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secretion of Hsp70 and provides protection against tumour
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Although heat-shock protein 70 (Hsp70) has been considered an intracellular protein, we report that Hsp70 is secreted under
normal cell culture conditions by human prostate cell lines, LAPC-4, PC-3, CWR-22, RWPE-1 and -2, LNCaP, and TRAMP
(transgenic adenocarcinoma mouse prostate)-C2. We found that the secretion can be enhanced by transfection with cDNA
encoding for Hsp70. To verify that the Hsp70 detected in the supernatant was not secondary to cell leakage, C2 cells were
cotransfected with cytoplasmic Renilla luciferase as a reporter. High levels of activities were noted in the cell extracts, while no enzyme
activities were detected in the supernatants. To verify that forced oversecretion of Hsp70 could protect against tumour growth, mice
were injected with C2 cells transfected with an Hsp70 DNA construct and challenged with live tumour cells. Mice injected with cells
transfected with the Hsp70 DNA construct demonstrated a significantly decreased rate of tumour growth compared to those
injected with empty vector. In addition, a difference in survival rate as defined by a surrogate end point was noted between the two
groups. In a second experiment, we developed a cell line that stably overexpressed Hsp70. Mice injected with these cells also
demonstrated a significant decrease in tumour growth and significantly increased survival.
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Prostate cancer is the second leading cause of cancer death in men
in the United States, exceeded only by lung cancer. The American
Cancer Society estimates that 28 900 men in the United States will
die of prostate cancer in the year 2003. Currently, for patients with
early stage, organ confined disease, there are well-defined
treatment options, including radical prostatectomy, radiation
therapy, or watchful waiting. However, no definitive treatments
are available for advanced or recurrent disease. It is known that
tumour regression can be achieved with androgen blockade;
however, disease usually recurs within 1 –2 years, leading to
significant morbidity and mortality (Mahler and Denis, 1992).

The idea of gene transfer to enable the use of host immune
system against tumours has generated new treatment options for
patients with prostate cancer. This therapy is based on the
assumption that it is possible to break tolerance to tumour
antigens by increased expression of immunomodulants and
chemokines (Houghton, 1994). Specifically in prostate cancer
studies, various gene transfer strategies using human or murine
granulocyte/macrophage colony-stimulating factor (Sanda et al,
1994), interleukin-2 (Fearon et al, 1990), and interferon gamma
(Vieweg et al, 1994) have been shown to elicit antitumour
responses.

The antitumour property of heat-shock proteins (hsp’s) was
recognised in the 1980s when purified hsp’s from tumour cells
were shown to elicit immunity (Srivastava et al, 1998). Subsequent

studies have contributed to the understanding of the mechanism
by which purified hsp’s interact with the immune system. In their
role as housekeeping proteins and chaperones, hsp’s can
bind to multiple intracellular peptides including tumour peptides
(Gething and Sambrook, 1992; Parsell and Lindquist, 1993).
These hsp– peptide complexes have the unique ability to promote
crosspriming of cytotoxic T lymphocytes (CTLs), one of the most
effective ways to stimulate antitumour immunity (Cavallo et al,
1993; Suto and Srivastava, 1995; Cayeux et al, 1997). Once
released from tumour cells, these hsp complexes bind to CD91
receptors on host antigen-presenting cells (APCs) (Binder et al,
2000). The binding of hsp –peptide complex with CD91 leads
to the internalisation of the complex and presentation of tumour
peptides with MHC class I with the activation of CD8þ cells.
Studies also suggest that a small proportion of the hsp –peptide
complex is loaded onto MHC class II, leading to the stimulation of
CD4þ cells (Matsutake and Srivastava, 1999). Other receptors,
such as CD36 and CD40, were identified recently on APCs
that can also interact with hsp’s (Panjwani et al, 2000;
Wang, 2001). These receptors, once activated, cause the secretion
of nonspecific inflammatory cytokines such as tumour necrosis
factors and interleukins (Ishii et al, 1999).

Recent studies indicated that hsp’s interact with natural killer
(NK) cells. Studies have demonstrated a correlation between
tumour cell hsp’s expression and increased NK cell-mediated cell
lysis (Ponomarev et al, 2000). This observation is further
supported by the identification of the extracellular C-terminal
epitopes on Hsp70, 504-617, which are important for NK cells’
killing activities (Botzler et al, 1998).
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Previously in our laboratory, we found that purified Hsp70 from
transgenic adenocarcinoma mouse prostate (TRAMP)-C2 cells
(Foster et al, 1997) can induce an antitumour response (Vanaja
et al, 2000). TRAMP-C2 is a murine prostate cancer cell line
derived from TRAMP mice (transgenic adenocarcinoma of mouse
prostate) that spontaneously develop prostate cancer (Greenberg
et al, 1995). In the process of extending our previous studies on
hsp’s, we noted the presence of Hsp70 in the routine cell culture
media of prostate cancer cells. This led us to investigate Hsp70
secretion and its significance in antitumour therapy. The
advantage of using hsp’s gene transfer is that it bypasses the need
to purify large quantities of hsp’s, in addition to allowing for
systemic delivery.

MATERIALS AND METHODS

Cell lines

TRAMP C2 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, GIBCO, CA, USA) supplemented with 5% fetal calf
serum (FCS), and 1% penicillin/streptomycin. Cells were maintained
in T162 cm flasks at 371C, 5% CO2, and passaged weekly. Cells used
for animal injections were collected by trypsinisation and washed
with DMEM three times prior to injections. Specified number of
viable cells (100ml of DMEM per mouse) was determined by trypan
blue exclusion, and used for injection.

LNCaP, PC-3, CWR-22, and LAPC-4 are human prostate
adenocarcinoma cell lines. Each cell line was cultured in RPMI
1640 media (GIBCO, CA, USA) containing 5% FCS and 1%
penicillin/streptomycin. Cells were maintained at 371C, 5% CO2.
RWPE-1 and RWPE-2 cells derived from normal human prostate
cells immortalised with human papilloma virus 18 were main-
tained in keratinocyte media (GIBCO, CA, USA), 371C, and 5%
CO2 (Bello et al, 1997).

Hsp70-expressing cells

The full-length cDNA coding for inducible mouse Hsp70 was
inserted into a mammalian expression vector pcDNA3.1 (þ )
(Invitrogen, CA, USA), and transiently transfected into TRAMP-C2
cells as per the protocol (Superfect, Qiagen, CA, USA). Empty
vector was transfected as a control. Supernatants and cell extracts
were collected at 24, 48, and 72 h. Whole-cell extracts were
prepared as per Santa Cruz Biotechnology research applications.
Spent media were spun down at 1000 r.p.m. for 5 min; supernatant
was collected and concentrated with Vivaspin column concen-
trator, 10 000 MWCO (Vivascience, CA, USA). Protein levels were
quantified with DC protein assay or Bradford (Bio-Rad, CA, USA).
Success of the transfections was verified by Western analysis for
Hsp70. To generate stable clones, cells were transfected with
pcDNA3.1þHsp70 or empty vector as above and selected with
gentamicin. Positive clones were selected and verified by Western
analysis for Hsp70.

Secretion study

TRAMP-C2 cells were cotransfected with pcDNA3.1þHsp70. and
Renilla luciferase vector (Promega, WI, USA). Supernatants and
cell extracts were collected at 24, 48, and 72 h. Proteins were
collected and analysed by Western analysis for Hsp70 as described
below and luciferase activity was measured as per the manufac-
turer’s instructions (Promega, WI, USA). Western blots of Hsp70
protein were quantified by densitometry and luciferase activity was
measured by luminescence. All experiments were performed in
triplicate.

LNCaP cells were cultured in RPMI 1640 media (GIBCO, CA,
USA) containing 5% FCS, 1% penicillin/streptomycin, and 1 nM

mibolerone, a synthetic androgen. Various concentrations of

brefeldin A (BFA, Sigma, MO, USA) dissolved in RPMI 1640 were
added to each plate. At 16 h after the BFA treatment, both
supernatants and cells were collected and prepared as above for
Western analysis.

Western blot analysis

Whole-cell protein extracts and supernatants were prepared and
quantified using DC assay or Bradford assay (BioRad, CA, USA).
Equivalent protein samples were loaded into a precast 4–12%
NuPage gel (SDS–PAGE), followed by electrophoresis and subse-
quent transfer onto a nitrocellulose membrane. Ponceau S staining
was performed for total protein staining. The membrane was blocked
overnight at 41C with 5% milk in PBST (phosphate buffer solution
with 1% Tween 20) and washed five times, 5 min each with PBST.
This was followed by incubating the membrane at room temperature
with either inducible Hsp70 primary antibody (StressGen, Canada) at
1 : 5000 dilution in PBST or prostate-specific antigen (PSA, Dako, CA,
USA) at 1 : 2000 dilution. After an hour of incubation with the
indicated antibodies, the membrane was washed as above, followed
by a second anti-rabbit/mouse horseradish peroxidase antibody
(1 : 100 000) incubation for an additional hour. Protein detection was
performed with SuperDura chemiluminescence reagent as per the
manufacturer’s instructions (Pierce, IL, USA) and visualised with a
digital camera. For quantitation, the various bands were analysed
with AlphaEaseFC Software version 3.1 (Alpha Innotech Corpora-
tion, San Leandro, CA, USA).

Animal studies

All studies were approved by The Mayo Foundation Institutional
Animal Care and Use Committee. Male C57BL/6 mice, 5 –6 weeks
of age were obtained from Jackson Laboratory and housed in
the Mayo Animal Resources Facilities under controlled tempera-
ture, humidity, and a 12 h light and dark cycle with food and water
at libitum in a virus-free environment. Eight mice per group
were used for each study. TRAMP-C2 cells were transfected with
either pcDNA3.1þHsp70 or empty vector and collected 24 h
post-transfection as described, and irradiated (10 000 rads) and
injected subcutaneously. Three separate injections were performed
3 days apart. Each mouse received 1� 106 cells per injection.
At 10 days after the last injection, mice were challenged with
3� 106 wild-type TRAMP-C2 cells on the opposite flank.
In the second study, stably transfected TRAMP-C2 cells were
collected, irradiated (10 000 rads), and injected into mice as above.
At 10 days after the last injection, mice were challenged with
3� 106 wild-type TRAMP-C2 cells on the opposite flank.
Animals were examined and tumours were measured in three
dimensions every other day using a caliper. Tumour volume
was calculated, V¼ (length)(width)(depth). Animals were
removed from the study when tumour diameter was greater
than 1 cm.

Statistics

Data from the animal studies were analysed by log-rank test or
Wilcoxon’s signed-rank test as described in the figures. P-values
o0.05 were considered to be statistically significant.

RESULTS

Forced overexpression of Hsp70 can increase Hsp70
secretion

During our studies on hsp’s, we observed that Hsp70 is present in
the routine culture media of TRAMP-C2 cells (data not shown).
To test if the presence of Hsp70 in the spent media is a dynamic
process and if overexpression can increase its secretion, we
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transiently transfected TRAMP-C2 cells with a vector coding for
murine Hsp70 (pcDNA3.1þHsp70). As shown in Figure 1, Hsp70
is detected in both the spent media and the cytosol of transfected
and mock-transfected cells. However, increased levels of Hsp70
were noted only in the spent media of transfected cells, while
intracellular Hsp70 remained relatively constant over time (Figure
1a and b). The relative amounts of Hsp70 in the supernatants and
cell extracts were calculated, and greater percentages of Hsp70
were noted in the supernatants of the transfected samples (24, 48,
and 72 h) when compared to the mock-transfected samples
(Figure 1c).

Hsp70 in supernatant is not due to cell leakage

To eliminate the possibility of nonspecific cell leakage by physical
damage, TRAMP-C2 cells from the above experiment were
cotransfected with pcDNA3.1þHsp70 and a vector containing

the cytoplasmic Renilla luciferase as a reporter. Luminescence
was used to quantitate the relative amount of renilla protein
in the supernatants and cell extracts. No luciferase enzyme
activity was detected in the supernatants at any time points
(Figure 1d). In addition, results were adjusted to account for
concentrated supernatants and represented in percentages
(Figure 1e).

Hsp70 secretion can be found in other human prostate cell
lines

Our findings in TRAMP-C2 cells raised the question as to whether
Hsp70 secretion is occurring in other prostate cell lines. We
examined the spent media of various spontaneous prostate
adenocarcinoma cell lines, including LAPC-4, PC-3, CWR-22,
and LNCaP cells, and two additional transformed human prostate
cell lines, RWPE-1 and RWPE-2. Note that RWPE-1 is not
tumorigenic in athymic mice. RWPE-2, derived from RWPE-1,
further transformed by Ki-Ras oncogene, is tumorigenic. Western
analysis of these human prostate cell lines incubated under routine
cell culture conditions was positive for Hsp70 in the supernatants
and cell extracts, strongly suggesting that Hsp70 is secreted
(Figure 2).

Hsp70 secretion is not blocked by a secretion inhibitor,
BFA

To determine if the observed secreted Hsp70 was through the
classical secretory pathway, BFA was used to study the secretion of
Hsp70 and PSA in LNCaP cells. At 16 h after treatment,
supernatants and cell extracts were collected as above. Western
analysis for Hsp70 was performed with PSA as a positive control.
LNCaP cells provided a useful model because they are an
androgen-responsive human prostate adenocarcinoma cell line
that expresses androgen-inducible genes such as PSA (Murtha et al,
1993). Prostate-specific antigen is a classical secretory protein that
has been well studied, and its secretion and production have been
shown to be inhibited by BFA (Gau et al, 1997; Konno et al, 1998).
As shown in Figure 3, Hsp70 was detected in both supernatants
and cell extracts and is not decreased with the addition of BFA,
while a decrease in PSA secretion was noted at a concentration of
0.5mg ml�1 BFA or higher. The presence of tubulin in the cell
extracts but to only a small extent in the supernatants indicates
that the Hsp70 detected in the supernatants is not due to cell death
and lysis.

Forced overexpression of Hsp70 from TRAMP-C2 cells
delays tumour growth and extends survival of C57BL/6
male mice

Transient overexpression experiment To test whether forced
oversecretion of Hsp70 from prostate cancer cells can
provide protection from tumour growth in vivo, TRAMP-C2 cells
were transiently transfected with pcDNA3.1þHsp70 and
injected subcutaneously into syngeneic C57BL/6 male mice.
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Figure 1 (A) Western analysis for Hsp70 in supernatants of
pcDNA3.1þHsp70 and Renilla luciferase or mock-transfected TRAMP-
C2 cells. Spent media were collected at 24, 48, and 72 h and concentrated
as in Materials and methods. (B) Western analysis for Hsp70 in cell extracts
of Hsp70, Renilla luciferase, and mock-transfected TRAMP-C2 cells.
Ponseau S was used for normalisation. (C) Percent of Hsp70 in
supernatants (Sup) and cell extracts (CE) of Hsp70 and mock-transfected
TRAMP-C2 cells as determined by densitometry. (D). Comparison of
luciferase activity in cell extracts (C) vs supernatants (S) in C2 cells
transfected with pcDNA3.1þHsp70 and Renilla luciferase at various time
points. Spent media and whole-cell protein extracts were prepared as
above. (E) Percentage of renilla protein was determined by luminescence.

LAPC-4 PC-3 CWR-22 RWPE-1 RWPE-2 LNCaP

S S S S S S CCCCCC

Hsp70

Figure 2 Western analysis for Hsp70 in supernatants (S) and cell
extracts (C) of various prostate cell lines. Whole-cell protein extracts and
spent media were collected at 48 h after being plated and subjected to
Western analysis. Proteins were quantified with Bradford assay and
equivalent amounts of proteins were loaded onto SDS–PAGE gel.
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Cells transfected with empty vector were used as a control.
At 10 days after last injection, mice were challenged
with nontransfected TRAMP-C2 cells on the opposite flank. As
shown in Figure 4, there is a delay in TRAMP-C2 cell growth in
mice previously inoculated with Hsp70-expressing C2 cells.
Statistical significance was observed at P¼ 0.008 as analysed
by Wilcoxon’s signed-rank test between the groups (Figure 4).
We also examined survival as defined by the time until the
diameter of the tumour was greater than 1 cm. We found that there
was a difference in the survival rates between the two groups that
was not statistically significant (Figure 5, P¼ 0.11). This
experiment suggests a protective effect offered by inoculation
with cells forced to overexpress Hsp70.

Stable overexpression experiment

Furthermore, stable TRAMP-C2 transfectants with
pcDNA3.1þHsp70 or empty vector as a control were used to
reproduce the above experiment. Western analysis of these clones
verified an increase in intra- and extracellular Hsp70. Injections
with stable clones and subsequent live, nontransfected TRAMP-C2
challenge were performed as above. As shown in Figure 6, there
was a statistically significant delay in TRAMP-C2 tumour growth
in mice previously injected with Hsp70-expressing stable clones
(P¼ 0.001). In addition, in this experiment there was a significant
difference in survival between the two study groups (Figure 7,
P¼ 0.02).

2 1.5 1.520.5 1.0 0.51.0 0 0

Hsp70

�-tubulin

PSA

Supernatant Cell extract

BFA (�g ml−1)

Figure 3 Western analysis for Hsp70, PSA and b-tubulin in supernatant
and cell extract of LNCaP cells. Whole-cell protein extracts and spent
media were prepared 16 h after treatment with various concentrations of
BFA (mg ml�1). Protein concentrations were quantified and equal amounts
of proteins were loaded onto a single gel.
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Figure 4 TRAMP-C2 tumour growth rate in C57BL/6 male mice after
injecting with transiently transfected TRAMP-C2 cells with Hsp70 or empty
vector. Tumours were measured every other day. P-values of o0.05 were
considered statistically significant.
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Figure 5 Percent survival of mice with transiently transfected Hsp70
TRAMP-C2 cells or empty vector.
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Figure 6 TRAMP-C2 tumour growth rate in C57BL/6 male mice after
injecting with stably transfected Hsp70 TRAMP-C2 cells. Tumours were
measured every other day. P-values of o0.05 were considered statistically
significant. Inlet: Western analysis of Hsp70 in pcDNA3.1þmurine Hsp70
(Hsp70)- and pcDNA3.1 (E)-transfected stable clones. Cell extracts (C)
and supernatants (S).
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Figure 7 Percent survival of mice with stably transfected Hsp70
TRAMP-C2 cells or empty vector.
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DISCUSSION

In the course of extending our previous studies on hsp’s in
prostate cancer, we found that Hsp70 is secreted into the spent
media by some prostate cell lines under routine cell culture
conditions, although a rigorous examination of all the cell lines
remains to be completed. The significance of in vivo secretion of
Hsp70 remains to be further elucidated. Previous studies have
shown the release of hsp’s into the cultured media by rat and chick
embryo cells, squid glial cells, and yeast following heat shock
(Hightower and Guidon, 1989; Russo et al, 1992; Guzhova et al,
2001). It is believed that these hsp’s are important in cell
proliferation during embryo morphogenesis, in addition to acting
as protective factors for the surrounding cells in the presence of
environmental stress (Hightower and Guidon, 1989; Russo et al,
1992; Guzhova et al, 2001). Our extensive literature search
indicates that this is the first time that the Hsp70 secretion is
documented in mouse and human prostate cancer cells. In
addition, Hsp70 secretion can be increased with overexpression.
This raised an interesting implication in that this oversecretion
might have the potential to be utilised in generating antitumour
immunity.

Hsp studies have attempted to elucidate the means by which
intracellular hsp’s can interact with extracellular immune cells.
One of the possibilities is that hsp’s are released during tumour cell
necrosis, leading to the induction of immune response. Studies by
Melcher et al, utilising the suicide gene transfer system, herpes
simplex virus thymidine kinase/gancyclovir (HSVtk/GCV), noted
different patterns of cell death in various tumour cells. Herpes
simplex virus thymidine kinase/gancyclovir utilises the strategy in
which a gene coding for a prodrug-converting enzyme is delivered
into tumour cells, followed by the administration of the prodrug.
Thus, the enzyme converts the prodrug into a toxic compound that
kills the cells (Vile et al, 1997). In this particular study, cells that
became necrotic with HSVtk/GCV treatments were found to
express higher levels of hsp’s mRNA when compared to cells that
were apoptotic. Follow-up in vivo studies showed a decrease in
tumorigenicity of hsp-transfected cells (Melcher et al, 1998).
Studies subjecting tumour cells to rapid freeze–thaw cyles to
mimic necrosis also noted an increase in hsp’s in the cell lysates
and supernatants, with corresponding decrease in tumorigenicity.
Studies also supported cell surface expression as an avenue by
which hsp’s can interact with extracellular immune cells. Studies
utilising membrane-bound hsp constructs noted an increase in
immunogenicity of transfected cells (Wu et al, 1999; Chen et al,
2002). Recently, a study demonstrated a decrease in tumorigenicity
of hsp110-overexpressing colon cancer cells (Wang et al, 2002).
Further studies should clarify the role each of these mechanisms
has on immunogenicity.

Although Hsp70 has been regarded as an intracellular protein,
we found its presence in the extracellular media despite the
addition of BFA, a reversible inhibitor that blocks protein
translocation at the level of the endoplasmic reticulum –Golgi
juncture and the trans-Golgi network (Schatz and Dobberstein,
1996; Cleves, 1997). Our findings indicate that these prostate
cancer cells secrete Hsp70 via a mechanism other than the well-
studied classic vesicular secretory pathway. This ‘nonclassical’
secretion of proteins that lack a typical N-terminal signal peptide
has been observed in several other proteins such as fibroblast
growth factors 1 and 2, interleukin-1, and viral proteins (herpes
simplex tegument proteins) (Cleves, 1997). The fact that Hsp70 is
released into the culture media by prostate cells without known
stressors, coupled with its anticancer activity raised some
interesting questions: first, whether hsp’s are secreted in vivo by
prostate cancer cells, second and more importantly, how does this
phenomena fit into the evolution of host tolerance to cancer cells.

In order to test our hypothesis that Hsp70 oversecretion from
prostate cancer cells can potentially be utilised as an anticancer
agent, murine Hsp70 was overexpressed in TRAMP-C2 cells and
tested in vivo. TRAMP-C2 cells, a transplantable murine epithelial
prostate cancer cell line, provide a useful model for the study of
prostate cancer therapies (Greenberg et al, 1995). Our study
showed that there is a significant decrease in the tumorigenicity of
TRAMP-C2 cells in mice injected with TRAMP-C2 cells over-
secreting Hsp70, in addition to a significant difference in survival
between mice injected with Hsp70 oversecreting cells and control.

We can speculate from our in vitro results and previous studies
that an undefined level of Hsp70 extracellularly might be involved
in cancer cell protection. This is in concordance with correlation
studies that suggest hsp’s as unfavourable prognostic factors for
progression in some types of cancer (Nylandsted et al, 2000a, b;
Lebret et al, 2003). Moreover, studies in our laboratory and others
have shown that increased hsp’s induces antitumour activities. A
study by Podack and co-workers who constructed a gp96-Ig fusion
protein noted an increase in tumour immunogencity in cells
transfected with this construct, suggesting that increased hsp
secretion can act as a stimulatory signal for the breaking of host
immune tolerance (Yamazaki et al, 1999). Additional studies of
hsp secretion will likely offer insights and help us to answer
fundamental immunologic questions with respect to the develop-
ment of tolerance and immunity.
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