAPI
was used for nuclear staining. For non-specific binding (neg-
ative control) the primary antibody was omitted. Images were
collected with fluorescent microscopy. Fluorescence intensity
measurements were performed in nuclei, normalized to DAPI
nuclei area, and corrected by subtraction of background from
negative controls.

STATISTICAL ANALYSIS
All data were expressed as mean± SEM. Statistical analysis was
performed by one-way ANOVA with a Tukey post test. In some
experiments, statistical differences were determined by a Student’s
t -test. A p value of <0.05 was considered statistically significant.

RESULTS
BLOOD GLUCOSE, WATER CONSUMPTION, URINE VOLUME, BODY
WEIGHT, KIDNEY WEIGHT, AND BUN IN MICE
All diabetic groups had elevated blood glucose levels and increased
daily water intake and urinary volume excretion, both at 2
(Table 1) and 16 weeks (Table 2) of the disease vs. respective non-
diabetic controls. The kidney hypertrophy and wasting of body
mass detected in untreated diabetic WT mice was not observed
in l-cit-treated mice, despite significant hyperglycemia (Tables 1
and 2). Intriguingly, although ArgII has been proposed to be
a mediator of DN (22), we observed a significant greater kid-
ney size and BUN levels in the ArgII knock out mice, as com-
pared to diabetic WT animals (Table 2). These results indicate
that l-cit does not affect blood glucose levels in the diabetic
state, but prevents body weight loss and kidney hypertrophy.
In addition, the results observed in the ArgII knock out mice
suggest that the lack of ArgII enhances diabetes-induced kidney
hypertrophy and may accelerate the decay of kidney function in
diabetic mice.

RENAL ARGINASE ACTIVITY AND ArgII PROTEIN LEVELS
At 2 weeks, RAA was elevated in untreated diabetic WT mice
by 8.6-fold over control. By contrast, l-cit-treated diabetic WT
mice showed only twofold elevated RAA levels over control values
(Figure 1A). The marked elevation of RAA, observed at 2 weeks
in untreated diabetic WT mice, declined by 16 weeks to a level
of ~2.4-fold over respective control. At that time period, diabetic
WT mice treated with l-cit showed a rise in RAA of 3.8-fold over
control (Figure 1B). These results indicate that diabetes strongly
induces arginase activity in renal tissues, and that long-term sup-
plementation of l-cit does not prevent this effect. The absence of
the ArgII gene in both control and diabetic ArgII knock out mice,
resulted in RAA values below control WT mice by 0.2- and 0.3-
fold, respectively. These low levels of arginase activity could be due
to the presence of vascular and blood cell-derived ArgI.

Western blot analysis of protein extracts from kidney cor-
tex homogenates of untreated diabetic WT mice showed levels

Table 1 | Biochemical and physical characteristics of study groups after 2 weeks. Effect of L-cit supplementation.

Blood glucose (mg/dl) Water intake (ml/day) Urine volume (ml/day) Body weight (g) K/BW ratio

Control 103.8±8.2 7±0.9 1.55±0.2 23±0.7 5.97±0.4

Diabetic 460.3±71.7a 19.5±2.4b 14.5±1.4c 19±0.5d 8.53±0.03d

L-Cit-Con 132.3±11.1 7.2±0.6 1.4±0.4 26±1.3 6.39±0.4

L-Cit-Diab 465.8±96.4a 17.5±1.1b 9.6±2.4c 25±0.4 5.85±0.1

K/BW, kidney/body weight ratio; control, untreated control mice; diabetic, untreated diabetic mice; L-cit-Con, L-cit-treated control mice; L-cit-Diab, L-cit-treated diabetic

mice. Values are expressed as mean±SEM.
ap < 0.001 vs. control groups; bp < 0.01 vs. control groups; cp < 0.05 vs. control groups; dp < 0.01 vs. all groups.
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Table 2 | Biochemical and physical characteristics of study groups after 16 weeks. Effect of L-cit supplementation and ArgII deletion.

Blood glucose (mg/dl) Water intake (ml/day) Urine volume (ml/day) Body weight (g) K/BW ratio BUN (mg/dl)

Control 148.8±20.1 7.3±1.1 2.2±0.3 28±0.3 6.80±0.5 10.52±0.5

Diabetic 546.2±19.7a 19.3±2.2a 19.2±1.7c 21±0.2d 9±0.4g 12.03±0.5

L-Cit-Con 119±6.8 7.2±0.6 1.6±0.3 31±0.8f 6.86±0.3 14.24±0.8

L-Cit-Diab 518.3±27a 26.8±2.1b 20.9±2.3c 26±0.5e 6.93±0.4 13.36±0.33

C ArgII KO 133.7±18.9 6.9±0.5 2±0.3 21±1.8 8.13±0.3h 15±2.5

D ArgII KO 554.8±54.5a 30.3±3.6b 28.2±1.9c 20±0.6 11.45±0.8i 17.07±1.3b

K/BW, kidney/body weight ratio; BUN, blood urea nitrogen; control, untreated control WT mice; diabetic, untreated diabetic WT mice; L-cit-Con, L-cit-treated control

WT mice; L-cit-Diab, L-cit-treated diabetic WT mice; C ArgII KO, control ArgII knock out mice; D ArgII KO, diabetic ArgII knock out mice. Values are expressed as

mean±SEM.
ap < 0.01 vs. all control groups; bp < 0.05 vs. all groups; cp < 0.05 vs. all control groups; dp < 0.001 vs. control and L-cit-Con; ep < 0.001 vs. diabetic; fp < 0.001 vs.

L-cit-Diab; gp < 0.01 vs. control and Lcit-Con; hp < 0.05 vs. control; ip < 0.01 vs. all groups.

of ArgII protein that were increased up to 10-fold over con-
trol at 2 weeks (Figure 1C). ArgII protein in tissues from l-cit-
treated diabetic WT mice were ~fivefold higher than in con-
trols (Figure 1C). Conversely, upon progression of diabetes to
16 weeks, the highest levels of ArgII protein were observed in l-cit-
treated diabetic WT mice (Figure 1D). ArgII was neither detected
in control nor in diabetic ArgII knock out mice (Figure 1D).
These results indicate that the induction of arginase activity
observed in kidney cortex of diabetic mice is due to increased
protein levels of ArgII. l-Cit does not prevent diabetes-induced
ArgII up-regulation, and may even have an additive effect upon
long-term supplementation.

IMMUNOHISTOCHEMISTRY
Diffuse ArgII immunoreactivity was observed in cells of the uri-
nary pole of the Bowman’s capsule, and of the PT of untreated
control WT mouse kidneys. Enhanced tubular ArgII staining was
detected in untreated diabetic WT mice after 16 weeks of the
disease (Figure 2A). l-Cit-treated diabetic WT mice also demon-
strated increased ArgII immunoreactivity in cortical tubular seg-
ments, while maintaining a more conserved epithelial morphology
(Figure 2A). No positive staining was observed in either the ArgII
knock out mouse kidneys (Figure 2B), or in tissue sections stained
in parallel with omission of primary antibody (Figure 2C).

URINARY ALBUMIN EXCRETION
Urinary albumin excretion was significantly elevated above con-
trol in untreated diabetic WT mice as early as 2 weeks, but this
effect was markedly blunted upon l-cit treatment (untreated
diabetic: 811.43± 161.04 µg/ml vs. control: 97.73± 29.6 µg/ml,
and l-cit-treated diabetic: 138.47± 47.3 µg/ml, p < 0.05). This
preventive effect of l-cit on urinary albumin leakage was
observed for up to 16 weeks, while non-treated diabetic WT
mice maintained elevated UAE at that time point (Figure 3).
Urine samples from diabetic ArgII knock out mice showed
a trend to reduced albumin excretion, as compared to non-
treated diabetic WT mice (Figure 3). These data thus indicate
that l-cit may be protective toward diabetes-induced glomeru-
lar barrier dysfunction and/or impairment of proximal tubular
protein uptake.

FIGURE 1 | Renal arginase. Kidney cortex isolated from mice after 2
(A–C) and 16 (B–D) weeks of diabetes was homogenized in lysis buffer.
Arginase activity (A,B) was assayed using a colorimetric determination of
urea production from L-arginine. Relative levels of arginase II protein
expression (C,D) were determined by western blot analysis. Ctrl, control;
Diab, diabetic; WT, wild type; ArgII KO, ArgII knock out; ND, not detected.
Values are expressed as mean±SEM, n=4–6. (A–C) *p < 0.001 vs. Ctrl,
§p < 0.01 vs. Ctrl, **p < 0.001 vs. Diab. (B–D) , Untreated WT; ,
L-cit-treated WT; , ArgII KO. *p < 0.01 vs. untreated and L-cit-treated Ctrl
WT, and ArgII KO groups, §p < 0.05 vs. untreated Diab WT.

RENAL HISTOLOGY
Histological examinations of PAS-stained kidney sections of
untreated diabetic WT mice at 16 weeks revealed glomeru-
lar hypertrophy, Bowman’s capsule thickening and peri-
glomerulosclerosis, in comparison to control mouse kidneys
(Figures 4A,B). The PT showed hypertrophy and markedly thick-
ened and wrinkled basement membranes. Interstitial expansion
and focal areas of hypercellularity were also observed. Treatment
of diabetic WT mice with l-cit markedly ameliorated all diabetes-
induced alterations in the kidney. Intriguingly, we observed a
marked dilatation of cortical tubules, focal blebbing of the lumi-
nal edge of the cells and detachment in the kidneys from diabetic
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FIGURE 2 | Immunohistochemistry of ArgII in paraffin-embedded
mouse kidney sections. Representative photographs of
paraffin-embedded kidney sections showing immunolocalization of ArgII
(brown color; 40× immersion oil). (A) Cortical tubular segments in
untreated diabetic mice show higher stain density than untreated control
mice, after 16 weeks (white arrows). Atrophic tubules with widened lumina
and flattened tubular cells, or with altered epithelial morphology, show
reduced ArgII staining (*). L-Cit-treated diabetic mice show also enhanced
ArgII stain intensity (white arrows). Kidney segments of control and diabetic
ArgII knock out mice (B), or tubules stained with secondary antibody alone
(C) were completely negative for ArgII immunostaining.

FIGURE 3 | Urinary albumin excretion (UAE) in mice after 16 weeks.
Mice were placed in metabolic cages. Urine samples were collected for
24 h to determine albumin excretion. Values are expressed as mean±SEM,
n=5–9. WT, wild type; ArgII KO, ArgII knock out. *p < 0.001 vs. untreated,
L-cit-treated, and ArgII KO control, §p < 0.05 vs. untreated diabetic WT,
**p < 0.05 vs. untreated and L-cit-treated control WT.

ArgII knock out mice (Figures 4A,C). However, no thickening of
tubular basement membrane was observed in this group.

As visualized in Figure 5A, picro-sirius red staining showed
an enhancement of peri-glomerular and peritubular-interstitial
collagen deposits in kidneys of WT diabetic mice at 16 weeks,

FIGURE 4 | Periodic acid Schiff-stained paraffin-embedded kidney
sections. (A) Representative photomicrographs of PAS-stained kidney
sections from: untreated (Cont WT) and L-cit-treated (Lcit-Cont WT) control
wild type, and control ArgII knock out (Ctrl-ArgII KO) mice (upper).
Untreated (Diab WT) and L-cit-treated (Lcit-Diab WT) diabetic wild type, and
diabetic ArgII knock out (Diab-ArgII KO) mice (lower) at 16 weeks (20×).
Morphological alterations of a selected area (rectangle) observed in Diab
WT and Diab-ArgII KO kidneys are shown at higher magnification (40×
immersion oil) in: (B) a hypertrophied glomerulus with thickening of
Bowman’s capsule is observed (arrow heads). Surrounding tubules show
markedly thickened and wrinkled tubular basement membranes, and partial
disruption of brush border (arrows). Interstitial expansion and
hypercellularity around the glomerulus and surrounding tubules are also
observed. These effects were markedly attenuated by L-cit treatment in
diabetic mice. (C) Marked dilatation of cortical tubules (*), focal blebbing of
the luminal edge (arrow), and focal detachment (arrow head) of epithelial
cells in a proximal tubule.

as compared to control mice. This effect was reduced in l-cit-
supplemented WT diabetic mice (Figures 5A,B). Interestingly,
induction of diabetes by STZ in ArgII knock out mice did not
result in enhanced collagen deposits, as compared to diabetic WT
mice (Figures 5A,B).

ANTI-INFLAMMATORY EFFECT OF L-CIT IN DIABETIC MICE
Because diabetes is considered a chronic inflammatory state (30),
we examined the effect of l-cit supplementation on plasma
cytokine levels in diabetic mice at the end of the experiment.
We found enhanced levels of the pro-inflammatory cytokines
TNF and IL-6 in the diabetic animals, with the former being sig-
nificantly different when compared to control mice (Figure 6).
Strikingly, the level of the anti-inflammatory cytokine IL-10 was
significantly enhanced in plasma of l-cit-treated diabetic mice
(Figure 6). We also found significantly enhanced levels of the pro-
inflammatory chemokine MIP-2 in diabetic vs. control mice (ctrl:
0.2+ 0.02 pg/ml; STZ: 328.7± 2.6 pg/ml, n= 3, p < 0.001 vs. ctrl).
However, there was a significant reduction of MIP-2 upon l-cit
supplementation to diabetic mice (l-cit/STZ: 311.6± 3.1 pg/ml,
n= 3, p < 0.05 vs. STZ, p < 0.001 vs. ctrl). These results thus
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FIGURE 5 | Picro-sirius red staining of paraffin-embedded kidney
sections. (A) Representative photomicrographs of picro-sirius red-stained
kidney sections from untreated control wild type (Ctrl WT), untreated
diabetic wild type (Diab WT), L-cit-treated diabetic wild type (Lcit-Diab WT),
and diabetic ArgII knock out (Diab-ArgII KO) mice at 16 weeks (RGB image
using Image J ). Increased collagen deposits (dark color) are observed in
Diab WT. This effect was significantly reduced in Lcit-Diab WT, and in
Diab-ArgII KO mice. (B) Fibrosis index (%) of tissue collagen content that
indicates the ratio of the mean picro-sirius red-stained area to the mean
whole area of the section. Values are mean±SEM. *p < 0.001 vs.
untreated Ctrl WT, **p < 0.01 vs. untreated Ctrl and Diab WT, §p < 0.001 vs.
untreated Diab WT.

FIGURE 6 | Plasma cytokine level. Mouse plasma samples were used for
cytokine and chemokine measurement, using a magnetic bead-based
multiplex assay. L-Cit induced an anti-inflammatory response in diabetic
mice, as observed by significant increased levels of IL-10. Values are
mean±SEM. *p < 0.001 vs. untreated control mice, **p < 0.001 vs.
untreated control and diabetic mice.

indicate that l-cit treatment increases the anti-inflammatory
response in STZ-treated diabetic mice.

EFFECTS OF L-CIT IN DIABETIC STZ-RATS
Since C57BL6 mice develop only a moderate nephropathy upon
STZ-treatment, we have also evaluated the effect of l-cit treatment
in a more sensitive rodent model of STZ-induced diabetes, i.e., the
rat. STZ-diabetic rats had increased daily proteinuria, as com-
pared to non-diabetic control rats. However, l-cit treatment pre-
vented this effect (Figure 7A). In addition, kidneys from untreated
diabetic STZ-rats showed characteristic features of human DN,
as observed by substantial collagen deposits of intraglomerular
and peritubular distribution (Figures 7B,C). These effects were
reduced in l-cit-supplemented STZ-rats (Figures 7B,C). These
findings were accompanied by an elevation of renal ArgII protein

FIGURE 7 | Effect of l-cit on kidney pathology in STZ-rats. Urine and
renal tissues from untreated control (Ctrl), untreated diabetic (Diab), and
L-cit-treated diabetic (Lcit-Diab) rats were evaluated. (A) Rats were placed in
metabolic cages for 24 h urine collection. Total protein excretion was
measured in urine. Lcit-Diab rats had a significant reduction of proteinuria
when compared to Diab rats. *p < 0.05 vs. Ctrl, **p < 0.05 vs. Diab.
(B) Representative photomicrographs of frozen sections from rat kidneys
stained with picro-sirius red, show enhanced collagen deposits (dark color,
RGB image using Image J ) in untreated diabetic rats. This effect was
markedly blunted in L-cit-treated diabetic rats. (C) Fibrosis index (%) of
tissue collagen content that indicates the ratio of the mean picro-sirius
red-stained area to the mean whole area of the section. *p < 0.001 vs. Ctrl,
**p < 0.001 vs. Diab. (D) Renal ArgII protein expression determined by
densitometric analysis of immunoblots performed with protein extracts
from rat kidney cortex (n=4, representative blot is shown). *p < 0.001 vs.
Ctrl rats, **p < 0.05 vs. Ctrl rats.

levels in both, untreated and l-cit-treated diabetic STZ-rats, when
compared to control non-diabetic rats (Figure 7D).

RENAL EXPRESSION OF KIDNEY INJURY MOLECULE 1
Kidney injury molecule 1 is a relevant biomarker of renal tubular
damage that has been found to be associated with albuminuria
in the early stage of nephropathy in diabetic patients (31), and
with the progression of DN in experimental models (32). There-
fore, we evaluated the expression of KIM-1 in kidneys of diabetic
rats with or without l-cit supplementation. While renal tissues
of control non-diabetic rats were negative for KIM-1 immuno-
staining, numerous tubular segments in the cortex and in the
outer strip of the outer medulla were intensely stained in dia-
betic rats (Figure 8A). l-Cit-treated diabetic rats showed fewer
positive tubules than untreated diabetic rats. An objective score of
the number of positive tubules per field is shown in Figure 8B.

EFFECT OF L-CIT IN HUMAN GLOMERULAR ENDOTHELIAL CELLS
EXPOSED TO HIGH GLUCOSE
Since HG-induced reactive oxygen species (ROS) generation is
known to impair endothelial-derived NO production, we evalu-
ated the effect of l-cit on NO production in HGECs exposed to
HG. l-Cit pre-treatment of HGECs prevented the impaired NO
production observed under exposure to HG for 24 h (Figure 9A).
This effect correlated with a marked attenuation of mitochondrial
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FIGURE 8 | KIM-1 immunofluorescence staining. Kidney injury molecule
1 (KIM-1) antibody was used for immunofluorescent staining (red) of frozen
sections from control (Ctrl), untreated diabetic (Diab), and L-cit-treated
diabetic (Lcit-Diab) rats. Nuclei were counterstained with DAPI (blue).
(A) Representative photomicrographs show negative staining for KIM-1 in
control kidneys. Conversely, an increased number of tubules positively
stained for KIM-1 is observed in kidneys of untreated diabetic rats. The
number of positive tubules was dramatically decreased in kidneys of
L-cit-treated diabetic rats. (B) Staining score determined by counting the
number of positive tubules per field, using 40× magnification lens. Five to
seven fields were examined in each kidney section (n=3–4). *p < 0.001 vs.
Ctrl, **p < 0.001 vs. Diab.

FIGURE 9 | Effect of L-cit on human glomerular endothelial cells
exposed to high glucose. HGECs were cultured in basic CSC medium
containing 25 mM D-glucose (HG) with or without 1 M L-cit for 24 h (A,B) or
14 days (C). L-Glucose (19.5 mM) was added to 5.5 mM D-glucose present in
basic CSC medium, and used as iso-osmotic control (Ctrl). (A) The nitrite
level (picomole) in the medium was determined by NO analyzer and
expressed as percent of control (*p < 0.01 vs. Ctrl, **p < 0.05 vs. HG,
n=3). (B) HGECs were seeded onto gelatin-coated slide chambers. After
completion of treatments, MitoSOX (a marker of mitochondrial superoxide,
5.0 µM) was added to the cells and incubated further for 10 min. Cells were
washed and used for confocal microscopy imaging. Representative images
show increase in mitochondrial MitoSOX fluorescence following treatment
with HG. This effect was markedly reduced by concurrent L-cit treatment.
(C) Transendothelial passage of FITC-dextran was used to determine
permeability of HGEC monolayer, seeded onto collagen-coated Transwells.
Fluorescent density of samples was analyzed on a paradigm microplate
fluorometer (*p < 0.01 vs. Ctrl, **p < 0.05 vs. HG, n=4).

superoxide generation, as opposed to the increase in mitochondr-
ial red fluorescence intensity of MitoSOX in confocal microscopic
images observed in HG-treated cells (Figure 9B).

Increasing evidence suggests that a NO/ROS imbalance causes
endothelial barrier dysfunction (11). We therefore examined the

effect of l-cit on HG-induced loss of barrier function in HGEC
monolayers, by means of assessing their permeability to FITC-
dextran. As shown in Figure 9C, HG (25 mM) significantly
increased permeability of HGEC monolayers to FITC-dextran, but
pre-treatment of the monolayers with l-cit (1 mM) conferred a
significant protection from HG-induced hyperpermeability. These
results suggest that l-cit protects glomerular barrier function
at least in part by preserving glomerular endothelial NO syn-
thase (NOS) function, and by reducing ROS generation under
hyperglycemic insult.

EFFECT OF L-CIT IN HUMAN PROXIMAL TUBULAR EPITHELIAL CELLS
EXPOSED TO HIGH GLUCOSE
Proximal tubular cells are capable of generating IL-10 (33).
Therefore, we investigated the effect of l-cit on cytokine pro-
duction in huPTECs exposed to HG. huPTEC cultured under
HG-supplemented medium in the presence of l-cit for 1 week,
produced significantly enhanced levels of the anti-inflammatory
cytokine IL-10, as compared to cells treated with HG alone
(Figure 10A). This effect was accompanied by a significant
reduction of levels of the pro-inflammatory cytokines IL-12
(p70) and IL-1β, the generation of which is increased in cells
cultured under HG-supplemented medium without l-cit co-
treatment. Addition of a neutralizing antibody against IL-10
to huPTEC cultured under HG in the presence of l-cit, sig-
nificantly abolished the reduction of IL-12 (p70). In addition,
elevation of IL-10 was accompanied by significant elevated pro-
tein levels of ArgII, an effect that was partially reduced when
anti-IL-10 antibody was added along with l-cit to the HG-
supplemented medium (Figure 10B). These data indicate that
elevation of ArgII in huPTEC in culture is a marker of the
anti-inflammatory actions of l-cit through its IL-10-inducing
capacity.

We also examined the activation of the apoptotic marker
caspase 6, which was shown to be involved in PTEC apopto-
sis during nephropathy (34). We observed an increased nuclear
translocation of caspase 6 in huPTEC exposed to HG. l-Cit sig-
nificantly blunted this effect of HG at least partially in an IL-
10-dependent manner, since concurrent treatment of huPTEC
with a neutralizing IL-10 significantly prevented the reduction
in caspase 6 nuclear translocation by l-cit (Figure 10C). This
indicates that the observed caspase 6 activation was linked to a
pro-inflammatory cytokine, the generation of which was inhibited
by IL-10.

DISCUSSION
Hyperglycemia, which activates several reactions, including oxida-
tive stress and chronic or subclinical inflammation, is clearly rec-
ognized as the primary player in diabetic endothelial dysfunction
and DN (35–37).

It is now generally recognized that an important cause of
impaired endothelial NO production, characteristic of diabetic
endothelial dysfunction, is reduced availability of the eNOS sub-
strate l-arg. Despite diverse data from studies assessing plasma
amino acid levels in diabetic patients with or without chronic
kidney disease (38, 39), patients with diabetes and cardiovascular
disease were shown to benefit only from acute (2), but not from
chronic (3) l-arg supplementation.
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FIGURE 10 | Effect of L-cit in human proximal tubular epithelial cells
(huPTEC) exposed to high glucose (HG). huPTEC were cultured in
Renalife medium containing 25 mM D-glucose (HG) for 7 days. L-Glucose
(17.8 mM) was added to 7.2 mM D-glucose present in medium, and used as
iso-osmotic control (NG). Pre-treatment of huPTEC with L-citrulline (L-cit,
1 mM) was performed by adding the amino acid 2 h prior to adding HG or
iso-osmotic control, with or without a neutralizing anti-IL-10 antibody
(IL10n, 5 µg/ml). (A) The cytokine level (picogram per milliliter) in the
medium was determined by using a commercial magnetic beads-based
human cytokine kit. (B) Representative blot (upper) and densitometric
analysis of blots (lower) show arginase II levels from protein extracts of
huPTEC. A decreased in arginase II expression is observed following

treatment with HG. This effect was markedly reduced by concurrent L-cit
treatment, while addition of anti-IL-10 antibody (IL10n) along with L-cit
partially prevented L-cit-induced elevation of arginase II. (C) huPTEC were
seeded onto slide chambers. After completion of treatments, cells were
immunostained using caspase 6 as primary antibody, followed by
Cy5-conjugated goat anti-rabbit secondary antibody. DAPI was used for
nuclear staining. Representative images (upper) and microscopy analysis
of nuclear fluorescence intensity (lower) show an increase nuclear
localization of caspase 6 (green fluorescence) following treatment with
HG. This effect was markedly reduced by concurrent L-cit treatment, while
the effect was abolished by addition of neutralizing anti-IL-10 antibody
(IL10n) along with L-cit.

Conversely, we and others have been shown that oral l-cit (pre-
cursor of l-arg) augments NO-dependent signaling, not only by
means of increasing l-arg synthesis, but also by decreasing l-
arg catabolism, as such increasing circulating l-arg levels (4–6).
However, the effects of l-cit on the development of diabetic kid-
ney damage have not been studied. Therefore, in this study, we

assessed the actions of supplemental l-cit in a murine model of
DN. Our data demonstrate that oral l-cit supplementation pro-
tects diabetic STZ-mice from the sustained elevation of UAE, as
observed in untreated mice at 16 weeks of the disease. This protec-
tive effect of l-cit occurs despite significant hyperglycemia. We also
observed similar benefits conferred by l-cit in a more aggressive
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model of DN in STZ-rats, which also showed reduced proteinuria
after 8 weeks of treatment.

Diabetic urinary albumin leakage involves several mechanisms,
including proximal tubular injury (40, 41) and disruption of the
glomerular barrier (42). The relevance of the glomerular endothe-
lium in the maintenance of barrier function has only been recently
recognized (12). While endothelial NO generation contributes to
endothelial glycocalyx and barrier preservation (11, 43, 44), an
increase in the ROS/NO ratio causes disruption of the glycocalyx,
resulting in enhanced albumin permeability (45, 46).

We have found a reduction in mitochondrial ROS genera-
tion, combined with a restoration of NO production in HGECs
treated with l-cit before exposure to HG-supplemented medium.
This effect may thus at least partially account for the reduced
glomerular albumin leakage we have found in the diabetic ani-
mals supplemented with l-cit. In support of this is the reduced
permeability to FITC-dextran of HGEC monolayers exposed to
HG and concurrently treated with l-cit.

We did not assess either constitutive (endothelial and neuronal)
or inducible NOS expression in the kidneys of our diabetic ani-
mals, because the three NOS isoforms have been described to be
differentially altered in DN (47, 48). Indeed, the discrepant results
on NOS expression and NO involvement in diabetic pathology
have been evaluated in other diabetic complications (49, 50).

Our current results, along with previous work, support the
notion that bioavailability of NO is reduced in the diabetic ves-
sels (8, 51, 52). Therefore, adding l-cit to current therapies may
lead to a safe and efficacious option to improve vascular diabetic
complications. Moreover, due to the significant role of NO in the
regulation of insulin release from pancreatic β-cells (53), l-cit
may also be useful as a potential insulinotropic agent. However,
the effect of l-cit on pancreatic β-cell function requires further
studies.

Several studies have also suggested a role for endothelial NO in
suppressing fibrotic pathways in different organs and pathologies
associated with diabetes and other diseases (54, 55). As such, the
protective effect of l-cit on eNOS function may have led to the
reduction in kidney fibrosis, as observed in our study in diabetic
mice and rats after 16 and 8 weeks of diabetes, respectively.

The protective effects of l-cit toward UAE and kidney fibrosis
were observed despite a sustained elevation of ArgII protein lev-
els in the renal cortex. ArgII protein was significantly elevated in
l-cit treated diabetic mice and rats over control and untreated
diabetic animals at the end of the study, when protection on
kidney pathology was more evident. Interestingly, the protective
effects of l-cit administration in other pathologies have also been
shown to be accompanied by an enhanced tissue expression of
ArgII (23).

Our findings prompt the question about the role of ArgII for
tubular function in diabetes. ArgII is present in the mitochon-
dria of PT, as well as of inner medullary collecting ducts (17) and
provides l-ornithine for the synthesis of polyamines (56). The cel-
lular balance of polyamines is necessary for DNA stabilization and
replication (57), as well as for the maintenance of PT integrity and
function (58).

Damage of PT under the insult of HG levels, especially in
patients with poor glycemic control (59), requires an extensive

repair process, either by regeneration of de-differentiated surviv-
ing cells (60) or by proliferation and differentiation of stem cells
(61). It has been recently demonstrated that spermidine enhances
epithelial stem cell function (62). Thus, adequate polyamine lev-
els may allow the PT to resume normal functions, and l-cit may
facilitate this process by providing more l-arg for ArgII function.

In addition, up-regulation of mitochondrial ArgII in diabetic
PT may represent a stress response to an increased energy demand
in this actively reabsorptive segment of the nephron. Arginase-
derived ornithine in the mitochondria may be converted to l-
glutamate that enters the tricarboxylic acid cycle as oxoglutarate
(63). l-cit could as such provide precursors to maintain the ener-
getic metabolism of PT via mitochondrial ArgII. Diabetic kidneys
from l-cit-treated rats clearly showed a reduced number of pos-
itive tubules for KIM-1 expression, a marker of proximal tubular
damage. This effect may also be associated with an improvement
of proteinuria (64) observed in l-cit treated diabetic rats.

The results of our comparative studies between WT and ArgII
knock out mice partially differ with a recent report by others (22).
Despite a trend to reduced levels of albuminuria in diabetic ArgII
knock out mice, the reduction was not significantly different from
untreated WT diabetic mice. Differences between the Morris study
and ours likely arise from the significantly greater age of our mice.
Indeed, we observed a severe dilation and morphological alter-
ations of cortical tubules, as well as greater BUN levels in ArgII
knock out mice, as compared to untreated diabetic WT mice.
These findings suggest that with advanced age, lack of ArgII may
limit tubular repair and may accelerate the decay in glomerular
filtration rate observed in the diabetic condition. Other reported
mechanisms may also apply for tubular damage in ArgII knock out
mice (65, 66). To that purpose, it would be interesting to deter-
mine in future studies, whether l-cit supplementation to ArgII
knock out mice prevents diabetes-induced tubular damage and
enhancement of BUN levels.

Intriguingly, collagen deposition in kidneys isolated from dia-
betic ArgII knock out mice was not different from the one observed
in control WT mice. A limited availability of the precursor proline,
provided by the ArgII/ornithine aminotransferase pathway, may
be the cause of reduced renal collagen synthesis/crosslink in this
group, which indicates that ArgII has an important contribution
to renal collagen content. However, the cost-effect of specific ArgII
inhibition in advanced stages of diabetic animal models remains
to be investigated.

In addition to the previous findings, l-cit treatment to diabetic
mice prevented body wasting even in the absence of blood glycemic
control. Type 1 diabetic patients under poor glycemic control,
common in low income or un-insured patients in the United
States or in under-developed countries (67) exhibit detrimentally
low intracellular energy metabolism and significant weight loss,
leading to chronic fatigue and general body weakness. l-Cit may
protect against diabetic muscle wasting via nutritional support,
providing the precursor for creatine synthesis (68, 69).

A substantial benefit conferred by l-cit supplementation is the
significant elevation of the anti-inflammatory cytokine IL-10. It
has been recently recognized that common inflammatory factors
play a role in both type 1 and 2 diabetic pathology (30, 70),
which has important therapeutic implications (71–73). IL-10 has
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been shown to selectively induce ArgII expression in macrophages
(74) and to also attenuate a pro-inflammatory cytokine expres-
sion and iNOS-derived NO production in human and mouse
monocyte/macrophage cells in the presence of apoptotic cells (75).
Apoptosis of PT epithelial cells is a feature of the hyperglycemic
insult in DN, and activated PT epithelial cells, as an alternative to
macrophages, are able to phagocytose neighboring apoptotic cells
(76). Moreover, PT epithelial cells play an important role in anti-
inflammatory mechanisms within the tubulointerstitium during
renal injuries (77, 78) and are capable of generating their own
production of IL-10 (33).

Although we did not measure local kidney tissue or urinary
levels of IL-10 in our study, but rather in plasma, it is nevertheless
likely that both local and systemic anti-inflammatory mechanisms
may take place under the setting of l-cit supplementation, since
this treatment was accompanied by enhanced ArgII expression
in PT, and by increased plasma levels of IL-10. In support of
our findings in vivo, we observed that huPTECs cultured under
HG-supplemented medium in the presence of l-cit for 1 week,
produced significantly enhanced levels of the anti-inflammatory
cytokine IL-10, as compared to cells treated with HG alone. This is
a prominent feature of l-cit’s actions on huPTEC, which may be of
high significance in the context of current clinical trials aimed to
limit inflammation in diabetic patients, and to reduce progression
of DN toward ESRD. In correspondence with our observations
that l-cit increases IL-10 generation, it has been recently shown
that Citrullus lanatus (Watermelon), a rich source of l-cit, was
beneficial in a murine inflammatory disease model, by means of
increasing plasma levels of IL-10 (79).

The enhanced production of the anti-inflammatory cytokine
IL-10 by l-cit in HG-treated huPTEC was accompanied by a
reduction of levels of the pro-inflammatory cytokines IL-12 (p70)
and IL-1β both of which were induced above basal levels by HG
in cells not treated with l-cit. In vivo, these pro-inflammatory
cytokines may establish the settings for a crosstalk between tubu-
lar cells and surrounding infiltrating leukocytes, to amplify the
inflammatory milieu of diabetic kidneys. As such, l-cit-induced
IL-10 generation may be important in limiting inflammation in
the kidney.

In accordance with our findings on ArgII expression in kid-
neys of mice at late stages of diabetes, cultured huPTEC under HG
condition had a reduced expression of ArgII protein levels. l-Cit
significantly enhanced ArgII in HG-treated huPTEC, an effect that
was reduced by co-administration of IL-10 neutralizing antibody
with l-cit. These results indicate that up-regulation of ArgII in
PT is a marker of the anti-inflammatory actions of IL-10 on renal
tubules.

We could detect an increased level of nuclear localization of the
executioner caspase 6, a mediator of apoptosis, in huPTEC exposed
to HG levels. l-Cit blunted this effect of HG at least partially in an
IL-10-dependent manner. This indicates that the observed caspase
6 activation was linked to a pro-inflammatory cytokine, the gener-
ation of which was inhibited by IL-10. Although more research is
needed to unravel what cytokines are responsible for the caspase 6
activation in HG-treated huPTEC, an interesting candidate could
be IL-1, which was shown to be increased by HG in huPTEC in
our experiments and whose generation was blunted by l-cit. IL-1

was shown to induce Fas ligand generation, a potent inducer of
apoptosis in renal tubular cells (80).

In conclusion, our study demonstrates that l-cit supplemen-
tation is protective to the nephron function. l-Cit not only
reduces UAE and prevents collagen deposits in the kidneys of
diabetic animals, but also establishes the settings for an anti-
inflammatory response in the PT, with the potential to direct the
immune response toward an anti-inflammatory profile in mono-
cyte/macrophages as well. These observations are substantiated by
the elevation of tubular ArgII expression, and of plasma levels of
IL-10.

It remains to be established whether l-cit sustains tubular
mitochondrial function, by providing precursors via ArgII and
whether this effect is linked to repair processes of the proxi-
mal nephron under the hyperglycemic insult. As such, this work
lays the foundation for a broader investigation of the effects of
l-cit supplementation on local vs. systemic IL-10 generation,
which may have important therapeutic applicability in diabetic
patients.
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