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ABSTRACT

Motivation: Studying combinatorial patterns in cancer genomic data-

sets has recently emerged as a tool for identifying novel cancer driver

networks. Approaches have been devised to quantify, for example, the

tendency of a set of genes to be mutated in a ‘mutually exclusive’

manner. The significance of the proposed metrics is usually evaluated

by computing P-values under appropriate null models. To this end, a

Monte Carlo method (the switching-algorithm) is used to sample simu-

lated datasets under a null model that preserves patient- and gene-

wise mutation rates. In this method, a genomic dataset is represented

as a bipartite network, to which Markov chain updates (switching-

steps) are applied. These steps modify the network topology, and a

minimal number of them must be executed to draw simulated datasets

independently under the null model. This number has previously been

deducted empirically to be a linear function of the total number of

variants, making this process computationally expensive.

Results: We present a novel approximate lower bound for the number

of switching-steps, derived analytically. Additionally, we have de-

veloped the R package BiRewire, including new efficient implementa-

tions of the switching-algorithm. We illustrate the performances of

BiRewire by applying it to large real cancer genomics datasets.

We report vast reductions in time requirement, with respect to existing

implementations/bounds and equivalent P-value computations. Thus,

we propose BiRewire to study statistical properties in genomic data-

sets, and other data that can be modeled as bipartite networks.

Availability and implementation: BiRewire is available on

BioConductor at http://www.bioconductor.org/packages/2.13/bioc/

html/BiRewire.html

Contact: iorio@ebi.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In the past few years, next-generation sequencing (NGS) tech-
nologies have progressed swiftly, and currently hundreds of gen-

omes can be simultaneously sequenced in a matter of weeks, at

more affordable costs. This opens a wide range of new avenues in

biological and biomedical research. In particular, because of the
established impact of the genomic background on disease

progression and response to drug treatment, cancer research

has significantly benefited from these advances. Comprehensive

catalogues of mutations in multiple cancer types have been
assembled and fruitfully used to identify new diagnostic, prog-

nostic and therapeutic targets (Barretina et al., 2012; Garnett

et al., 2012; ICGC et al., 2010; TCGA et al., 2008). Existing

large-scale projects, such as the Cancer Genome Atlas (TCGA;

TCGA et al., 2008), the International Cancer Genome

Consortium data portal (ICGC et al., 2010) and, recently, the

Genomics of Drug Sensitivity in Cancer (Garnett et al., 2012)

and the Cancer Cell Line Encyclopedia (Barretina et al., 2012),
provide invaluable opportunities to explore molecular alterations

that could potentially play a crucial role in a plethora of different

cancer types and their response to therapy (Stratton et al., 2009).
A key task in these projects is to distinguish between driver

mutations (i.e. those conferring selective clonal growth advan-

tage) and functionally neutral passenger mutations (which do

not contribute to tumour development) (Bignell et al., 2010;

Greenman et al., 2007). Once key driver mutated genes are iden-

tified, a fruitful analysis is to consider them in the context of the

pathways where they operate. This allows the identification of

cancer driver biological networks, whose altered functionality
results in the acquisition of a cancer hallmark (Hanahan and

Weinberg, 2011; Vogelstein et al., 2013). One of the ideas ex-

ploited to identify these networks is based on the assumption

that sets of mutations exhibiting statistically significant levels

of mutual exclusivity (ME) are likely to alter genes involved in

a common biological process that drives cancer development. It

has been noted that driver mutations in cancer occur in a limited

number of pathways and driver lesions in the same pathway do
not tend to occur in the same patient (Yeang et al., 2008).

A possible biological explanation is that if a crucial node is

altered in an oncogenic pathway, a secondary mutation on the

same pathway is unlikely to provide further selective advantage

to the cancer cell, thus it does not tend to be selected during

somatic evolution. Hence, sets of mutations exhibiting statistic-

ally significant levels of ME are likely to alter genes involved in a
common biological process that drives cancer development. On

the other hand, mutations of genes participating in different bio-

logical pathways may exert a synergistic effect in conferring

growth advantages to tumour cells. Therefore, investigations

have been devoted to searching for groups of genes that are

simultaneously mutated more often than expected by random

chance (Thomas et al., 2007; Uren et al., 2008).
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Based on these premises, the emergence of combinatorial

properties among patterns of genomic events has been investi-

gated in a number of recent studies, through the application of

novel statistical measures quantifying, for example, the ‘mutual

exclusivity’ or the ‘co-occurrence’ of different genomic lesions

(Ciriello et al., 2012; Cui, 2010; Gu et al., 2010; Miller et al.,

2011; Vandin et al., 2012; Yeang et al., 2008). Among these

studies, those aimed at identifying groups of genes whose muta-

tion patterns tend to ME are based on the same principle and are

conceptually similar (Ciriello et al., 2012; Miller et al., 2011;

Vandin et al., 2012), although they differ in two crucial meth-

odological aspects:

(i) The way sets of genes to be tested for ME are selected.

(ii) The way ME of a gene set is assessed and its statistical

significance is quantified.

In (Ciriello et al., 2012), for example, the authors designed

MEMo, a computational framework in which gene sets to be

tested for ME are derived from cliques (i.e. groups of genes

with complete pair-wise connectivity) identified in functional net-

works, assembled from publicly available signalling and pathway

maps. For the statistical assessment of ME, a variety of strategies

have been followed. Vandin et al. (2012) perform a significance

test simulating a null model by independently permuting the mu-

tations of each gene across patients, thus preserving the mutation

frequency gene-wise (but not sample-wise). In (Miller et al.,

2011), authors make use of tools from coding theory, and the

ME significance for a set of genes is computed algorithmically. In

contrast to these two methods, MEMo quantifies the sample

coverage (SC) of a set of genes in terms of the number of samples

in which at least one of them is mutated. Then the ME of the

gene set under consideration is computed as the divergence of its

SC from expectation. To evaluate the statistical significance of

this ME measure, P-values are computed under an appropriate

null model. This can be achieved by randomly permuting the

analysed dataset, while preserving the overall distribution of

observed alterations across both genes and samples. This is cru-

cial to preserve tumour specific alterations, heterogeneity in mu-

tation/copy-number alteration rates across patients and to let the

SC significance be proportional to the gene set ME. To generate

this null model, the authors make use of a permutation strategy

based on a random network generation model referred to as the

switching-algorithm (Milo et al., 2003). First the relevant infor-

mation in the data is represented as a binary event matrix (BEM)

(Fig. 1A): a ‘0–1 table’ in which the generic entry wði;jÞ is equal to

1 if in the i-th sample, the j-th gene is altered (by a non-synonym-

ous somatic mutation, a homozygous deletion or an amplifica-

tion), and is equal to 0 otherwise.

The uniform distribution on the set of 0–1 tables with fixed

marginal totals (i.e. with prescribed row-wise and column-wise

sums) is used as a null model in various contexts (Besag and

Clifford, 1989; Ponocny, 2001; Rasch, 1993). In ecological re-

search 0–1 tables, called ‘presence–absence’ matrices (PAMs)

(Mikl �os and Podani, 2004) are randomized to evaluate the devi-

ation of observed phenomena, such as the co-occurrence of dif-

ferent species in the same habitat, from random expectations

(Connor and Simberloff, 1979; Gotelli, 2000; Wilson, 1987).

Several algorithms exist to generate constrained and non-

constrained null models depending on which basic features of

the PAM are retained in the computations (Gotelli, 2000;

Gotelli and Entsminger, 2001). Nevertheless, the randomization

of moderately large matrices in a short space of time is still

challenging.
Ciriello et al. took advantage of tools from graph theory by

considering a BEM as the incidence matrix of a bipartite graph

(Gross and Yellen, 2006) (Fig. 1B). Then, they adapted the

switching-algorithm for network randomization with node

degree preservation to the problem of randomizing a BEM

Fig. 1. BEM randomization through the switching-algorithm. A bipartite

graph (B) is derived from the initial BEM by considering it as a graph

incidence matrix (A). A sequence of switching-steps (C and D) is per-

formed. In each of these steps, two edges (a,b) and (c,d) are randomly

chosen (C) and, if the edges (a,d) and (c,b) do not exist yet, they are added

to the network, while (a,b) and (c,d) removed (D). A rewired version of

the BEM is derived by considering the incidence matrix of the resulting

network after a sufficiently long sequence of switching-steps (E)
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while preserving its row- and column-wise sums (Milo et al.,

2003). If a BEM derived from a genomic dataset is considered

as the incidence matrix of a bipartite network G, then nodes in

the first set of G correspond to genes, and those in the second set

correspond to samples. Additionally, a node i in the first set is

connected to a node j in the second set if the genemapped by node

i is altered in the sample mapped by node j (Fig. 1A and B).

Defining the degree of a node as the number of its incident

links, row-wise sums of the BEM will correspond to degrees of

the nodes in the first set, whereas column-wise sums of the BEM

will correspond to degrees of the nodes in the second set. The

problem of randomizing a BEM while preserving its row- and

column-wise sums can then be reduced to the problem of shuffling

the links in the corresponding networkGwhile preserving its node

degrees, or ‘network rewiring’, with the additional constraint that

the shuffling should preserve bipartiteness (i.e. nodes in the

same subset should never be connected). Based on these premises,

in MEMo (Ciriello et al., 2012), randomized versions of a BEM

are generated by adapting the switching-algorithm to bipartite

networks. This method proceeds through a series of Monte

Carlo switching-steps to produce rewired networks, starting

from the original one, and preserving its degree distribution, as

summarized in Figure 1. For the Markov chain underlying this

algorithm to ‘forget’ the initial network (thus to minimize the

initial bias), a sufficiently large number of switching-steps

should be performed.

The presence of trends in the time series of network metrics

along the sample path of a Markov chain simulation is evidence

that the chain has not yet reached its stationary distribution (Ray

et al., 2012) (the required uniform distribution). If the Markov

chain has a slow mixing time (Stanton and Pinar, 2012), then the

number of iterations required to reach (approximate) stationarity

(the so-called burn-in time) may be very long. In (Milo et al.,

2003), the authors propose on empirical grounds that 100 times

the number of existing links (jEj) is an adequate burn-in time,

and this lower bound is generally used. In what follows, we will

refer to this bound as the ‘empirical bound’ (N0). The desired

number of random networks needed to compute empirical P-

values should then be multiplied by this number to obtain an

estimation of the total time requirements. When dealing with a

large number of tests (as are often required in the identification

of cancer network drivers, where the number of gene sets to test

is potentially very large), to achieve significance after multiple

hypothesis test correction, the number of random networks to be

generated (hence of switching-algorithm runs) could be in the

order of hundreds of thousands. Consequently, the amount of

time required to accomplish this task could be very high. This

would make routine analyses practical only on server clusters.

Here we propose a novel, analytically derived, approximate

lower bound to the number of switching-steps required by the

switching-algorithm to generate randomized versions of a BEM,

preserving genomic event distributions both across samples and

genes. Finally, we have implemented BiRewire, an R package

(Ihaka and Gentleman, 1996) allowing users

(i) to study and visualize trends in metrics over different num-

bers of switching-steps for a given BEM;
(ii) to determine the minimum number of switching-steps

required to reach the approximate stationary distribution

(here the uniform distribution on the set of allowed

BEMs);
(iii) to generate randomized BEMs using the switching-

algorithm with the number of switching-steps set to

either this lower bound or a user-defined one.

We illustrate the application of BiRewire with examples where

the BEMs are derived from real datasets from the TCGA

(TCGA et al., 2008) and other studies, after the applications of

state-of-the-art filters for the identification of somatic mutations

affecting protein function and cancer-specific driver genes.

Finally, we compare the obtained execution times and P-value

computations with those obtained with different implementa-

tions of the switching-algorithm and different bounds.

2 METHODS

We analytically derived an approximate lower bound for the number of

switching-steps to be performed by the switching-algorithm, when applied

to a bipartite network G=ðV;EÞ (where V is the set of vertices and E the

set of links, with V=fVr;Vcg). This bound is equal to

N=
jEj

2ð1� dÞ
ln ð1� dÞjEj ð1Þ

where d is the edge density of the original network, defined as the ratio

between jEj and the number of edges of a fully connected bipartite graph

with the same number of nodes in the two classes: d=jEj=ðjVrj � jVcjÞ.

With respect to the empirical bound proposed in (Milo et al., 2003) (i.e.

N0=100jEj), our bound can be expressed as

N=
N0

200ð1� dÞ
ln
ð1� dÞN0

100
ð2Þ

at least for bipartite graphs.

In what follows, we will denote with GðkÞ a rewired version of the bi-

partite networkG obtainedwith the switching-algorithm through k switch-

ing-steps. We assume intuitively that GðkÞ is a rewired version of G if

(1) The average similarity between G and its rewired version GðkÞ tends

to remain constant when k is further increased (i.e. performing

additional switching-steps does not make GðkÞ more different

from G, on average);

(2) The average similarity between G and GðkÞ is sufficiently close

to the expected similarity between any pair of random bipartite

networks with the same size, edge density and node degrees of G

(i.e. between any pair of rewired versions of G).

The first condition above is often used when monitoring convergence

of the sampler, where trends within chains are studied to quantify the

‘forgetting’ of the initial state (Brooks and Gelman, 1998). Taken to-

gether, the two conditions are necessary and sufficient to claim that

after k switching-steps the initialization bias of the underlying Markov

chain reaches a minimum. When they are verified, performing additional

switching-steps does not make GðkÞ any more different from G, on aver-

age. The second property guarantees that G andGðkÞ are indistinguishable

from any pair of networks sampled independently from the null distribu-

tion. As a consequence, GðkÞ can be considered as an approximate obser-

vation drawn from the uniform distribution of all the possible bipartite

networks with the same number of nodes, links and degrees as G. By

running the switching-algorithm on bipartite networks of different sizes

and edge densities, we first verified that after a specified number k of

switching-steps, which is much lower than N0, Conditions 1 and 2 are

met. Then, we went on to empirically verify that the fulfilment of our

convergence criteria provides a good estimation of the autocorrelation

i619

Genomic data randomization preserving alteration counts

n fact, i
binary event matrix (
)
while 
randomising 
randomised 
summarised 
In order f
so 
p
-
in order 
randomised 
binary event matrix (
)
:
visualise 
randomised 
Cancer Genome Atlas (
)
cancer 
p
:
In fact, w
conditions 
l


time (Stanton and Pinar, 2012): a standard tool for estimating the con-

vergence of a Markov chain to its stationary distribution (Sokal, 1989).

Finally, we present a novel approximate lower bound N (which was

derived analytically) for the number of switching-steps k at which our

two conditions hold. We show that after N switching steps the distribution

of the Jaccard index (JI; a measure of similarity) between GðkÞ and G

reaches the same steady state as is reached at N0, at least on the tested

networks. These networks were chosen to have topological features

make their incidence matrix comparable with a BEM derived from a typ-

ical large-scale NGS dataset. These results were obtained using an efficient

implementation of the switching-algorithm, detailed in the Supplementary

Materials, and the R package igraph (Csardi and Nepusz, 2006).

3 RESULTS

3.1 Randomness convergence across switching step

Based on the same premises of the output-based method pro-

posed in (Johnson, 1996), to show that after a specified number
of k switching-steps the average similarity between G and GðkÞ

converges (i.e. it tends to remain constant even if applying add-
itional switching-steps), we generated several random bipartite

networks containing a total number of nc � nr=20; 000 nodes
(with nc=jVcj and nr=jVrj), a fixed edge density equal to 15%

(3000 edges) and different levels of squareness (i.e. nc=nr ratio).
By adopting an experimental setting similar to that described in
(Stanton and Pinar, 2012), for a given level of squareness, each of

the corresponding networks G was then given as input to 50
different instances of the switching-algorithm, each performing

N0=100� 3000=3� 105 switching-steps. The output of each of
these instances was then sampled every 100 switching-steps and

collected, at the j-th sample time, into a set of rewired networks
Rj=fG

ð100jÞ;ig with i=1; . . . ; 50 and j=1; . . . ; 100. Finally, at

each sample time j, the average similarity between each rewired

network in Rj and the original network was computed (to verify
Condition 1), as well as the average pair-wise similarity between

each pair of networks in Rj (to verify Condition 2). To quantify
the extent of similarity between two networks, the Jaccard Index

(JI) (Jaccard, 1901) between their incidence matrices was com-
puted. If we denote with B the incidence matrix of the network G

and with Bk the incidence matrix of its rewired version GðkÞ, then

it can be easily verified that the JI between G and GðkÞ is equal to

JIðG;GðkÞÞ=
xðkÞ

2jEj � xðkÞ
ð3Þ

where jEj is the number of links contained in G (equal to that of

GðkÞ) and xðkÞ=
P

i;jBi;jB
k
i;j, is the bitwise sum of the Hadamard

product between the two matrices (i.e. the number of ones in

common between them, hence the number of common links

across the two networks). Results of this simulation are depicted
in Supplementary Figure S1A. After an adequate number of

switching-steps (which is much lower than N0), both the average
similarity between the rewired networks and the initial networks

(indicated by the blue curves) and the average pair-wise similarity
computed between each pair of rewired networks (red curves)

plateau at the same level (consistently with Conditions 1 and 2).

These results suggest that the true lower bound for the number of
switching-steps required by the switching-algorithm to rewire bi-

partite networks, providing them with the maximal level of ran-
domness, is much lower than N0. For reference, we include in

Supplementary Figure S1A the expected similarity between any

pair of random bipartite networks with the same number of nodes

and edges of G (green line in Supplementary Fig. S1A) but with

possibly different node degrees, derived as detailed in the

Supplementary Materials. This gives an indication of how much

the distribution of networks under the null model differs from the

distribution under the alternative model in which node degrees are

not preserved. Results from a similar simulation but starting from

bipartite networks containing jVrj=100 and jVcj=200 nodes and

different levels of edge densities are shown in Supplementary Fig.

S1B. Also in this case, after an adequate number of switching-

steps (which is again much lower than N0), the average similarity

between the rewired networks and the initial ones (indicated by

the blue curves) reaches a plateau level that is equal to the one

reached by the average pair-wise similarity computed between

pairs of rewired networks (consistently with Conditions 1 and

2). A final empirical study showing that the fulfilment of our con-

vergence criteria provides a good estimation of the autocorrel-

ation time (Stanton and Pinar, 2012), hence of the mixing of the

underlying Markov chain, is detailed in the Supplementary

Materials and Supplementary Figure S2.

3.2 A novel lower bound to the number of switching-steps

required to rewire bipartite networks

In this section, we summarize the derivation of a lower boundN to

the number of switching-steps that the switching-algorithm should

perform to rewire a bipartite network, as a function of its number of

nodes and edges. The starting point of our proof is the definition of

similarity between a bipartite networkG and its rewired versionGðkÞ

(defined in the previous section) based on the JI:

sðkÞ=
xðkÞ

2jEj � xðkÞ
ð4Þ

In the first part of our proof (provided as SupplementaryMaterial),

we formulate the mean-field equation (Barab�asi et al., 1999) for

xðk+1Þ (see Lemma 1 of the proof) and consequently for Equation

(4). Then from this mean-field equation, we derive a fixed point x

and a convergence time N, in terms of the number of switching-

steps k (Lemma 2). Finally, we show that the switching-algorithm

can be used to approximate null models for G through a minimum

number of N switching-steps (Lemma 3). The mean-field equation

for xðk+1Þ is equal to

xðk+1Þ=
X5
i=1

p
ðkÞ
i fiðx

ðkÞÞ ð5Þ

where the functions fðxðkÞÞ represent five possible values of xðk+1Þ

given xðkÞ, depending on the switching step performing successfully

or not, and p
ðkÞ
i are the probabilities associated with these values

(see Propositions 1, 2, 3 in the proof). Specifying these probabilities

allow the mean-field Equation (5) to be written as a second-order

linear recursive sequence xðk+1Þ=ðjEj+1ÞxðkÞ � jEjxðk�1Þ for

which a closed form is provided in (Brousseau, 1971). This yields

xðkÞ=mk jEj �
q

1�m

� �
+

q

1�m
ð6Þ

where m and q can be expressed as m=
ðtjEj � 2t+2jEjÞ

jEjt
, and
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q=
ð2tjEj � 2jEj2Þ

t2
, with t=jVrj � jVcj the number of possible

edges preserving bipartiteness.
For a fixed ", where 05" � 1, we estimate N as the minimum

value such that

jxðNÞ � xj5"$ N4log mgðz; "Þ ð7Þ

with gðz; "Þ=
"t

tjEj � jEj2
, and x is the fixed point of the recursion

in Equation (6).

As shown in our proof (Proposition 4), for the purpose of
finding a lower bound N (rather than the exact value of required
switching-steps), we can take x=jEj2=t as the unique fixed point

of 6, (Proposition 5 in the proof).
Fixing "=1, from the asymptotical equivalence ln ð1+xÞ �

ln x and Lemma 2 of the proof it follows that

N=
jEj

2ð1� dÞ
ln ð1� dÞjEj

where jEj and d are defined as in the previous sections.

With a similar procedure, a mean-field equation can also be
estimated for the similarity between any pair of networks BðkÞ

and CðkÞ derived from the original network G through two dif-
ferent instances of the switching-algorithm, performing k switch-
ing-steps (Lemma 3 of the proof). Briefly, we derived a recursive

sequence for rðkÞ=sðBðkÞ;CðkÞÞ. As shown in the proof
(Proposition 6, 7) and similarly to Equation (6), this sequence

can be expressed as a second-order linear sequence:

rðkÞ=mk jEj �
q

1�m

� �
+

q

1�m
ð8Þ

but with parameters m=
ðjEj � 4Þt2 � ðjEj2 � 8jEjÞt� 4jEj2

jEjt2 � jEj2t
and

q=� 4
ðjEjt2 � 2tjEj2+jEj3Þ

jEjt2 � t3
. Comparing the two mean-field

Equations (6) and (8), it follows that rðkÞ � xðkÞ. This implies

that the average similarity between any two rewired versions of a

network G cannot be greater than the similarity between G and

each of the two individual rewired versions. As a conclusion, our

proof shows that our novel bound guarantees a maximal level of

edge mixing, and that the similarity between any pair of rewired

versions of a given network can not be greater than those between

them and the original one.

Finally, we conducted an empirical study to show that after N

switching steps, the initial bias of the Markov chain underlying
the switching-algorithm, quantified by the residual similarity to

the original network (i.e. xðkÞ), is minimized at least as much as it
is minimized after N0=100jEj switching steps [i.e. the empirical

bound proposed in (Milo et al., 2003)]—details are provided in

the Supplementary Materials and Supplementary Figures S3 and
S4. Taken together with our formal proof, and empirical

study of equivalence between our convergence criteria and the
auto-correlation time estimation criteria (detailed in the

Supplementary Materials and Supplementary Fig. S2), these re-
sults suggest that N can be considered as a good ‘burn-in time’

(in terms of switching-steps) for the Markov chain underlying the

switching-algorithm. As a consequence, N switching-steps are

enough to simulate samples from the uniform distributions of

all the possible bipartite networks with prescribed node degree,

through individual consecutive executions of the switching-algo-

rithm, with an approximation power equal to the one attainable

when performing N0 switching-steps.

3.3 Time requirements and statistics comparison for

different bounds and implementations on real datasets

We compared the performances of the switching-algorithm when

applied to a real large cancer genomics dataset, in terms of exe-

cution time on a typical desktop computer, by using different

software implementations and two user-defined numbers of

required switching-steps: our novel lower bound N and the em-

pirical one suggested in (Milo et al., 2003),N0. For the purpose of

this comparison, we used breast cancer samples and their respect-

ive mutations downloaded from the TCGA (TCGA et al., 2008)

data portal. A BEM (provided as Supplementary Dataset) was

constructed from the deleterious somatic mutations derived from

this dataset (as detailed in the SupplementaryMaterials), yielding

757 rows (i.e. samples), 9757 columns (i.e. genes), 19 758 non-null

entries (i.e. variants), corresponding to an edge density equal to

0.27% in the corresponding bipartite network. For this dataset,

the lower bound to the number of switching step computed with

our method corresponds to N=97951, whereas the empirical

one is N0=1975 800 (Supplementary Fig. S5). Results, in terms

of execution times required to generate 10000 rewired versions of

the resulting BEM through our implementation of the switching-

algorithm, the rewire function of the igraph package (Csardi and

Nepusz, 2006), the commsimulator function of vegan package

(one of the most famous packages for ecology research)

(Dixon, 2003) and two different numbers of required switch-

ing-steps (respectively, N and N0), are summarized in Table 1.
In Table 1, we report also the residual average Jaccard similarity

scores of the rewired networks with respect to the original one.

First columns of the table refer to our optimized implementation

of the switching-algorithm, while data in the second and the third

ones refer to the rewire function, provided in two different versions

of the igraph package (respectively, v0.6.1 and the latest v0.6.5)

(Csardi and Nepusz, 2006). In the fourth column, we report time

requirements of the commsimulator function contained in the

vegan package (Dixon, 2003) when used with the ‘swap’ method

parameter (i.e. the switching-algorithm). The rewire function con-

tained in igraph v0.6.1 does not implement the switching-algorithm

but proceeds through a series of rewiring steps (detailed in the

Supplementary Materials) through a strategy that systematically

biases the edge selection and requires, at each step, a local explor-

ation of the network that is generally slower than storing and

retrieving individual edges from an edge list (time complexity ana-

lysis provided in the Supplementary Materials). In the rewire func-

tion contained in the latest version of the igraph package (v0.6.5),

authors implemented the switching-algorithm. As a consequence,

for this version of the package, executing N switching-steps guar-

antees that the residual similarity reaches its plateau (as shown in

the third column of Table 1). However, computational time re-

quirements for this implementation (third column in Table 1) are

vastly higher than the previous one, making this function practic-

ally unusable on large genomics datasets. A detailed analysis of its

asymptotical time complexity (far from being trivial) has not been
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included yet in the documentation of the package. In Table 1, the

performance scores marked with (a) have been estimated starting

from the execution time requirements and the average residual

similarities observed on limited number of samples of rewired ver-

sions of the original network. For reference, we also include in

Table 1 the performances (in terms of time requirements and re-

sidual similarity to the original network) of the r2dtable function,

included in the vegan package, to generate 10000 random 0–1

tables with same marginal totals of our BEM. This function

makes use of Patefields algorithm (Patefield, 1981). Also in this

case, the time requirements were significantly higher (�1:92� 104

s versus �3:2� 103 s), and the residual similarity is comparable

with the one obtained with our implementation of the switching-

algorithm and our bound.
Finally, to investigate the consistency of ME significance when

using null models generated with different number of switching

steps, we analysed ME patterns for the protein affecting muta-

tions of a colorectal cancer dataset assembled from the TCGA

(TCGA et al., 2008) and other studies, as described in the

Supplementary Material. This yielded a small BEM (provided

as Supplementary Dataset) composed by 206 rows (i.e. samples),

78 columns (i.e. genes), 793 non-null entries (i.e. variants), cor-

responding to an edge density equal to 5% in the corresponding

bipartite network. For this dataset, the lower bound to the

number of switching step computed with our method corres-

ponds to N=2497, whereas the empirical one is N0=79 300.

We tested the ME significance (as described in the MEMo ap-

proach and in the previous sections) for all the possible 3003 gene

pairs by using two different null models, simulated by generating

10 000 randomized version of the BEM throughN andN0 switch-

ing steps, respectively. We observed an overall concordance of

resulting coverage P-values across the two null models and a

perfect match between the corresponding two sets of gene pairs

with a significant ME (P50.05 and fdr520% after Benjamini–

Hochberg correction of the P-values for multiple hypothesis test-

ing). Results for gene pair with coverage 450% are provided as

Supplementary Data and Figure 2.

3.4 The BiRewire package

We have developed R package BiRewire (available on

Bioconductor; Gentleman et al., 2004), which provides high-

performing routines for generating random bipartite graphs

with prescribed node degrees (using the switching-algorithm),

for the analysis of convergence diagnostics across switching-

steps, and the estimation of the minimal number of steps accord-

ing to the formula described in Equation (1). BiRewire is vastly

faster than other existing implementations, not only because it

uses our new lower bound but also because it implements an

optimal version of the switching-algorithm, as detailed in the

Supplementary Materials. Specifically, with BiRewire, users can

(i) create bipartite graphs starting from genomic binary event

matrices (or, generally, from any kind of PAMs), (ii) perform

an analysis, which consists of studying the sample path (time

series) of the JI across switching-steps (with user-defined sam-

pling times), and estimating the lower bound to achieve

Table 1. Performance comparisons in terms of execution time and residual bias across different algorithms and bounds

BiRewire igraph v0.6.1 igraph v0.6.5 vegan swap vegan Patefield

(A) Execution time

N 53min 20 s 5 h 58 s 43 days 154 days 5h 21min 29 s

6 h 21min 21h 36mina

28 s

N0 9h 47 days 2 years 145 days 8 years 114 days

37min 30 s 7h 37min 55 s 41min 12 sa 22 h 53min 20 sa

(B) Residual average Jaccard similarity

N 0.006716 0.907788 0.006744 0.006762a 0.006921

N0 0.006744 0.299971 0.006723a 0.006879a

Note: aEstimations.

Fig. 2. ME P-value comparisons. ME P-values for 237 gene pairs, whose

coverage is 450% in the BEM derived from the colorectal cancer data-

set. Positions on the two axes indicate�log10 P-values computed by using

two different null models simulated by generating 10000 randomized

version of the original BEM, through the switching algorithm and differ-

ent numbers of switching steps: our novel lower bound and the empirical

one. An overall consistency of P-values can be observed and a set of 11

gene pairs has a significant level of ME (at a false discovery rate 520%)

on both the null models
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convergence to the uniform distribution on the set of allowed
bipartite networks, (iii) generate rewired versions of a bipartite
graph with the analytically derived bound of switching-steps or a
user-defined one and (iv) derive projections of the starting net-

work and its rewired version and perform different graph-theory
analysis on them. All the functions of the package are written in
C and R-wrapped.

4 CONCLUSIONS

We presented a novel approximate lower bound for the minimal
number of steps required by the switching-algorithm to simulate

genomic datasets from relevant null models. This new lower
bound was derived analytically, and it considerably reduces the
computational time for estimating the significance of combina-

torial metrics such as mutation mutual exclusivity and co-occur-
rence under these null models. We showed that this novel bound
strongly reduces computational time requirements, when tested

on a real dataset and a typical desktop computer architecture
paired with the R package BiRewire (which we have developed).
Our methods can be readily adapted to the computation of P-
values under similar null models, which are appropriate for other

kinds of data that can be modelled as a presence-absence matrix
(hence, a bipartite network) preserving the ‘presence-distribu-
tions’ both across rows and columns. We believe that its applic-

ability range covers different fields of computational biology and
will grow in the future, as increasingly more data for which bi-
partite graphs provide a natural representation become available.
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