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Abstract
Despite major research efforts to elucidate mechanisms of non-union formation, failed fracture healing remains a common 
complication in orthopedic surgery. Adequate vascularization has been recognized as a crucial factor for successful bone 
regeneration, as newly formed microvessels guarantee the supply of the callus tissue with vital oxygen, nutrients, and growth 
factors. Accordingly, a vast number of preclinical studies have focused on the development of vascularization strategies to 
stimulate fracture repair. However, recent evidence suggests that stimulation of blood vessel formation is an oversimpli-
fied approach to support bone regeneration. This review discusses the role of vascularization during bone regeneration and 
delineates a phenomenon, for which we coin the term “the vascularization paradox of non-union-formation”. This view is 
based on the results of a variety of experimental studies that suggest that the callus tissue of non-unions is indeed densely 
vascularized and that pro-angiogenic mediators, such as vascular endothelial growth factor, are sufficiently expressed at the 
facture site. By gaining further insights into the molecular and cellular basis of non-union vascularization, it may be possible 
to develop more optimized treatment approaches or even prevent the non-union formation in the future.
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Introduction

Despite impressive progress in our understanding of the 
mechanisms of delayed healing and non-union formation, 
failed fracture healing still represents a major clinical chal-
lenge. Non-unions are defined by the U.S. Federal Drug 
Administration as ‘failure to achieve union by 9 months 
since the injury, and for which there has been no signs of 
healing for 3 months’ [1]. However, others define non-union 
formation in long bones after a period of 6 months with 
no radiological sign of fracture healing [2]. In general, the 
diagnosis of non-union should include both the clinical and 
radiological examination of the patient [3].

Large segmental bone defects, infections, tumors, and 
systemic comorbidities as well as mechanical instabilities 
associated with insufficient osteosynthesis bear a high risk 
of non-union formation [4–7]. However, in many cases, the 
cause of fracture healing failure is unclear, and thus, effec-
tive treatment strategies are lacking. Accordingly, the failure 
rate of fracture healing is still up to 10% [8]. Furthermore, 
non-unions do not only result in significant pain and loss of 
function with subsequent reduction of quality of life, but 
additionally cause a substantial economic burden on the 
health care system [9].

Bone regeneration involves multiple biological and bio-
chemical processes. Among these, vascularization is sup-
posed to be essential for successful fracture healing [10, 11]. 
Bone is a highly vascularized tissue, which crucially depends 
on the close spatial and temporal interaction between blood 
vessels and osteogenic cells to maintain bone development 
and remodeling [12]. During bone repair, the skeletal vas-
culature provides vital cells, hormones, and nutrients to the 
fracture site to allow for callus remodeling from avascular 
cartilaginous tissue toward mineralized woven bone [13]. 
Therefore, a considerable number of studies have focused 
on the application of vascularization strategies to prevent 
or treat non-union formation. These strategies involve (i) 
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biophysical applications, (ii) systemic pharmacological 
interventions, and (iii) tissue engineering, including the 
development of sophisticated scaffold materials, local 
growth factor delivery systems, cell-based techniques, and 
surgical vascularization approaches [10].

However, there is evidence that vascularization is only 
one piece of the puzzle in the much more complex process 
of bone regeneration. Hence, this review compares and dis-
cusses the current literature focusing on the role of vascu-
larization within the complex scenario of bone regeneration, 
elucidating both, supportive and inhibitory actions of the 
blood vessel formation on the healing outcome.

The role of vascularization in bone regeneration

The skeletal vasculature is important for bone develop-
ment and remodeling as well as for bone regeneration 
[14, 15]. Previous studies using dye injections and radi-
omicropraphs for the visualization of blood vessels have 
provided important fundamental data on the organization 
of the bone vasculature, particularly in long tubular bones 
[16, 17]. More recently, a plentitude of technological 

advancements in immunohistochemical and diagnostic 
imaging techniques, such as cell type-specific markers as 
well as confocal or two-photon microscopy and microcom-
puted tomography (µCT) with three-dimensional imaging 
reconstruction, have markedly improved our understanding 
of the morphology and specialized functions of the bone 
vasculature [18–21].

Similar to other tissues, the vasculature of long bones 
exhibits a strongly hierarchical architecture with an arterial 
branch feeding a dense network of capillaries, which drains 
in venules coalescing into a large vein within the center 
of the diaphysis [19]. Interestingly, capillaries in bone tis-
sue can be distinguished by their anatomical localization 
and immunohistochemical markers. Type H capillaries are 
organized as vessel columns and can be found in the met-
aphysis, where they express high levels of the junctional 
protein CD31 and the sialoglycoprotein endomucin (Emcn) 
[22]. Type L capillaries form a dense, highly branched cap-
illary network in the bone marrow cavity of the metaphy-
sis. These types of capillaries express only low levels of 
CD31 and Emcn (Fig. 1). Of note, type H and L capillaries 
are interconnected to a morphological and functional unit, 

Fig. 1  Architecture of the long bone vasculature according to Sivaraj 
et al. [22]. A Confocal image of endomucin (Emcn)-immunostained 
(red) endothelium in a 100  μm-thick section of P21 murine femur. 
Regional differences in the organization of the vasculature are evi-
dent, as highlighted in the higher magnification images (B, C) of the 
regions marked by blue arrows. B  In the metaphysis, type H vessels 
 (CD31high  Emcnhigh) exhibit a columnar organization and arterial con-
nections (arrowheads); the panel on the right shows a higher magnifi-
cation of the boxed region. C In the diaphysis, highly branched sinu-

soidal type L capillaries  (CD31low  Emcnlow) are found; these connect 
to endosteal type H vessels in the proximity of compact bone. D Con-
focal images of transverse sections through a P21 femur in the region 
of the growth plate (i), metaphysis (ii), and diaphysis (iii). SOC sec-
ondary ossification center, epi  epiphysis, bm  bone marrow cavity, 
gp growth plate, mp metaphysis, dp diaphysis, cv central vein, cb cor-
tical bone (Reprinted with permission of The Company of Biologists: 
[Development], [22] copyright (2016))



281Angiogenesis (2022) 25:279–290 

1 3

providing a sufficient blood supply for bone development 
and metabolism [22].

Ten to 15% of the total cardiac output supplies the skel-
etal vascular system [23], providing the surrounding tissue 
with adequate amounts of oxygen and nutrients as well as 
hormones, growth factors and neurotransmitters, such as the 
brain-derived serotonin [24]. The importance of the bone 
vasculature into maintaining the bone cells’ survival and 
activity is illustrated in skeletal diseases, such as craniofa-
cial dysmorphology [25] and idiopathic osteonecrosis [26]. 
These diseases are caused by insufficient angiogenesis dur-
ing skeleton development or by an inadequate vascular func-
tion within matured bone.

Trauma to the musculoskeletal system induces a disrup-
tion of the vital vascular network, resulting in acute hypoxia 
and necrosis of the surrounding bone tissue [27]. The inflam-
matory response, which is mainly mediated by macrophages 
and granulocytes, recruits mesenchymal and osteoprogenitor 
cells to the fracture site [28, 29] (Fig. 2). These cells infil-
trate the callus area through sprouting capillaries originating 
from the endosteum and bone marrow [12, 30]. Following 
the establishment of a stable callus tissue within the fracture 
zone, a remodeling cascade is initiated, in which osteoclas-
tic removal of excessive bone tissue and associated angio-
genesis leads to the development of mature lamellar bone 
[12]. Subsequently, the original bone morphology and the 
vascular supply is restored. A plenitude of mediators and 
cytokines is involved in this healing and remodeling pro-
cess, including bone morphogenetic protein (BMP)-2 and 
BMP-4 [31, 32], basic fibroblast growth factor (bFGF) [33], 
transforming growth factor (TGF)-β [34], platelet-derived 
growth factor (PDGF) [35], receptor activator of NF-κB 
ligand (RANKL), a stimulator of osteoclastogenesis, osteo-
protegerin (OPG), an inhibitor of osteoclastogenesis [36], 
and vascular endothelial growth factor (VEGF) [37] (Fig. 2). 
The latter plays a crucial role, not only in the stimulation of 
angiogenesis during fracture repair, but also in the osteoclast 
recruitment, activity, and differentiation, and thus, in induc-
ing callus remodeling during the process of endochondral 
ossification [38, 39].

In addition, in a recent study Romeo et al. [40] identified 
a novel subtype of vascular associated osteoclasts (VAOs), 
which are thought to be pivotal for modulating blood ves-
sel growth in bone by directly regulating the anastomosis 
of type H vessels. Moreover, the authors demonstrated a 
cartilage resorbing function of endothelial cells that regu-
lates directional bone growth by releasing proteinases such 
as metalloprotinease-9 [40]. These findings indicate the 
highly complex cellular interactions between osteogenic 
and endothelial cells during bone growth and regeneration.

Pericytes are vital for the stabilization and maturation of 
blood microvessels [41]. Tawonsawatruk et al. [42] dem-
onstrated by injecting pericytes into the fracture site of 

bone defects in rats that this cell type is capable of prevent-
ing non-union formation. In addition, Supakul et al. [43] 
revealed that pericytes possess the ability to differentiate into 
osteoblasts and osteoclasts and, thus, directly contribute to 
the process of bone regeneration.

With a growing elderly population, the aging-associated 
deterioration of bone regeneration becomes of increasing 
importance [44]. It has been reported that the impaired frac-
ture healing in the aged is associated with a dysfunction 
of the bone vascular system, resulting in a delay of angio-
genesis during bone repair [44, 45]. Interestingly, aging is 
associated with a reduction of pericytes within the bone vas-
cular system [46]. Therefore, it may be speculated that the 
dysfunction of the bone vascular system and the impaired 
angiogenesis during bone regeneration in the elderly, origi-
nates from the age-induced loss of pericytes.

The blood flow within the bone vasculature is thought 
to play a crucial role for adequate angiogenesis. In a recent 
study, Ramasamy et  al. [47] demonstrated by intravital 
imaging in mice that a reduced blood flow within the bone 
vasculature results in an impaired angiogenesis and osteo-
genesis as well as a downregulation of Notch-signaling of 
endothelial cells. In aged mice the Notch-signaling activ-
ity of endothelial cells is also downregulated, leading to an 
impaired angiogenesis and osteogenesis [47]. Moreover, 
the blood flow within the bone vasculature can be severely 
disturbed by various skeletal and systemic diseases, which 
then also may lead to alterations of bone regeneration. These 
include (i) avascular necrosis of the femoral head with a 
decreased number of endothelial progenitor cells and blood 
flow interruption caused by a damaged endothelial cell 
membrane, subsequently resulting in ischemic injury and 
necrotic cell death, (ii) postmenopausal osteoporosis lead-
ing to a decreased blood vessel volume and reduced expres-
sion of pro-angiogenic markers, (iii) diabetes mellitus with 
an associated microangiopathy, causing vasoconstriction 
and a decreased blood vessel supply and (iv) atheroscle-
rosis, resulting in oxidized lipid formation, which nega-
tively affects bone mass by increasing anti-osteoblastogenic 
inflammatory cytokines and decreasing pro-osteoblastogenic 
Wnt ligands [48].

There is strong evidence that a disturbance in the angio-
genic response after skeletal injury leads to detrimental con-
sequences for bone regeneration [10]. Various experimental 
animal studies indicate that the blockade of vasculariza-
tion by TNP-470, non-steroidal anti-inflammatory drugs 
(NSAIDs) or fumagillin, hampers fracture repair and may 
eventually lead to atrophic non-union formation [49–52]. 
Accordingly, major efforts have been undertaken to estab-
lish and validate novel vascularization strategies for the 
prevention of fracture healing failure. Biophysical stimula-
tion represents a minimally invasive approach to stimulate 
regenerative and anabolic tissue activities. Applications, 
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such as extracorporeal shock wave therapy (ESWT) [53], 
low-intensity pulsed ultrasound (LIPUS) [54], low fre-
quency pulsed electromagnetic fields (ELF-PEMFs) [55], 

and hyperbaric oxygenation (HBO) [56] are able to stimu-
late the upregulation of pro-angiogenic growth factors, and 
thus, the process of vascularization, osteogenesis, and bone 

Fig. 2  Cell types and growth factors involved in fracture repair. After 
fracture, a richly vascularized callus tissue is formed, which provides 
the fracture site with cells vital for bone regeneration. Inflammatory 
cells, such as macrophages and granulocytes recruit further cell types 
to the fracture site. MSCs provide a cell pool for differentiation and 
proliferation. Osteoblasts and osteoclasts coordinate the process of 
bone growth and remodeling. Moreover, a plenitude of growth fac-
tors and mediators are expressed during bone regeneration, including 
BMP-2 and BMP-4, bFGF, TNF-α, IL-6, IL-1β, TGF-β, monocyte 
chemotactic protein (MCP)-1, PDGF, RANKL, a stimulator of osteo-
clastogenesis, OPG, an inhibitor of osteoclastogenesis, as well as the 

pro-angiogenic factor VEGF. After fracture, the resulting hematoma 
triggers an immune response. Granulocytes are among the first to 
arrive at the fracture site by newly formed blood vessels. These cells 
themselves trigger the migration of macrophages and monocytes to 
the callus tissue by pro-inflammatory cytokines such as IL-6 and 
MCP-1. Macrophages initiate the recruitment of MSCs to the frac-
ture site by another repertoire of pro-inflammatory cytokines like 
IL-1β and TNF-α. Furthermore, MSCs differentiate into osteoblasts, 
whereas monocytes differentiate into osteoclasts. Subsequently osteo-
blasts and osteoclasts enable callus remodeling and bone formation at 
the fracture site
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formation [57–59]. Systemic pharmacological treatment 
represents another approach, which is feasible and easy 
to perform in a clinical setting. Erythropoietin (EPO), the 
primary regulator of erythropoiesis, has been demonstrated 
in a non-union mouse model to stimulate endochondral 
ossification and fracture repair [60, 61] by promoting cell 
proliferation, angiogenesis and bone formation [62]. The 
parathyroid fragment PTH 1-34 (teriparatide), the main 
regulator of calcium metabolism, is an additional promis-
ing compound to stimulate vascularization and bone regen-
eration. Teriparatide does not only enhance the migration 
of pro-angiogenic  C45+/CD34+ cells and the upregulation 
of VEGF-A mRNA, resulting in an increased neovasculari-
zation and cell survival [63], but also accelerates fracture 
healing [64] and bone formation in segmental bone defects 
[65]. Moreover, advanced tissue engineering approaches for 
bone regeneration show great potential in preclinical trials. 
These strategies have used combined cell populations of pro-
angiogenic and pro-osteogenic cell lines, such as endothelial 
and osteoblastic cells [66, 67], to support bone regeneration 
in critical bone healing. Notably, the highly vascularized 
periosteum represents a vital prerequisite for successful frac-
ture repair by providing the cortical blood supply [68] and 
serving as a source of osteogenic cells [69]. Accordingly, a 
plentitude of tissue engineering approaches focuses on the 
design of artificial periosteal substitutes. These tissue engi-
neered constructs consist of a variety of materials including 
synthetic polymers [70], ceramics [71], and polysaccharides 
[72]. The addition of cells sheets with mesenchymal stem 
cells (MSCs) and endothelial cells, which mimic the physi-
ological architecture of the native periosteum, has been used 
to further stimulate the angiogenic capacity of these peri-
osteal substitutes, thus, showing great potential in promoting 
vascularization and fracture healing in experimental studies 
[70, 72].

The vascularization paradox

A variety of reviews emphasize the crucial role of vasculari-
zation for successful bone regeneration, however till now, no 
review has delineated the fact that too much vascularization 
may not improve fracture healing, but may even promote 
healing failure. Santavirta et al. [73] already reported in 
1992 that delayed unions and non-unions consist of vascu-
larized connective tissue. Several other histological studies 
confirmed these results and could demonstrate that non-
unions are indeed considerably vascularized [74–77]. For 
instance, Garcia et al. [78] analyzed the fibrous callus tissue 
in a non-union model in mice by immunohistochemistry and 
detected abundant blood vessel formation within the fracture 
gap near the cortical bone ends (Fig. 3). In a follow-up study 
[79], the expression of VEGF, BMP-2, and BMP-4 was addi-
tionally analyzed in non-unions by Western blot analyses. 

Noteworthy, the intrinsic angiogenic response was sufficient 
for adequate vascularization during non-union formation, 
however, the failure of fracture healing was associated with a 
decreased expression of the pro-osteogenic proteins BMP-2 
and BMP-4 [79]. Moreover, our own recent investigation on 
the effects of pantoprazole on fracture healing in aged mice 
demonstrated that impaired bone healing is associated with a 
decrease in the protein expression ratio of pro-osteogenic to 
pro-angiogenic growth factors, such as VEGF and cysteine 
rich protein(CYR)61 [80].

Eckardt et  al. [81] demonstrated that the delivery of 
VEGF to the osteotomy gap during distraction osteogenesis 
could not improve blood flow, biomechanical stiffness, and 
bone formation of the bone regenerate. Interestingly, also 
the application of the VEGF inhibitor VEGF R2/F Chimera 
did not affect the process of bone healing [81]. These results 
may suggest that there are either other factors than VEGF-
dependent angiogenesis, which are pivotal for successful 

Fig. 3  Histological and immunohistochemical image of a non-union 
in the mouse  femur. A  Safranin-O staining of the callus tissue in a 
non-union 10 weeks after surgery according to the model described 
by Garcia et  al. [78]. Notably, the fracture gap is filled with fibrous 
tissue (ft), a typical sign of atrophic non-union formation. Addition-
ally, cartilaginous tissue (ct), woven bone (wb), and cortical bone 
(cb) are indicated. Scale bar: 1 mm. B Immunohistochemical staining 
of CD31-positive microvessels (red) within the callus tissue in (A) 
(borders marked by dotted line). Cell nuclei are stained with Hoechst 
33342 (blue). White arrowheads indicate abundant microvessel for-
mation within the fibrous callus tissue at the defect site. Scale bar: 
50 μm
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bone regeneration, or that angiogenesis during fracture 
repair is not primarily regulated by VEGF, but other growth 
factors including BMP-7 [82] and bFGF [83]. In line with 
these findings, experimental studies by Peng et al. [84, 85] 
and Chu et al. [86] indicate that VEGF alone is not capable 
of initiating the cascade of bone regeneration and an over-
expression of VEGF can even impair the fracture healing 
process [84, 85]. Accordingly, clinical studies by Sarahrudi 
et al. [87] and Weiss et al. [88] demonstrated that serum 
levels of VEGF are increased in patients with non-unions 
when compared to patients with successfully healed frac-
tures. However, it is unclear, if the overexpression of VEGF 
leads to non-union formation or if the non-union formation 
causes its compensatory overexpression. One possible cause 
for the latter may be the hypoxic conditions within the callus 
tissue of non-unions due to an impaired functionality of the 
vascular network. The detection of endothelial cells within 
the callus tissue of non-unions is not necessarily associated 
with a functional vascular network, but can also represent 
regressing vascular structures without blood perfusion. This 
may also explain the reduced capacity for osteogenic prolif-
eration and differentiation at the fracture site, because cell 
survival is of paramount importance under hypoxic con-
ditions. Furthermore, the degraded vascular network may 
decrease the clearance of VEGF within the callus tissue. 
Because the control of VEGF clearance is known as cru-
cial mechanisms to regulate VEGF activity [89], this may 
explain the increased VEGF levels observed in non-unions 
[79]. Finally, it should be considered that successful bone 
regeneration depends on the temporal and spatial expres-
sion patterns of growth factors [90] as well as on the ratio 
of pro-osteogenic to pro-angiogenic growth factors within 
the callus tissue, in particular the ratio of VEGF to BMP-2 
and BMP-4 [79, 84, 85].

Despite the research progress during the last two dec-
ades, no ideal management for the prevention and treat-
ment of non-union formation could be introduced into 
clinical practice so far. This may be due to the fact that 
vascularization is only one of many important factors, 
which are required for bone regeneration. Noteworthy, 
non-unions exhibit a decreased pool and delayed prolif-
eration of MSCs as well as altered serum levels of related 
chemokines and growth factors, such as leptin, interleu-
kin-6 (IL-6), platelet-derived growth factor-BB (PDGF-
BB), stem cell factor (SCF), and insulin-like growth fac-
tor (IGF-1) [91]. However, the number of early and late 
outgrowth endothelial progenitor cells (EPCs) and their 
regulating pro-vasculogenic growth factors, such as angi-
opoietin (Ang)-1, Ang-2, stromal-derived factor-1 (SDF-
1), interleukin (IL)-8, VEGF, transforming growth factor-
β-1(TGF-β-1), and Dickkopf-related protein-1 (DKK-1) 
are not significantly affected in non-union patients [91]. 
These findings indicate that non-unions are, in fact, not 

associated with vascular degeneration and maintain the 
ability for both, the generation of novel blood vessels 
as well as angiogenesis by paracrine mechanisms. Fur-
thermore, they emphasize the role of a mesenchymal and 
osteogenic cell pool defect and their related growth fac-
tors in the pathogenesis of non-union formation. Hence, it 
may be assumed that treatment strategies for non-unions 
should rather focus on the stimulation of osteogenesis 
than angiogenesis. This hypothesis is supported by experi-
mental studies, which analyzed the effect of BMP-2 and 
VEGF co-delivery for bone regeneration. Although the 
sole delivery of VEGF demonstrated a stimulation of 
blood vessel formation, no significant increase in bone 
formation was detected [92–96]. In contrast, Uhrig et al. 
[97] could demonstrate that a transient ischemic insult 
and a subsequent recovery response significantly enhance 
BMP-2-mediated bone defect repair. This highlights the 
complexity of the relationship between vascularization and 
bone regeneration [97]. Clinical studies investigating the 
effect of surgical angiogenesis by the generation of arte-
riovenous bundles and vascularized bone grafts did not 
report an improved bone viability and union rate [98–100]. 
Although, it is well accepted in clinical practice that large 
bone defects of more than 6 cm should be supplied by vas-
cularized bone grafts (VBGs), Allsopp et al. [99] could not 
confirm that VBGs are superior to non-vascularized ones 
(NVBGs). Accordingly, a clinical study by Schuh et al. 
[101] with a mean follow-up of 52 months demonstrated 
in diaphyseal bone reconstruction that NVBGs result in 
a similar radiographic and clinical outcome compared to 
VBGs. Moreover, NVBGs compared to VBGs tend to a 
lower rate of complications and revision surgery, which 
are mostly due to problems with wound healing related 
to the use of myocutaneous flaps for vascular bone grafts 
[101].

Even more astonishing are the findings of Orth et al. 
[102], who implanted hydrogels loaded with adipose tis-
sue-derived microvascular fragments (MVF) in murine 
femur defects to improve vascularization and, thus, bone 
regeneration. However, the data of this study shows that 
these highly angiogenic vascularization units did not 
improve but even impaired the formation of new bone 
within the defects [102]. These findings are supported by 
an experimental studies of Ruehle et al. [103, 104], which 
evaluated the effects of BMP-2 compared to BMP-2 in 
combination with MVFs in bone defects with concomitant 
muscle loss. The results showed a decreased bending stiff-
ness and larger areas of non-mineralized, marrow-like tis-
sue in bone defects additionally treated with MVFs [103]. 
These observations imply that extensive angiogenesis 
and vascularization may not support, but, paradoxically, 
may even hamper adequate fracture repair and, therefore, 
aggravate non-union formation.
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Future perspectives

In the future, novel imaging technologies, such as multi-
photon fluorescence microscopy [105, 106] and photoacous-
tic imaging [107, 108], may markedly improve our knowl-
edge of the functionality of the microvascular networks in 
non-unions by the direct measurement of oxygen satura-
tion within the callus tissue. In combination with advanced 
immunohistochemical staining methods and molecular bio-
logical approaches it may be possible to identify and inves-
tigate potential growth factors and mediators involved in the 
pathology of vascular dysfunction during non-union forma-
tion. Furthermore, the development of sophisticated mul-
tiscale simulation models, which allow to assess the influ-
ence of angiogenesis and oxygenation on fracture healing 

[109–111], may help to fully understand the mechanisms 
of failed fracture healing and to simulate the effectiveness 
of specific treatment strategies. Thus, emerging treatment 
approaches may be able to specifically improve the function-
ality of these microvascular networks. Moreover, emerging 
treatment strategies should not only consider the stimulation 
of angiogenesis as a key target for bone regeneration. In fact, 
other factors than vascularization may substantially contrib-
ute to successful fracture repair, including mechanical stabil-
ity, patients’ physiological state and comorbidities as well as 
the availability of pro-osteogenic mediators and cells at the 
fracture site [1]. Thus, emerging treatment strategies should 
also consider these factors to improve bone regeneration. If 
this succeeds, also challenging cases of non-unions in clini-
cal practice may successfully be treated and cured.

Fig. 4  Illustration of the conflicting arguments of the “vasculariza-
tion paradox”. Angiogenesis and vascularization are pivotal for bone 
growth and development as well as for the supply of nutrients and 
cells at the fracture site. Moreover, inhibition of angiogenesis ham-
pers fracture repair, whereas stimulation of angiogenesis improves 
bone regeneration. On the other hand, non-unions demonstrate a suf-
ficient expression of pro-angiogenic proteins. Moreover, experimental 
studies have demonstrated that extensive angiogenesis and vascu-
larization hamper adequate fracture repair and aggravate non-union 

formation. In addition,  patients with non-union formation show no 
alteration in the number of early and late outgrowth EPCs. Finally, 
the callus tissue of non-unions consists of well-vascularized connec-
tive tissue. It may be speculated that a reduced as well as an extensive 
vascularization impairs fracture healing and, thus, leads to non-union 
formation. A well-balanced temporal and spatial angiogenesis within 
the callus tissue, however, promotes fracture repair, resulting in suc-
cessful bone healing
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Conclusion

Although, it is well accepted that the deterioration of 
angiogenesis and vascularization is a crucial factor for the 
failure of fracture healing, there is increasing evidence that 
this hypothesis is oversimplified. In fact, multiple stud-
ies demonstrate a considerable vascularization and even 
overexpression of pro-angiogenic factors within the callus 
tissue of non-unions. Of interest the application of highly 
angiogenic vascularization units in large bone defects did 
not improve bone formation, but, paradoxically, aggra-
vated non-union formation [102]. This may represent a 
vascularization paradox in non-union formation (Fig. 4). 
Thus, the role of vascularization in non-union formation 
still remains to be determined.
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