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Background: Genetics influence the vulnerability to alcohol use disorders, and among

the implicated genes, three previous studies have provided evidences for the involvement

of LRRK2 in alcohol dependence (AD). LRRK2 expression is broadly dysregulated

in postmortem brain from AD humans, as well as in the brain of mice with alcohol

dependent-like behaviors and in a zebrafish model of alcohol preference. The aim of

the present study was to evaluate the association of variants in the LRRK2 gene with AD

in multiethnic populations from South and North America.

Methods: Alcohol-screening questionnaires [such as CAGE and Alcohol Use Disorders

Identification Test (AUDIT)] were used to determine individual risk of AD. Multivariate

logistic regression analyses were done in three independent populations (898 individuals

from Bambuí, Brazil; 3,015 individuals from Pelotas, Brazil; and 1,316 from the

United States). Linkage disequilibrium and conditional analyses, as well as in silico

functional analyses, were also conducted.

Results: Four LRRK2 variants were significantly associated with AD in our discovery

cohort (Bambuí): rs4768231, rs4767971, rs7307310, and rs1465527. Two of these

variants (rs4768231 and rs4767971) were replicated in both Pelotas and US cohorts.

The consistent association signal (at the LRRK2 locus) found in populations with different

genetic backgrounds reinforces the relevance of our findings.

Conclusion: Taken together, these results support the notion that genetic variants in

the LRRK2 locus are risk factors for AD in humans.
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INTRODUCTION

Alcohol use disorder (AUD) represents a global public health
problem with profound personal, social, and economic costs
(1). According to the Global Status Report on Alcohol and
Health 2018 (2), from the World Health Organization (WHO),
more than half of the world’s population (57% or 3.1 billion
people) consumed alcohol in the previous year. In 2016, the
misuse of alcohol caused ∼3 million deaths (5.3% of all deaths
worldwide) (2). In Brazil, about 59% of the population consumes
alcohol excessively, of whom ∼14% are dependent on this drug
(3). In the United States, 70.1% of the population above 18
years old consumed alcohol in 2017, a 4.4% increase compared
with that in 2016 (4). The Diagnostic and Statistical Manual
of Mental Disorders (DSM) and the International Classification
of Diseases (ICD), characterize AUD by the continued use of
alcohol despite negative psychological, biological, behavioral,
and social consequences (5). The most recent version of DSM
(DSM V) classifies the severity of AUD into mild, moderate, or
severe, based on the number of symptoms present, withmoderate
and severe AUD largely equivalent to the DSM-IV diagnosis of
alcohol dependence (6, 7).

There are several alcohol-screening questionnaires of which
the Alcohol Use Disorders Identification Test (AUDIT) (8) and
the CAGE (an acronym for the four questions present in this
questionnaire: Cut-down, Annoyed, Guilty, and Eye-opener) (9)
are among the most widely used in clinical and epidemiological
research (10). AUD is influenced by multiple factors, including
socio-environmental, developmental, physiological, and genetic
factors (5, 11). From a genetic perspective, AUD has been
proposed as the cumulative effects of multiple genes and
their interactions with environmental factors, resulting in
heterogeneous phenotypes (12). The genetic architecture of AUD
is not yet fully understood, with the genes identified so far
explaining a moderate proportion of the heritability attributed
to this condition (varying between 50 and 60%) (13, 14).
The most common variants associated with AUD are from
genes involved in alcohol’s metabolism including the genes for
alcohol dehydrogenases (ADH1B and ADH1C) and aldehyde
dehydrogenases (ALDH2) (15). In addition, genes related to the
reward system have also been associated with AUD, including
gene variants from monoaminergic and GABAergic systems
(DRD1, DRD2, DRD4, COMT, DAT1, and GABAA) (12, 16, 17).
Remarkably, most of these studies were conducted in European
populations (18–20).

In a previous study, we found that the Lrrk2 gene
was upregulated specifically in heavy-drinking mice that
simultaneously showed loss of control over their alcohol intake,
but not in light drinking or non-compulsive mice (21). A
transcriptional modulation of the Lrrk2 gene was also observed in
the brain of zebrafish with alcohol preference in which treatment
with a selective inhibitor of LRRK2 reduced their preference
for ethanol (22). Remarkably, it was recently demonstrated that
LRRK2 expression is dysregulated in the prefrontal cortex and
nucleus accumbens of postmortem brain from AUD subjects
(23). These results suggest a role for the LRRK2 pathway in
compulsive alcohol intake. LRRK2 is a multifunctional protein

with kinase and GTPase activities (24), involved in neuronal
vesicle trafficking (25) and synaptic plasticity (26). In this regard,
LRRK2 regulates the subcellular distribution of protein kinase A
(PKA) and the phosphorylation of its targets, thus influencing
glutamatergic neurotransmission (27). LRRK2 also controls
dopamine D1 (DRD1) and D2 (DRD2) receptor trafficking,
which are directly involved in dopaminergic neurotransmission
(28). In humans, LRRK2 variants are associated with familial and
sporadic Parkinson’s disease (PD) (29, 30).

Considering the convergent results found for the LRRK2 gene
from animal models and human brain, we hypothesized that
LRRK2 variants could represent genetic risk factors for alcohol
dependence in humans. In the present study, we investigate
the association of LRRK2 variants and alcohol dependence in
three distinct multiethnic cohorts, two from Brazil and one
from the United States, and consistently show that intronic
single-nucleotide polymorphisms (SNPs) were associated with
alcohol dependence.

RESULTS

Four Variants in LRRK2 Are Associated
With Alcohol Dependence in a Discovery
Cohort From Bambuí, Brazil
In the first phase of this study, we tested 119 SNPs (covering the

entire LRRK2 gene, in addition to 10 kb of its 5
′

and 3
′

flanking
regions) in 898 individuals from Bambuí, Brazil (Table 1). These
numbers represent the dataset after stringent quality control
(QC) to remove low-quality samples and SNPs. Phenotyping
was performed using a Portuguese-adapted CAGE questionnaire.
Seven hundred ninety-eight subjects were classified as controls
(i.e., low/moderate risk of alcohol dependence) and 100 as
cases (i.e., high risk of alcohol dependence). The median age
(years) was 68 and 67 among controls and cases, respectively
(not significant), and 22% of controls were male vs. 33%
of cases (P < 0.05).

The association of SNPs with alcohol dependence was
investigated by multivariate logistic regression (additive model),
including sex and age as covariates. Additionally, the first
principal component (PC1) derived from principal components
analysis (PCA) was also included in the logistic model in
order to account for population genetic structure. This initial
screening stage revealed several SNPs that were nominally
associated with alcohol dependence (P < 0.05) (Figure 1A).
Supplementary Table 1 shows the detailed results for all SNPs
evaluated in Bambuí. After results by false discovery rate
(FDR; Benjamini–Hochberg) were adjusted, only four variants
remained significant [rs4768231 (top SNP): OR= 2.03, P= 3.0×
10−4, PFDR = 0.021; rs4767971: OR= 2.00, P= 3.6× 10−4, PFDR
= 0.021; rs7307310: OR = 1.94, P = 6.8 × 10−4, PFDR = 0.027;
rs1465527: OR= 1.82, P= 1.3× 10−3, PFDR = 0.039] (Table 2).

To evaluate the contribution of genetic variants that were not
directly genotyped, we carried out imputation of genotypes in
the LRRK2 locus (window 12:40,186,744–40,379,285). Multiple
imputed variants were found to be nominally associated
with the investigated phenotype (P < 0.05) (Figure 1B).
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TABLE 1 | Characteristics of the studied populations (after quality control).

Brazil, Bambuí (CAGE) Brazil, Pelotas (AUDIT) United States, NIH-NIAAA (AUDIT)

Control Case Control Case Control Case

Sample characteristics

Number of individuals 798 100 2,792 186 872 444

Sex, male/female (%) 174 (22)/624 (78) 33 (33)/67 (67) 1,280 (46)/1,512(54) 139 (75)/47 (25) 487 (56)/385 (44) 325 (73)/119 (27)

Median age, years (IQR) 68 (11) 67 (9) 30 (0) 30 (0) 30 (20) 46 (19)

Population genetic structure

PC1, mean (SD)a 0.0014 (0.41) −0.011 (0.03) −0.00099 (0.029) −0.00099 (0.029)

Ancestry, mean (SD)%b EUR AFR EUR AFR

0.34 (0.39) 0.59 (0.38) 0.47 (0.38) 0.48 (0.38)

Control, low/moderate risk of ethanol dependence; Case, high risk of ethanol dependence; SD, standard deviation; CAGE, alcohol dependence screening questionnaire; AUDIT,

Alcohol Use Disorders Identification Test questionnaire; IQR, interquartile range; NIH-NIAAA, National Institutes of Health–National Institute on Alcohol Abuse and Alcoholism; IQR,

interquartile range.
aPrincipal component 1 (PC1) from the principal component analysis (PCA).
bAncestry informative marker (AIM) scores for EUR, Europe; or AFR, Africa.

Supplementary Table 2 shows the detailed results for all imputed
variants evaluated in the discovery cohort. Despite these
interesting results, no imputed variant revealed a stronger
association signal in comparison with that found for the top
genotyped SNP rs4768231. In addition, most imputed variants
associated with alcohol dependence were in moderate-to-high
linkage disequilibrium (LD) (r2) with rs4768231. Based on this,
further analyses were restricted to the four genotyped SNPs
associated with alcohol dependence.

Variants in LRRK2 Associated With Alcohol
Dependence in Two Other Independent
Cohorts
We investigated the association of rs4768231, rs4767971,
rs7307310, and rs1465527 with alcohol dependence in 2,978
individuals from Pelotas, Brazil. Alcohol dependence risk was
determined using a Portuguese-adapted AUDIT questionnaire,
which has specific questions about alcohol use in the past 12
months and can be used to predict risk for alcohol dependence.
As shown in Table 1 [Brazil, Pelotas (AUDIT)], 2,792 individuals
were categorized as controls (i.e., low/moderate risk of alcohol
dependence) and 186 as cases (i.e., high risk of alcohol
dependence). Males were 46% of the controls and 75% of cases
(P < 0.05) and as a birth cohort; all individuals had the same
age (30 years). As shown in Table 2 (replication phase), through
multivariate logistic regression analysis (covariates: sex and PC1),
three of the four SNPs tested were also associated with alcohol
dependence in this replication cohort (rs4768231: OR = 1.33,
P = 0.039; rs4767971: OR = 1.36, P = 0.049; rs7307310: OR
= 1.44, P = 0.020). The rs1465527 SNP showed only a trend
association (P= 0.083).

The analysis of LRRK2 variants was extended to a second
replication cohort, composed of 1,316 North Americans
[National Institutes of Health–National Institute on Alcohol
Abuse and Alcoholism (NIH-NIAAA)] (Table 1). Post

genotyping QC criteria similar to those applied in the Brazilian
studies were used (see details inMaterials and Methods). Alcohol
dependence screening was also conducted with the AUDIT,
resulting in 872 controls and 444 cases. Controls were on
average 16 years younger than cases (P < 0.05). Males were
56% of controls and 73% of cases (P < 0.05). In addition to the
covariates sex and age, ancestry informative marker (AIM) scores
for Europe and Africa were included in the logistic regression
model to account for population structure. Only the genotypes
of rs4767971, rs4768231, and rs7307310 were available for this
cohort. As can be seen in Table 2 (replication phase), two of these
SNPs were associated with alcohol dependence (rs4767971: OR
= 1.25, P= 0.039; rs4768231: OR= 1.23, P= 0.026). In order to
explore the admixed nature of the US cohort, individuals were
stratified in groups with European AIM score above or below the
median. First, we evaluated whether the frequencies of rs4767971,
rs4768231, and rs7307310 diverged between the two groups.
We found that the minor allele frequencies (MAFs) of these
SNPs were significantly higher in the group of individuals with
the lowest degrees of EUR ancestry (Supplementary Table 3).
Interestingly, rs4767971 and rs4768231 were associated (P <

0.05) with alcohol dependence only in individuals with the
lowest degrees of European ancestry. Nevertheless, a posteriori
power analysis evidenced that the dataset of individuals with
the highest degrees of European ancestry had limited power
(<20%) to detect the associations of rs4767971 or rs4768231 if
such associations exist. A random-effects meta-analysis on these
two sets of association results confirmed that rs4767971 and
rs4768231 reached the significance level (P < 0.05) assumed for
our replication phase. Importantly, the LRRK2 alleles associated
with a high risk of alcohol dependence were the same in the
cohorts from Brazil and the United States.

Next, we conducted a meta-analysis on the three independent
samples, by applying a random-effects model that assumes inter-
study variability (Supplementary Table 4). As stated above, only
the genotypes of rs4767971, rs4768231, and rs7307310 were
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FIGURE 1 | Regional plots of multivariate logistic regression results on alcohol

dependence in the population of Bambuí, Brazil. Analyses were conducted

under an additive genetic model, with sex, age, and the first principal

component as covariates. (A) Genotyped variants in the LRRK2 region. (B)

Genotyped and imputed variants in the same region. Results [–Log10 (P-value)]

for each variant are represented by circles (genotyped) or triangles (imputed).

The purple diamond represents the top single-nucleotide polymorphism (SNP)

rs47681231. The four SNPs highlighted in the figure were associated with

alcohol dependence (after adjustment by false discovery rate,

Benjamini–Hochberg). The green bar represents the extent of the LRRK2 gene.

The red line indicates P = 0.05. Region view: 12:40,194,606–40,372,798

(RefSeq: GRCh38). Linkage disequilibrium (LD, r2).

available for the three cohorts. We observed that only rs4767971
(OR= 1.44, P= 4.4× 10−3) and rs4768231 (OR= 1.42, P= 6.2
× 10−3) reached the significance level assumed for this analysis
(P < 0.017, i.e., 0.05/3 tests).

LRRK2 rs4767971 and rs4768231 Are in
Linkage Disequilibrium in Brazil and US
Cohorts
Next, we investigated whether rs4767971 and rs4768231,
the variants that were associated with alcohol dependence
in the three cohorts, captured a single signal or were
independently associated with the trait under study. As shown in
Supplementary Figure 1, depending on the population analyzed,
the rs4767971 and rs4768231 variants are in moderate-to-high
LD [Brazil, Bambuí (r2 = 92); Brazil, Pelotas (r2 = 64);
United States, NIH (r2 = 59)]. Therefore, it is likely that both
SNPs might be capturing the same functional signal. We tested

this hypothesis by carrying out conditional tests on these two
polymorphisms, and we found that they were associated with
alcohol dependence in an interdependent way. In the three
cohorts, when including the rs4768231 genotypes as covariate
in the regression models, the significant association signals for
rs4767971 were completely abrogated (Bambuí, P= 0.79; Pelotas,
P= 0.58; United States, P= 0.54).

In silico Functional Analysis of LRRK2
SNPs Associated With Human Alcohol
Dependence
To investigate the regulatory potential of rs4768231 and
rs4767971, the LRRK2 locus (12:40,146,744–40,419,285) was
cross-referenced with genomic and epigenomic annotations,
obtained from the Ensembl Genome Browser. As shown in
Figure 2A, the LRRK2 region was evaluated in terms of
sequence constraint (across 100 eutherian mammals), chromatin
segmentation states (evidence of promoter and enhancer marks),
binding sites for transcription factors, and enrichment for
marks of open chromatin. Figure 2B shows that both rs4768231
and rs4767971 are located in intronic sequences of LRRK2.
This analysis also revealed that rs4767971 might have relevant
functional consequences since it is located within an H3K4me1
element, which is a histone modification enriched at active and
primed enhancers. The Roadmap Epigenomics Consortium (31)
identified this regulatory element in only three brain regions
[dorsolateral prefrontal cortex (dlPFC), angular gyrus, and
substantia nigra] (Figure 2C). Collectively, these data support the
biological plausibility of our findings.

DISCUSSION

Previous studies conducted by our group have shown altered
expressions of Lrrk2 in the striatum of mice with alcohol
dependent-like behaviors (21) and in a zebrafish model of
alcohol preference (22). Remarkably, in humans, the expression
of LRRK2 was found to be dysregulated in the prefrontal
cortex and nucleus accumbens of postmortem brain from AUD
subjects (23). In the present study, we first identified four
variants (rs4768231, rs4767971, rs7307310, and rs1465527) in
the LRRK2 gene that were associated with alcohol dependence
in a cohort from Brazil (Bambuí). We then investigated if these
findings replicated in two independent cohorts. In both the
Brazilian (Pelotas) and United States (NIH) replication cohorts,
we showed that three (rs4768231, rs4767971, and rs7307310) and
two (rs4768231 rs4767971) of these SNPs, respectively, were also
associated with alcohol dependence. Consistently, the variants
rs4768231 and rs4767971 are associated in an interdependent
way (as suggested by the conditional analysis) with alcohol
dependence in three distinct populations. It is worth noting
that the odds ratios in the discovery and replication samples
were in the same direction, indicating an increasing risk for
alcohol dependence. This consistent effect found in populations
with different genetic backgrounds suggests functional relevance
for these SNPs or strong linkage to a causal variant yet to be
identified. Furthermore, these replications provide evidences that
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TABLE 2 | Markers in the LRRK2 locus associated with alcohol dependence in humans.

SNP Coordinated A1 MAF Fcontrol Fcase OR 95% CI P PFDR

Discovery phase

Brazil, Bambuí (CAGE)a

rs4767971 Chr12:40338230 C 0.14 0.13 0.23 2.00 1.37–2.94 3.6 × 10−4 0.021

rs4768231 Chr12:40343381 G 0.14 0.12 0.23 2.03 1.38–2.99 3.0 × 10−4 0.021

rs7307310 Chr12:40351379 T 0.14 0.13 0.23 1.94 1.32–2.85 6.8 × 10−4 0.027

rs1465527 Chr12:40369805 C 0.19 0.17 0.27 1.82 1.26–2.62 1.3 × 10−3 0.039

SNP A1 MAF Fcontrol Fcase OR 95% CI P

Replication phase

Brazil, Pelotas (AUDIT)b

rs4767971 C 0.13 0.12 0.16 1.36 1.01–1.85 0.049

rs4768231 G 0.19 0.18 0.23 1.33 1.02–1.74 0.039

rs7307310 T 0.12 0.12 0.16 1.44 1.06–1.96 0.020

rs1465527 C 0.13 0.13 0.16 1.31 0.96–1.79 0.083

SNP A1 MAF Fcontrol Fcase OR 95% CI P

United States, NIH-NIAAA (AUDIT)c

rs4767971 C 0.17 0.16 0.19 1.25 1.01–1.54 0.039

rs4768231 G 0.26 0.24 0.29 1.23 1.02–1.48 0.026

rs7307310 T 0.15 0.14 0.16 1.10 0.88–1.38 0.41

rs1465527 C Not genotyped

The statistical significance established for the discovery phase was PFDR < 0.05. The significance level applied in the replication studies was P (raw) < 0.05.

A1, reference allele; MAF, minor allele frequency; Fcontrol, low/moderate risk of ethanol dependence; Fcase, high risk of ethanol dependence; OR, odds ratio; 95% CI, 95% confidence

interval; P, P-value (additive model); PFDR, false discovery rate (FDR)-adjusted P-value (Benjamini–Hochberg); CAGE, alcohol screening questionnaire; AUDIT, Alcohol Use Disorders

Identification Test questionnaire; NIH-NIAAA, National Institutes of Health–National Institute on Alcohol Abuse and Alcoholism; SNP, single-nucleotide polymorphism.
aMultivariate logistic regression—covariates: sex, age, and principal component 1 (PC1).
bMultivariate logistic regression—covariates: sex and principal component 1 (PC1).
cMultivariate logistic regression—covariates: sex, age, and ancestry informative marker (AIM) scores for Europe and Africa.
dHuman genome assembly: GRCh38. Bold P-values denote statistical significance.

our results are robust and rule out the possibility of spurious
associations due to statistical/methodological artifacts. Taken
together, these results support the notion that LRRK2 variants are
risk factors for alcohol dependence in humans.

The use of questionnaires to detect alcohol dependence is
common in clinical routines and in epidemiologic studies (32,
33). The cohorts in this study were originally designed to address
specific questions; this explains the difference in prevalence
of cases. Bambuí and Pelotas are population-based cohorts,
and alcohol dependence prevalence is 11 and 6%, respectively,
while the alcohol dependence in Americas is 4.1% (2). On the
other hand, the US NIH-NIAAA cohort, which is focused on
AUD, has a selected population with high prevalence of alcohol
dependence (34%). The cohort design also explains why we used
different screening instruments for alcohol dependence (CAGE
and AUDIT). The CAGE questionnaire, which was used in
our discovery sample (Bambuí cohort), detects problems with
alcohol consumption and dependence at any point in life (9). The

AUDIT, which was used in the two replication cohorts (Pelotas

and United States), detects current problems with alcohol

consumption and dependence (34). Studies that have compared
these two instruments show similar high specificity (90%) and

sensitivity (80%) for screening alcohol dependence (34, 35).
The CAGE was used in the Bambuí cohort, which comprised
older individuals than in the other two cohorts (Table 1), for
it shows better validity in the elderly than the AUDIT (35,
36), which screens for current problems (8). Nevertheless, both
questionnaires are validated tools and show high correspondence
for detecting alcohol dependence. De Moor and colleagues (37)
showed in a sample of 5,870 twins and siblings and 4,420
additional family members that AUDIT and CAGE clustered on
two highly correlated (0.74) underlying factors, thus suggesting
that the items of the AUDIT and CAGE to a large extent represent
one underlying problem drinking construct.

LD analysis in our multiethnic cohorts shows moderate-to-
high correlation between rs4768231 and rs4767971 (r2

Bambuí
=

0.92; r2
Pelotas

= 0.64; r2
United States

= 0.59). For general comparison,
reference populations from the four major continents (38) show
different levels of LD for this pair of SNPs. Strong correlations are
observed in Europeans (r2 = 0.80) and Asians (r2 = 0.85). On
the other hand, Africans (r2 = 0.42) and Latin Americans (r2 =
0.34) show lower levels of LD between rs4768231 and rs4767971.
These results can be explained by population-specific genetic
architectures at the LRRK2 locus. Even though genetic ancestry at
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FIGURE 2 | In silico functional study on the properties of the LRRK2 variants associated with alcohol dependence in the three cohorts. (A) Schematic representation

of the locus containing the LRRK2 gene (12:40,146,744–40,419,285; RefSeq: GRCh38). The green continuous lines and rectangles represent introns and exons of

the LRRK2 gene, respectively. This region was cross-referenced with DNA sequence annotations, including the location of constrained elements for 100 eutherian

mammals and the position of regulatory elements (Regulatory Build). (B) Magnified view of a region within the LRRK2 gene where single-nucleotide polymorphisms

(SNPs) rs4767971 and rs4768231 can be found. (C) rs4767971 is located within an H3K4me1 enhancer element identified in tissues from the brain dorsolateral

prefrontal cortex, angular gyrus, and substantia nigra. Image created using the Ensembl Genome Browser (http://www.ensembl.org). H3K4me1: mono-methylation at

the fourth lysine residue of the histone H3 protein.

the locus-segment level needs to be investigated, global ancestry
in the Bambuí and Pelotas cohorts was largely European (78.5
and 76.1%, respectively) and to a lesser extent African (14.7
and 15.9%, respectively) (39). Interestingly, the LRRK2 variants
were associated with alcohol dependence only in individuals with
European AIM score below the median in the US cohort.

Several genetic variants have been associated with alcohol
abuse or dependence in humans (15, 40–43). The most
commonly associated variants are in genes related to alcohol
metabolism, as alcohol dehydrogenase family (ADH1B, ADH1C,
and ALDH2) (43–46), and those related to reward pathways,
as the GABRA2 (40), and DRD2 (43, 47). Besides that, other
gene variants associated with alcohol dependence includeUTP20,
ARL15, SLC22A18, PHLDA2, NAP1L4, SNORA54, CARS, and
OSBPL5 (48). JCAD, KLB, and GCKR have also been associated

with alcohol dependence as assessed with the AUDIT (43).
Most of these studies were conducted in European-derived
populations (18–20). More recent analyses of non-European
populations have suggested the existence of additional variants
associated with AUD (44, 45, 49), emphasizing the importance
of considering diverse populations in genetic studies in order
to obtain a more complete understanding of the underpinnings
of this complex condition. To the best of our knowledge, our
study (involving multiethnic populations from South and North
America) is the first to demonstrate that LRRK2 variants are
associated with alcohol dependence in humans. Specifically,
no genetic variation in LRRK2 has been found to reach
genome-wide significance level in recently published and well-
powered genome-wide association studies (GWASs) on alcohol
dependence (44, 46, 50). These apparently discordant results can
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be explained by the intrinsic characteristics of the investigated
populations, different study designs, and coverage of the used
SNP chips.

Previous studies have shown an association of LRRK2
SNP variants with familial and sporadic PD (29, 30). The
most prevalent LRRK2 mutation in PD causes an amino acid
substitution in the position 2,019 (G2019S) of the protein,
which increases the catalytic kinase activity of LRRK2 (51). To
verify if PD and alcohol dependence are genetically correlated,
we accessed the GWAS catalog (https://www.ebi.ac.uk/gwas/
home), a curated collection of human GWASs. We identified
at least two other risk loci, at IGSF9B and SLC39A8, shared
by the two conditions (44, 52–54). More recently, SNPs in
LRRK2 were associated with cancer (55, 56) and inflammatory
conditions (including infectious and autoimmune diseases) (57).
LRRK2 is a complex protein with different functional regions,
including protein–protein interaction, GTPase, and kinase
activity domains (24). Alterations in LRRK2 kinase function have
been shown to affect dopaminergic function (26, 28, 58, 59)
via disruption of synaptic vesicle formation and trafficking (60),
signal transmission (26), and receptor function (28). Inhibition of
LRRK2 inmice striatum increased themobilization and recycling
of synaptic vesicles and improved dopamine release (58). Using
the inhibitor GNE-0877 of LRRK2 kinase activity, our group
observed a significant reduction of alcohol preference in the
zebrafish model (22).

According to chromatin immunoprecipitation assay (ChIP)
(31), the variant rs4767971 is located in an enhancer region
marked by a histone methylation, H3k4me1, only in three brain
regions (substantia nigra, angular gyrus, and dlPFC). These
enhancer regions are methylated or acetylated according to
their activity status (poised, primed, or active) (61). H3K4me1
is a marker of primed or poised enhancer and is responsible
for the fine-tune of transcriptional regulation in response to
environmental modifications (62). Loss of H3K4me1 marker
might affect gene expression partially. There is no information in
public databases, such as the GTEx portal (63), about the effect of
rs4767971 on LRRK2 expression in brain tissues. Therefore, more
studies are necessary to understand how this variant influences
gene expression.

In conclusion, this study demonstrated, for the first time,
the association of LRRK2 variants with alcohol dependence
in three different human populations. Studies that combine
diverse populations are highly relevant in order to determine
how genes and different environmental factors can influence
a particular phenotype and to examine the consistency of
established associations across different populations. Further
studies are required to evaluate the role of the variants associated
with alcohol dependence in LRRK2 expression.

MATERIALS AND METHODS

Population Samples
Brazil, Bambuí

The Bambuí cohort (discovery cohort) was established in Bambuí
City, in Minas Gerais State, in Southeast Brazil. The population
eligible for the cohort study consisted of all residents who were 60

years or older on January 1997, identified after a complete census
of the city. Of the 1,742 eligible residents (individuals≥60 years),
1,606 were recruited and completed the CAGE questionnaire
(9) to identify alcohol dependence. A total of 1,442 individuals
were successfully genotyped as part of the EPIGEN initiative (64)
(https://epigen.grude.ufmg.br). Further details of the Bambuí
cohort can be seen in Lima-Costa et al. (65).

Brazil, Pelotas

The Pelotas cohort (replication 1 cohort) was established in
Pelotas City. Throughout 1982, the births from the three
maternity hospitals in the city, which account for 99.2% of all
births, were recorded on a daily basis. The 5,914 live-born infants
whose families lived in the urban area constituted the cohort.
Further details on the Pelotas (1982) birth cohort can be seen in
Horta et al. (66). At 30 years of age, 3,089 participants answered
the WHO’s AUDIT (8). Furthermore, 3,015 of these individuals
were genotyped as part of the EPIGEN initiative. According to the
EPIGEN-Brazil initiative’s data usage policy, the Pelotas sample
was only available for replication purposes.

United States, National Institutes of
Health–National Institute on Alcohol
Abuse and Alcoholism
A total of 2,152 participants of African American or Caucasian
ethnicity (including African/European admixed individuals)
were selected from an existing NIH-NIAAA database for whom
genotyping data that passed our standardized QC were available
(see below). Those with self-reported American Indian or
Alaska Native, Asian, Native Hawaiian, or Other Pacific Islander
ethnicity (n = 101) were excluded. A total of 1,316 participants
completed the AUDIT.

Ethics Statement and Accordance With
Guidelines and Regulations
Participants from the Brazilian cohorts provided written
informed consent to participate in the study, which was approved
by Brazil’s National Research Ethics Committee (CONEP), as
part of the EPIGEN-Brazil initiative (resolution number: 15895).
Participants in the NIH cohort provided written informed
consent to participate in the study, which was approved by the
Institutional Review Board at NIH. All participants agreed to
genotyping of their samples. All methods and protocols were
performed in accordance with the principles of the Declaration
of Helsinki.

Definition of Alcohol Dependence and
Phenotyping
Alcohol dependence in the Bambuí cohort was identified using
the CAGE questionnaire. In this test, individuals answer “yes”
or “no” to four questions: (1) Have you ever felt you needed
to cut down on your drinking? (2) Have people annoyed you
by criticizing your drinking? (3) Have you ever felt guilty about
drinking? (4) Have you ever felt you needed a drink first thing in
the morning to steady your nerves or to get rid of a hangover?
These questions cover alcohol consumption during lifetime and
are specific to dependence behavior. The Portuguese validation of
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the CAGE questionnaire was carried out by Masur and Monteiro
(67), who estimated a sensitivity of 88% and a specificity of 83%
to detect alcohol dependence. In the present study, following
the recommendations from the seminal CAGE publication (68),
individuals who answered affirmatively to two or more questions
were categorized as cases (i.e., high risk of alcohol dependence).
Individuals responding “no” to all questions were classified as
controls (i.e., low/moderate risk of alcohol dependence). The 539
individuals who reported no alcohol consumption or answered
yes to only one question were excluded.

Phenotyping of the Pelotas and the US cohorts was done using
the AUDIT, widely used to detect high-risk drinking with three
questions on alcohol consumption (consumption score), three
questions on drinking behavior and dependence (dependence
score), and four other questions on problems related to drinking
(alcohol-related problems score). The AUDIT questionnaire
was found to have 92% sensitivity and 94% specificity to
detect alcohol dependence (8). Individual risk level for alcohol
dependence was inferred by the combination of results obtained
from the total score (maximum score possible = 40) and
the dependence score (maximum score possible = 12). The
thresholds for the AUDIT tool were defined as recommended
by the AUDIT Decision Tree (https://auditscreen.org) and by
user manuals provided by several health committees, such as the
UCLA Medical Staff Health Committee (69). Individuals with
an AUDIT total score higher than 15 and a dependence score
of 4 or more were classified as cases (i.e., high risk of alcohol
dependence), and those with AUDIT total score of 15 or less
and dependence score below 4 were included in the control
group (i.e., low/moderate risk of alcohol dependence). Both the
AUDIT and CAGE have been extensively validated as screening
questionnaires for alcohol dependence.

Single-Nucleotide Polymorphism
Genotyping and Quality Control
Individuals from the Brazilian cohorts were genotyped as part
of the EPIGEN-Brazil initiative using the Illumina HumanOmni
2.5–8v1 BeadChip panel (Illumina, San Diego, CA). Genotyping
for the US-NIH cohort was performed using the IlluminaHuman
OmniExpress Exomearray (Illumina, San Diego, CA).

Standardized QC was performed to exclude individuals
presenting with the following: (i) inconsistency between
registered and genetic sex, based on X-chromosome markers,
using PLINK v1.9 (70) (–check-sex); and (ii) close relationship
estimated by kinship coefficients for each pair of individuals,
using a method implemented in the REAP software (Relatedness
Estimation in Admixed Populations) (71). Pairs of individuals
were considered closely related if the estimated kinship
coefficient between them was ≥0.1; and (iii) more than 1% of
undetermined genotypes, using PLINK v1.9 (–mind 0.01). After
sample QC, five individuals were excluded from the Bambuí
cohort, and the other 37 were excluded from the Pelotas cohort.
QC was also performed to eliminate SNPs showing (i) significant
deviation from the Hardy–Weinberg equilibrium [P < 10−5

(–hwe 0.00001), based on controls only]; (ii) more than 1%
of undetermined genotypes (–geno 0.01); and (iii) MAF <1%

(–maf 0.01). All stages of SNP QC were also carried out using
PLINK v1.9.

For the first phase of this study, after genomic QC, 119
SNPs in the LRRK2 region (including 10 kb of its 5′ and
3′ flanks; 12:40,186,744–40,379,285; RefSeq: GRCh38) were
identified and analyzed in 898 individuals from Bambuí. All the
SNPs explored in the replication phases passed the genomic QC
and were analyzed in 2,978 individuals from Pelotas and in 1,316
individuals from the United States.

Genotype Imputation
The procedures for genotype imputation in the Bambuí cohort
were described by Magalhães and colleagues (72). Briefly,
imputation was based on the EPIGEN-5M+1KGP reference
panel, which is a mergence of the 1000 Genomes Project Phase
3 haplotypes panel, version 20130502 (73), and our unpublished
EPIGEN-5M panel, which comprises 4,102,271 SNPs for 265
Brazilians. SHAPEIT2 (74) was used to check the consistency
of the SNP’s strand on the target data and the reference panels,
and PLINK v1.9 software was used to flip the strands in cases
of inconsistency (–flip). Target dataset was phased using the
EPIGEN-5M dataset as phasing reference. Genotype imputation
was performed by IMPUTE2 v2.3.2 (75). The IMPUTE2 info
score was used as a metric of imputation quality. Only imputed
variants with info score ≥0.7 and MAF ≥1% were considered for
analysis. In this context, imputed genotypes of 685 variants in
the LRRK2 region (12:40,186,744–40,379,285; RefSeq: GRCh38)
were evaluated.

Linkage Disequilibrium and Population
Genetic Structure
LD (r2) analysis was performed using HAPLOVIEW v4.2 (76).

To explore the admixed nature of the Brazilian samples, we
conducted PCA (77), using PLINK v1.9. Remarkably, only PC1
accounted for more than 5% of data variance in both Brazilian
samples [Bambuí (PC1 = 22.2%) and Pelotas (PC1 = 39.2%)]
(Supplementary Figure 2). Thus, only this more informative PC
was used to adjust for population stratification.

Ethnic origin for individual study subjects from the NIH
cohort was characterized using a panel of 2,500 AIMs and
individual comparison with the 51 worldwide populations
represented in the Human Genome Diversity Cell Line
Panel of the Human Genome Diversity Project (HGDP) and
Center d’Etude du Polymorphisme Humain (CEPH), which
includes 1,051 individuals (http://www.cephb.fr/HGDP-CEPH-
Panel). Ancestry scores were calculated using Structure, version
2.2 (http://pritch.bsd.uchicago.edu/structure.html), where data
for the CEPH diversity panel was run along with data for a
single study subject (78, 79). The number of ethnic clusters (K)
was defined by running the data with different K values and
computing the probability of K = n. The six-factor solution was
optimal for this marker set and closely replicates solutions found
by Rosenberg et al. (80), wherein all the non-Arabic African
populations in the Human Genome Diversity Cell Line Panel are
identified by a single African factor in this six-factor solution
(Africa, Europe, Asia, Far East Asia, Oceania, and America).
In this dataset of African American/Black and European
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ancestry, we specifically focused on the African and European
AIM scores.

In silico Functional Analysis
Comparative genomic and epigenomic data for the LRRK2
locus (12:40,146,744–40,419,285; RefSeq: GRCh38) were
obtained from the Ensembl Genome Browser (http://www.
ensembl.org). The positions of SNPs associated with alcohol
dependence were cross-referenced with several sequence
annotations, including (i) LRRK2 coordinates (positions of
introns and exons); (ii) genomic evolutionary rate profiling-
constrained elements for 100 eutherian mammals (GERP
conservation scores) (81); (iii) presence of consensus sequences
for transcription factors (82); (iv) chromatin accessibility (DNase
I hypersensitive sites); and (v) chromatin segmentation states
(histone marks for promoter, promoter flank, enhancer, and
CTCF). These last two types of information were obtained
from large epigenomic consortia, such as the ENCODE
Project Consortium (83) and the Roadmap Epigenomics
Consortium (31).

Statistical Analysis
Frequencies of LRRK2 variants were compared between controls
and cases, under an additive genetic model. The effective
number of independent marker loci in the Bambuí discovery
sample (Meff = 290) was estimated by the Single Nucleotide
Polymorphism Spectral Decomposition (SNPSpD) software (84).
Statistical power was estimated using the Quanto software.
This factor depends on the effect of each polymorphism [allele
frequencies and associated relative risks (OR)], the size of the
sample, and the degree of type I error. Using an additive
genetic model and the experiment-wide significance threshold
required to keep type I error rate at 5% (1.7 × 10−4), the
Bambuí cohort has ≥70% power to describe a polymorphism
with a frequency equal to 19%, which determines a relative risk
of 1.8.

In the Bambuí sample, sex, age, and PC1 (to account for
population genetic structure) were included as covariates in
the logistic regression model. Since all individuals had the
same age (30 years) in the Pelotas cohort, only sex and
PC1 were used as covariates. In the US cohort, sex, age,
and AIM scores for Europe and Africa (also to correct for
eventual population stratification) were integrated in the logistic
regression analysis. Results are described as estimates of OR
and confidence interval (CI). In the discovery phase (Bambuí),
a FDR (Benjamini–Hochberg) adjustment was applied to limit
the probability of false-positive results. After that, PFDR < 0.05
was taken as significant. In the replication phase (Pelotas and
United States), the significance level was P (raw) < 0.05. To
avoid unnecessary increase in the burden of multiple testing in
the Bambuí discovery analysis, genotyped and imputed SNPs
were evaluated in different moments. To combine association
results, we carried out random-effects meta-analysis (assuming

inter-study variability). All these analyses were conducted using
PLINK v1.9 software.
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