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Setting: Controlling drug-resistant tuberculosis in Ningbo, China.

Objective: Whole-genome sequencing (WGS) has not been employed

to comprehensively study Mycobacterium tuberculosis isolates,

especially rifampicin-resistant tuberculosis, in Ningbo, China. Here, we

aim to characterize genes involved in drug resistance in RR-TB and

create a prognostic tool for successfully predicting drug resistance

in patients with TB.

Design: Drug resistance was predicted by WGS in a “TB-Profiler” web service

after phenotypic drug susceptibility tests (DSTs) against nine anti-TB drugs

among 59 clinical isolates. A comparison of consistency, sensitivity, specificity,

and positive and negative predictive values betweenWGS andDSTwere carried

out for each drug.

Results: The sensitivities and specificities for WGS were 95.92 and

90% for isoniazid (INH), 100 and 64.1% for ethambutol (EMB), 97.37

and 100% for streptomycin (SM), 75 and 100% for amikacin (AM), 80

and 96.3%for capreomycin (CAP), 100 and 97.22% for levofloxacin

(LFX), 93.33 and 90.91% for prothionamide (PTO), and 70 and 97.96%

for para-aminosalicylic acid (PAS). Around 53 (89.83%) and 6 (10.17%)

of the isolates belonged to lineage two (East-Asian) and lineage four

(Euro-American), respectively.
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Conclusion: Whole-genome sequencing is a reliable method for predicting

resistance to INH, RIF, EMB, SM, AM, CAP, LFX, PTO, and PAS with high

consistency, sensitivity, and specificity. There was no transmission that

occurred among the patients with RR-TB in Ningbo, China.

KEYWORDS

drug resistance, drug susceptibility test, whole-genome sequencing,

rifampicin-resistant tuberculosis, gene mutation

Introduction

Rifampicin-resistant tuberculosis (RR-TB) is often diagnosed

with genotypic or phenotypic techniques. RR-TB has become

an important global health concern. Tracking RR-TB burden

requires global efforts, including prevention, diagnosis,

treatment, and surveillance (1). The medical treatment duration

of RR-TB is longer compared with TB, which responds to drugs.

However, more costly and toxic drugs may shorten the duration

(2). According to the World Health Organization (WHO),

∼0.46 × 106 new cases of RR-TB were reported worldwide in

2019. Furthermore, 78% of these cases were resistant to multiple

drugs (3). China reports 66,000 cases of RR-TB yearly and

ranks second among countries with high multidrug-resistant

tuberculosis (MDR-TB) (3).

At the 1st stage in clinics, detecting drug resistance is critical

to perform optimistic medical treatment together with avoiding

the occurrence and transmission of extensively drug-resistant

Mycobacterium tuberculosis (XDR-TB) (4). Over the past

decades, phenotypic susceptibility has remained the primary

way of diagnosing drug-resistant TB. However, phenotypic

susceptibility tests only a few drugs, and the process is not

quick (∼6 weeks) (5). Molecular-based drug susceptibility test

(DST) has recently been conducted in clinical laboratories to

detect drug resistance and TB transmission dynamics (6, 7).

Reports derived from recent studies are only available to a

limited number ofmutations and thusmost likely do not identify

heteroresistance (8, 9).

Whole-genome sequencing methods based on DNA

sequencing platforms to reconstruct the complete genome

DNA sequence can provide high-resolution genotyping and

identification (10–12). The single-chromosome genome of

MTBC bacteria makes WGS techniques ideal. Using DNA data

from common pathways of drug resistance, WGS helps in the

prediction of drug resistance (13, 14). Recently, the ease and

cost-effectiveness of WGS in predicting resistance to anti-TB

drugs have been established (15–17).

To date, WGS remains poorly investigated in China, and

data on RR-TB remain anemic. Here, we conductedWGS for the

prediction of RR-TB resistance tomultiple drugs.We carried out

this study in Ningbo, China, which has a relatively high annual

TB incidence. Therefore, we compared WGS with the DST of 9

anti-TB drugs.We also included lesser-known drugs such as PAS

and PTO.

Materials and methods

Isolates from clinical samples

We randomly selected N = 59 RR-TB isolates from our

RR-TB inventory (stored at −80◦C, Ningbo CDC, 1 January

2018 and 30 December 2019).

Culture-based DST was conducted for the nine anti-TB

drugs. All the isolates were selected among patients with TB who

have been residents of Ningbo for at least 6 months and have

tested negative for human immunodeficiency virus (HIV) and

tested positive for TB in local clinics. Exclusion criteria included

pregnant women, minors (age <18), and patients with severe

liver or renal diseases.

DST

Drug susceptibility tests of four first-line anti-TB drugs

and five second-line drugs were carried out based on WHO

recommendations (18). The drug concentrations are INH 0.2µg

/ml, RIF 40µg/ml, EMB 2µg/ml, SM, 4µg/ml, LFX 2µg/ml,

AMK, 30µg/ml, CAP 40 µg /ml, PTO 40µg/ml, and PAS

1µg/ml (18). H37RV strains were used as a reference for

quality control.

WSG procedure and analysis

Genomic DNA from MTB colonies scraped from an

L–J medium was detected to conduct sequencing with the

CTAB technique of DNA purification. Quantification of DNA

was carried out using the Qubit 2.0 fluorometer (Invitrogen,

Carlsbad, CA, United States). Preparations of the library

were carried out according to the manufacturer’s instructions

(Illumina TruSeq DNA Nano Library Prep Kit). Illumina HiSeq

equipment (Illumina, San Diego, CA, Untied States) was used
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for libraries with different indices. A 2 × 150 paired-end

(PE) configuration was employed during sequencing. MTB

H37RV (GenBank accession no. NC 000962.3) was used as the

reference strain. Drug resistance and strain-specific signatures

were exported directly from raw sequences in the “TB-Profiler”

tool (https://tbdr.lshtm.ac.uk/)(19).

Phylogeny construction

Using the Random Accelerated Maximum Likelihood

software (RAxML), a phylogenetic tree was created to evaluate

evolutionary connections between 59 RR-TB strains. Single

nucleotide polymorphisms (SNPs) were not included to prevent

non-evolutionary effects.

Statistical analysis

The number (No.) and percentage (%) of the samples were

presented as descriptive analyses. Wilson scores confidence

interval method was used to measure the sensitivity, specificity,

positive predictive value (PPV), and negative predictive value

(NPV) of WGS after DST.

A p-value of <0.05 was considered significant. SPSS 21.0

(SPSS., USA) was employed for statistical analyses.

Results

Drug susceptibility profiles of R-R TB
isolates

In total, 59 (8.38%) out of 704 clinical isolates collected

between 1 January 2018 and 30 December 2019 were identified

as RR-TB, including 83.05% MDR-TB, 27.12% pre-XDR, and

11.86% XDR (Table 1). Among the 59 RR-TB clinical isolates,

83.05, 100, 33.9, 64.41 13.56, 8.47, 38.98, 25.42,and 16.95% were

resistant to INH, RIF, EMB, SM, AMK, CAP, LFX, PTO and

PAS, respectively.

Association of gene mutations with drug
resistance

The results from the 59 RR-TB clinical isolates demonstrated

the following: the genome 10 × coverage and genome 1 ×

coverage were from 51.67 to 238.11 (mean:166.29), from 98.69

to 99.95 (mean:99.19), and from 99.12 to 99.99 (mean:99.38).

The genes and mutations identified by WGS are linked to

drug resistance (nine drugs) in the RR-TB isolates, which are

listed in Supplemental Table 1.

TABLE 1 Drug resistance profiles of RR-TB clinical samples

(culture-based DST).

Resistance pattern No. (%) of isolates

Resistant to first-line drug

INH 49 (83.05)

RIF 59 (100.00)

EMB 20 (33.90)

SM 38 (64.41)

Resistant to second-line drug

AMK 8 (13.56)

CAP 5 (8.47)

LFX 23 (38.98)

PTO 15 (25.42)

PAS 10 (16.95)

MDR 49 (83.05)

Pre-XDR 16 (27.12)

XDR 7 (11.86)

INH, isoniazid; RIF, rifampicin; EMB, ethambutol; SM, streptomycin; AMK, amikacin;

CAP, capreomycin; LFX, levofloxacin; PTO, protionamide; PAS, para-amino salicylic

acid; MDR, multidrug-resistant; pre-XDR, pre-extensively drug-resistant; XDR,

extensively drug-resistant.

Among the 59 RR-TB isolates, 13 (22.03%) strains had

>1 mutations that are linked with INH resistance. The most

common (n= 38) mutation was katG Ser315Thr and the second

most common (n= 9) was fabG1−8T>C.

Mutations linked with RIF resistance were detected in the

59 isolates (100.00%), and the rpoB gene had mutations in 100%

of the samples. No other mutations were found in the isolates.

All the isolates had mutations in the rpoB rifampicin resistance-

determining region (RRDR, 81 bp). rpoB Ser531Leu (n = 37)

was the most common.

The genes linked with resistance to SM were gid (n = 2),

rspL (n = 33), and rrs (n = 2). Thirty-four strains showed

EMB resistance. embA and embB mutations were found in two

cases, and only onecase demonstrated mutations at two embB

locations. The most common were embB Met306Val [52.94%

(18/34)] and Met306Ile [23.53% (8/34)].

In respect to LFX, 23 (38.98%) isolates had gyrA gene

mutations, of which the most common mutation observed

was gyrA Asp94Gly [65.22% (15/23)]. Only one sample had

gyrB mutation.

rrs gene mutations were found in all isolates that are

resistant to AMK; 100% of the mutations were 1401a>g. rrs

was found in genes linked to CAP resistance with the mutation

1401a>g (n= 6).

Fifteen strains showed PTO phenotype resistance, and 44

strains showed sensitivity. A total of 14 (93.33%) isolates had

genetic mutations linked to PTO resistance. Mutations in both

fabG1( t-8c) and ethA genes (ethA 11a-ins, ethA 13a-ins, and

ethA 11a-dup) were the most common (57.14%) (8/14).
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Folate metabolism pathways, primarily thyA, folC, ribD,

and dfrA, affect PAS resistance. Seven strains were resistant

and demonstrated different mutations including folC Ile43Ser

(n = 1), folC Ser150Gly (n = 1), folC Glu153Ala (n =

1), folC Glu153 Gly (n = 1), thyX(c−16t) (n = 1), and

thyA Thr22Ala+ thyX(c−16t) (n= 2).

The phenotypic DST found resistance-related mutations in

some of the samples. Mutations were discovered for INH at katG

Ser315Gly (n = 1); for EMB at embB Met306Ile (n = 4), embB

Met306Val (n= 6), embB Asp354Ala (n= 1), embB Gly406Asp

(n = 2), and embB His1002Arg (n = 1); for CAP at rrs a1401g

(n = 2); for LFX at gyrA Asp94Ala (n = 1); for PTO at fabG1

t-8c (n= 1), fabG1 c-15t (n= 1), ethA 403–424del (n= 1), ethA

61del (n= 1); for PAS at thyX c-16t (n= 1).

Comparison of WGS and phenotypic DST
results

The properties of each drug are listed in Table 2. A mean

consistency of 93.79% (n = 59 isolates) was found for all the

nie drugs, [76.27% (EMB) to 100% (RIF)]. The overall range

of sensitivity and specificity for WGS were 70%−100% and

64.10%−100.00%, respectively. For both the highest sensitivity

and specificity, 100% was found in 3 (RIF, EMB, and LFX) and 2

(SM and AMK) of the drugs respectively. The lowest sensitivity

and specificity were found at 70% (PAS) and 64.1% (EMB),

respectively. The phenotypic DST showed drug resistance in 10

samples (n = 2 for INH, n = 1 for SM, n = 2 for AMK, n = 1

for CAP, n = 1 for PTO, and n = 3 for PAS); however, the WGS

results did not demonstrate any known drug-resistant mutations

in the samples (Table 2).

Phylogenetic pattern of drug resistance

A phylogenetic tree showing profiles and lineages related to

drug resistance is shown in Figure 1. No transmission occurred

among the 59 RR-TB strains, which is shown in Figure 2.

Around 53 (89.83%) and 6 (10.17%) belonged to lineage two

(East-Asian) and lineage four (Euro-American), respectively.

Discussion

TB control and prevention, including diagnosis, treatment,

and surveillance, can be guided by rapid, reliable, and

increasingly affordable WGS technology. It effectively creates

a genetic signature for drug resistance. Recently, WGS has

been a critical player in predicting resistance to drugs (20–

22). To the best of our knowledge, this study is the first to

investigate gene mutations that impart resistance to nine anti-

TB medications through the WGS method in Ningbo, China, T
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FIGURE 1

Phylogenetic tree of 59 R-R MTB clinical samples showing drug resistance profiles and lineages.

and show thatWGS is a reliable method for predicting resistance

to INH, RIF, EMB, SM, AMK, CAP, LFX, PTO, and PAS

with high accuracy, sensitivity, and specificity. The laboratories

of Public Health England and the New York Department of

Health have approved the use of WGS for testing susceptibility

to TB drugs (23). Although WGS is widely conducted in

research, its use in the clinical setting faces roadblocks since

bioinformatics specialists are required for data analysis. Using

raw sequences and the online software known as the TB-Profiler

can predict drug resistance more accurately than other online

platforms (24). In our study, WGS and the TB- Profiler were

employed for prediction of drug resistance in 59 RR-TB clinical
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FIGURE 2

SNP di�erence heatmap of the 59 R-R MTB isolates.

isolates. Mutations in katG and fabG1were discovered in 93.88%

(46/49) of INH genotype-resistant isolates in our study, showing

the role of the two locations in prediction of INH resistance.

Ser315Thr was the most prevalent mutation in katG; Ser315Thr

previously has been shown to impart a significant level of INH

resistance (25–27).

One previous review study showed that mutations in the

81-bp region of rpoB (RRDR) were responsible for more than

96% of RIF resistance (28), which was in line with our findings.

Our study showed that no RIF-resistant bacteria were in this

region. Outside the RRDR, mutations may not be detected

by GeneXpert MTB/RIF (molecular test). Additionally, other

mutations in the RRDR, such as a synonymous or silent

mutations, may cause RIF resistance to be misdiagnosed (29).

In clinical isolates resistant to EMB, embB codon 306

mutations were the most prevalent (30). The most common

mutations in this analysis were embBMet306Val and Met306Ile,

which accounted for 52.94 and 23.53%, respectively.

Three resistance genes were found to be related to

SM, notably rrs, rpsL, and gid, which encode 16srRNA,

ribosomal protein S12, and 16srRNA-specific methyltransferase,

respectively (31, 32). Mutations in the rpsL gene in our

study, linked with high levels of resistance to SM, were

predominant among SM-resistant isolates. We found that only

isolates that did not have rrs or rpsL mutations carried gid

mutations. gid mutations linked with low resistance to SM

were rare and only occurred in two (5.26%) SM genotype-

resistant strains.

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2022.956171
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Che et al. 10.3389/fpubh.2022.956171

AMK and CAP genotype-resistant samples showed

mutation 1401a>g in rrs linked to 70%−80% of MTB samples

that are resistant to AMK and CAP globally (33).

Chromosome changes in the quinolone resistance

determining region of gyrA or gyrB are the main way of

fluoroquinolones resistance in MTB (34). Similar to previous

studies (35, 36), the most prevalent mutations were found in

positions 90 and 94 of gyrA in the LFX-resistant isolates, and

lesser mutations were found in positions 46 and 91.

It is well known that the inhA c-15t mutation is associated

with PTO resistance (37). We found that fabG1 t-8c and

ethA genes mutation were most prevalent, and that no isolates

harbored an inhAmutation in our study.

Regarding PAS, DST could not be successfully replaced by

WGS in our study, but WGS may be more useful in better

interpretation of gene mutations compared with DST. Despite

high specificities, WGS failed to successfully diagnose PAS

resistance because of the limited number of resistant strains.

The majority of drugs showed > 90% sensitivity and

specificity, indicating that WGS is a reliable method for

predicting drug resistance. The WGS results were consistent

with the phenotypic DST for INH, RIF, SM, AMK, CAP, LFX,

PTO, and PAS, showing that all were >90.00%, which was

consistent with other studies with the same methods (38).

A lower specificity for predicting EMB resistance than other

drugs was found in our study. Around 35.9% of the EMB

phenotype-sensitive isolates harbored mutations associated with

EMB resistance. This could be because phenotypic DST for EMB

is unreliable (39). However, it is unclear whether EMB resistance

is affected by resistance mechanisms to other drugs (40).

The differences between WGS and phenotypic DST

are explained by the following reasons. First, phenotypic

DST may not catch samples that have low resistance

to drugs. Recently, it was shown that phenotypic DST

failed to diagnose EMB resistance, especially in the case

of INH resistance (39, 40). Second, WGS may not be

able to diagnose certain types of non-specific resistance,

e.g., resistance that develops because of efflux pumps

(41, 42).

Whole-genome sequencing has significant advantages

over both phenotypic DST and molecular DST. WSG can

detect specific genetic mutations promptly, which may

be helpful for the most accurate treatment method. The

detection capacity of WGS will also increase with time as

novel genes involved in drug resistance are identified and the

database is updated. Additionally, if certain laboratories

do not have appropriate biosafety hoods, inactivation

of strains may be performed and the inactivated strains

may be sent to WGS labs, significantly reducing the time

(months for DST vs. weeks for WGS). WGS will also

become quicker and less expensive with the development

of sequencing technology.

To our best knowledge, this was the first study on

the agreement of phenotypic DST and WGS DST among

rifampicin-resistant Mycobacterium tuberculosis (RR-TB)

isolates in Ningbo. Our study may help in management of

patients with TB and contribute to the development of novel

anti-TB drugs and TB prevention strategies. Nonetheless,

although the advanced sequencing technology of WGS and

benefits were derived from WGS, some limitations of this

study need to be considered. First, the study investigated

a small number of anti-TB drugs, and pyrazinamide

and linezolid were not included. Second, the number of

amikacin-resistant isolates was small since AMK shows

a low level of resistance. As a result, our results may be

biased. Third, the small sample size number limited the

statistical power of the study. There results must be interpreted

with caution. However, our cohort represented the largest

consecutive cohort of RR-TB in the region and the patients

were representative thanks to the high detection rates of

endemic TB. However, the findings of this study provided

critical evidence for research and clinics to diagnose drug

resistance by WGS and may help treat patients with high

RR-TB burden.
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