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Teaser Nucleocapsid proteins are essential for coronavirus viability and constitute
potential targets for the development of therapeutics against recent

coronavirus outbreaks such as SARS and MERS.
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The advent of severe acute respiratory syndrome (SARS) in the 21st century

and the recent outbreak of Middle-East respiratory syndrome (MERS)

highlight the importance of coronaviruses (CoVs) as human pathogens,

emphasizing the need for development of novel antiviral strategies to

combat acute respiratory infections caused by CoVs. Recent studies suggest

that nucleocapsid (N) proteins from coronaviruses and other viruses can be

useful antiviral drug targets against viral infections. This review aims to

provide readers with a concise survey of the structural features of

coronavirus N proteins and how these features provide insights into

structure-based development of therapeutics against coronaviruses. We

will also present our latest results on MERS-CoV N protein and its potential

as an antiviral drug target.

Introduction
Upper and lower respiratory infections caused by viruses are very common in temperate climates

[1,2], and cause rhinitis, pharyngitis, sinusitis, bronchiolitis and pneumonia [3,4]. Coronaviruses

are a large group of RNA viruses with single-stranded RNA genomes that cause 30% of upper and

lower respiratory tract infections in humans. Some coronaviruses such as human coronavirus

229E (HCoV-229E), OC43 (HCoV-OC43), HKU1 (HCoV-HKU1) and NL63 (HCoV-NL63) are

detected globally and only evoke mild symptoms in most individuals [3–17], although some

individuals can have more-severe illness [18,19]. However, other human coronaviruses including

the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle-East respiratory

syndrome coronavirus (MERS-CoV) can elicit severe symptoms and even death [20,21].

Between 2003 and 2004, SARS-CoV caused a worldwide epidemic and had significant impact

on the economy of the countries affected by the outbreak. SARS emerged in November 2002 and

was widely prevalent in at least 27 countries with 8096 reported cases and a total of 774 deaths up

until 31 July 2003 [case-fatality rate (CFR) of 9.5%; http://www.who.int/csr/sars/country/en/].

The clinical circumstances are similar among many human coronaviruses, and are particularly
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urgent in the case of MERS. Since the emergence of MERS in 2012,

there have been 1179 laboratory-confirmed cases of infection with

MERS-CoV and a total of 442 deaths as of 4 June 2015 (CFR of

37.4%; http://www.who.int/csr/don/04-june-2015-mers-korea/

en/). This CFR is higher than most viruses infecting humans. Based

on the sequence analysis of the RNA genome, SARS-CoV probably

originated from coronaviruses infecting Chinese rhinolophid bats

[22,23]. The origin of MERS-CoV is still unclear, although drome-

dary camels have been described as an intermediate host for the

virus [24–26]. These zoonotic viruses usually have lower surveil-

lance priorities in the public health network, but once they evolve

strains capable of crossing the species barrier to infect humans

they can easily cause an outbreak. As is true for all coronavirus

infections, there is currently no efficacious therapy available for

this disease.

The CoV genome consists of positive-sense, single-stranded RNA

of approximately 30 kb in length, and it contains several genes

encoding several structural and nonstructural proteins that are

required for progeny virion production in a conserved linear ar-

rangement [27,28]. The CoVs have several conserved structural

proteins: the matrix (M) protein, the small envelope (E) protein,

the trimeric spike (S) glycoprotein and the nucleocapsid (N) protein.

Some variants have a third glycoprotein, hemagglutinin-esterase

(HE), which is present in lineage A betacoronaviruses. The N protein

is located inside the virus particle and is one of the most abundant

structural proteins in CoVs. It binds to the viral RNA genome to form

a virion core comprising a ribonucleoprotein (RNP) complex that

assumes a long helical structure [29,30]. The RNP is important for

maintaining the RNA in an ordered conformation for replication

and transcription. The CoV N protein also plays an essential part in

viral RNA synthesis [31–33]. In addition to its role in viral processes,

the CoV N protein is also involved in the regulation of cellular

processes, such as gene transcription, interferon inhibition, actin

reorganization, host cell cycle progression and apoptosis [34–37].

Moreover, the N protein is an important diagnostic marker and

immunodominant antigen in host immune responses [38–40].

Recent studies suggest that N proteins of coronaviruses and other

viruses could be useful antiviral drug targets against infections

caused by these viruses because they serve many crucial functions

during the viral lifecycle [41–43]. This review aims to provide readers

with (i) a concise survey of the structural features of coronavirus N

proteins, (ii) an explanation of how these features correlate to

ribonucleocapsid formation and (iii) insights into structure-based

development of therapeutics against coronaviruses by targeting the

N protein. We will also present the latest information on current

efforts to develop an antiviral therapeutic against MERS-CoV using

its N protein as a target.

A concise survey of the structural features of
coronavirus N proteins
A combination of protein sequence alignment, secondary structure

and intrinsic disorder predictions suggests that all CoV N proteins

share the same modular organization [44]. Coronavirus N proteins

contain three intrinsically disordered regions (IDRs): N-arm, central

linker region (LKR) and C-tail, and two structural domains: N-

terminal domain (NTD) and C-terminal domain (CTD), where

the NTD and CTD are sandwiched between three IDRs (Fig. 1a,b).

Previous studies have reported that the NTDs of the CoV N proteins
are involved in RNA binding, whereas the CTDs are involved in RNA

binding and oligomerization [45–50]. All three IDRs of coronaviral

N protein can modulate the RNA-binding and oligomerization

properties of NTD and CTD, respectively [51]. For example, N-

terminal IDR has been implicated in the RNA binding of the N

protein. It has also been reported that the LKR and the C-terminal

IDR are involved in the oligomerization of the N protein [47]. In

addition, the LKR of the N protein with Ser–Arg-rich sequences has

also been shown to contain an RNA-binding region and putative

phosphorylation sites that might regulate N protein functions [52–

54] and N–M interaction. The RNA-binding activity of the LKR also

contributes toward RNA chaperone activity, and is involved in

template switching under in vitro conditions [33].

To clarify the molecular mechanism of RNP formation in CoVs,

the structures of truncated fragments of the N protein, including

the N-terminal and C-terminal domains, were determined. Previ-

ous studies have reported that the N terminus of the N protein

provides a scaffold for RNA binding. Structural analysis revealed

that the fold and the distribution of the secondary structures of the

N-terminal domain of the N protein are essentially conserved

across the various CoVs [41,55]. The core of the structure of

CoV N-NTD adopts a unique five-stranded antiparallel b-sheet

sandwiched between loops (or short 310 helix) with the topology

of b4–b2–b3–b1–b5; and the whole structure presents a right-

handed fist-shaped structure in which palm and finger are rich

in basic residues and the flexible loops are organized around the b-

sheet core of the N-terminal domain (Fig. 1c). All CoV N-NTDs

possess positively charged amino acids on or near the protruding

loop; however, in the SARS-CoV, mouse hepatitis virus (MHV) and

avian infectious bronchitis virus (IBV) N-NTDs the protruding

segment comprises a b-hairpin, whereas a flexible loop predomi-

nates in the HCoV-OC43 N-NTD. Based on the surface charge

distribution, the protruding loop of the CoV N-NTD containing

several positively charged residues, for example, Arg 106, Arg 107

and Arg 117 in HCoV-OC43, were identified to provide a site for

binding of the phosphate backbone of RNA through electrostatic

interactions [55]. In the central core of MHV N-NTDs, there are two

crucial conserved Tyr residues, Tyr 127 and Tyr 129, that are

involved in RNA binding and mutations of these residues to

alanine can lead to loss of virus replication [56]. By contrast,

alanine substitution of Tyr 94 in the IBV N-NTD, which corre-

sponds to Tyr 126 of HCoV-OC43 and Tyr 129 of MHV, led to a

significant decrease in its RNA-binding activity and a total loss of

infectivity of the viral RNA to Vero cells [57]. The crystal structures

of HCoV-OC43 N-NTD complexed with ribonucleoside 50-mono-

phosphates (AMP, UMP, GMP and CMP) have been reported to

identify a distinct ribonucleotide-binding pocket for understand-

ing the molecular interactions that govern CoV N-NTD binding to

RNA [41]. The base of ribonucleoside 50-monophosphates was

inserted into a hole in the N-NTD that was almost perpendicular

to the phosphate moiety and the phosphate group was bound to a

basic and conserved 50-phosphate-binding site that contained the

largest positively charged region on the N-NTD surface (Fig. 1c).

The detailed interactions between the AMP and HCoV-OC43 N-

NTD are shown in Fig. 1d. The amino acid composition of this

binding site includes Ser 64, Gly 68, Arg 122, Tyr 124, Tyr 126 and

Arg 164. The Arg 122, Tyr 124, Tyr 126 and Arg 164 side-chains

generate a distinct ribonucleotide-binding pocket and interact
www.drugdiscoverytoday.com 563
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FIGURE 1

(a) Domain organization of human coronavirus nucleocapsid protein. MHV: mouse hepatitis virus; IBV: avian infectious bronchitis virus. (b) A schematic

mechanism of the oligomeric N protein complexed with RNA showing that the N proteins form a tetramer through the interactions between the C-terminal
domains and C-terminal tails of the dimer. (c) Ribbon representation of HCoV-OC43 N-NTD structure (left). Ribbon representation of HCoV-OC43 N-NTD structure

with AMP depicted as a stick structure (middle). Electrostatic surface of the HCoV-OC43 N-NTD–AMP complex (right). Blue denotes positive charge potential, red

indicates negative charge potential. (d) Detailed stereoview of the interactions at the AMP-binding site. The dotted green lines represent H-bonds. (e) Ribbon

representation of the SARS-CoV N-C-terminal-domain (CTD) dimer structure.
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with the ribonucleoside 50-monophosphate via H-bonding, ionic

bonding and p–p stacking forces. Tyr 124 is located on the surface

of the N protein in the HCoV-OC43 N-NTD and is directly in-

volved in the interactions with the AMP base through p–p stack-

ing. The phenolic hydroxyl group substituent on Tyr 126 forms H-

bonds with the sixth amino groups present in the AMP adenine

ring. These amino acids are sequentially and structurally con-

served in other HCoV N proteins; therefore, they are probably

essential for RNA recognition and interaction in all coronavirus N

proteins. All featured three additional HCoV-OC43 N-NTD com-

plexes [cytosine monophosphate (CMP), guanosine monopho-

sphate (GMP) and uridine monophosphate (UMP)] are similar

to the interaction of the HCoV-OC43 N-NTD–AMP complex.

Self-association of the N protein is a crucial step in virus particle

assembly for CoVs. Previous studies have shown that full-length

CoV N proteins can form high-order oligomers, and the C-termi-

nal domains of the CoV N proteins mediate the self-association of

the protein to form high-order oligomers [58,59]. The crystal

structures of the C-terminal domains of SARS-CoV, MHV and

IBV N proteins show a similar stable fold in which the four-

stranded b-sheet forms one face and the a-helices form the oppo-

site face, suggesting that the dimerized N protein is the building

block for all groups of coronaviruses [45,46,49,50,60]. The crystal

structure of the C-terminal domain shows a tightly intertwined

twofold symmetric C-terminal domain dimer, with a b-hairpin

from one subunit extending into the cavity of the opposite sub-

unit, which forms an antiparallel b-sheet stabilized through ex-

tensive H-bonding across the dimer interface (Fig. 1e). The

opposite dimerization interface is composed of several helices,

where strong hydrophobic interactions involving hydrophobic

residues including tryptophan, phenylalanine, leucine and pro-

line were observed. The hydrophobic interactions between the

longest helix and the intermolecular b-sheet were also observed to

stabilize the dimer conformation further.

The C-tail region of N protein also has an important role in

oligomerization [58]. However, owing to its highly disordered

sequence, no NMR or crystal structures have been solved to date.

Luo et al. report that residues 363–382 of the C-tail region from the

SARS-CoV N protein are responsible for RNA binding and the C-

terminal half of the protein is associated with oligomerization [48].

In the case of HCoV-229E N protein, CTD with an extended C-tail

region enhanced higher-order oligomer formation [58]. The C-tail

has also been found to participate in the oligomerization of the

SARS-CoV N protein [48], because the removal of 40 amino acid

residues from the C terminus apparently decreased the ability of

the protein to oligomerize. Previous studies proposed that the H-

bonds across the tetramer interface formed by the main chain

atoms of the C-tail region stabilize the oligomerization of the CTD

of the N protein through domain swapping.

The CTD of the N protein has been shown to lack RNA-binding

activity in some cases [61]; however, the presence of the CTD can

increase the RNA-binding affinity of the NTD and assist nucleo-

capsid formation. In SARS-CoV N protein, the CTD has been

shown to bind to RNA if it includes an N-terminal charged region

which is part of the CTD structure as shown by NMR spectroscopy

[44,51]. These results led us to propose a helical packaging model

of CoV RNP, which will be explained in more detail in the

following sections.
Packaging of the CoV ribonucleocapsid
Coronavirus genomes are generally very large (>20 kb) and their

accommodation into virions <100 nm in diameter requires exten-

sive supercoiling of the nucleic acid into a well-packed RNP.

Structural studies of the CoV RNP can be traced back to the late

1970s when electron microscopy (EM) studies of coronaviruses

found helical entities within the virus particle [62–64]. The ob-

served helical RNPs had coil diameters of 9–16 nm and a hollow

interior of 3–4 nm in diameter. Unfortunately, technical limits at

the time only yielded a blurry picture of the RNP, and more-

detailed information would not be available until 2006. Advances

in 2D electron cryomicroscopy (cryo-EM) and single particle image

analysis finally enabled Neuman et al. to investigate the structural

organization of the SARS-CoV at 4 nm resolution [65]. Interest-

ingly, viral RNP is maintained in a spherically packaged form

within SARS-CoV, whereas RNP released from disrupted viral

particles took the appearance of strands with a diameter of

15 nm. Later studies employing 3D cryoelectron tomography on

MHV and transmissible gastroenteritis virus (TGEV) also observed

coiled structures and tubular shapes within the virus particle

consistent with the formation of a helical RNP [66]. The tomogra-

phy results showed quasi-circular density profiles of �11 nm in

diameter enclosing an empty space of �4 nm in diameter, in

agreement with early EM studies. Neither the 2D cryo-EM nor

the 3D cryo-EM tomography studies found consistently ordered

structures within the virion, suggesting that the helical RNP is

structurally flexible, a characteristic that might be important in

the lifecycle of the virus. This flexibility is not unexpected because

RNA is known to be dynamic and exists in multiple folded and

unfolded states [67]. The interaction between RNA and CoV N

protein could involve the structural and intrinsically disordered

regions of the CoV N protein through an induced fit process

[44,51]. Because currently there are no data supporting the exis-

tence of long-lived N protein oligomers in the absence of nucleic

acid, packaging of the CoV RNP most probably employs an RNA-

binding coupled-packaging mechanism such as that proposed for

MHV [68].

Although the structure of any CoV RNP at atomic resolution is

still lacking, current 3D structural information and biochemical

data allowed Chang et al. to propose a putative series of molecular

events that led to RNP formation [47]. In the model, RNP forma-

tion can be initiated by binding of genomic RNA to either the NTD

or the CTD, which in turn facilitates binding to other domains

through coupled allostery [69]. The model enables multiple initi-

ation sites in parallel. This initial N-protein–RNA binary complex

can then grow by either recruiting additional free N protein or by

combining with other binary complexes. In the larger oligomer

complex the CTD forms a helical core, such as that observed for the

SARS-CoV N protein CTD crystal structure, with the RNA wrapping

and twisting along a positively charged groove on the outside of

the helix [46]. Presumably, the RNA binds to the CTD helix

through its phosphate backbone. In addition to the RNA–CTD

interaction, the CTD helix is held together by a number of weak

protein–protein interactions [59]. The NTD then forms a cap on

the outside of the helical CTD–RNA complex through electrostatic

interactions between the NTD and the free phosphate groups on

the RNA molecule. RNA bases sticking out of the groove intercalate

with a set of conserved aromatic residues, further stabilizing the
www.drugdiscoverytoday.com 565
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RNP. Two major features are underscored in this model. First, the

intrinsically disordered region between the NTD and CTD plays a

crucial part in the process by allowing the two structural domains

to adapt a wide range of conformations and positions for optimal

packing of the RNP complex. Second, RNP formation is driven by

electrostatic interactions and a multitude of weak CTD–CTD inter-

actions, consistent with the idea that local weak interactions can

assist the formation of globally stable structures in viral capsids

[70]. The use of multiple weak interactions to stabilize the RNP

would also minimize the formation of kinetic traps and allow

greater control over CoV RNP assembly. Interestingly, the RNP

structure proposed for SARS-CoV based on the above process

would form a helical structure with a diameter of 16 nm and

containing a 4 nm diameter hole, consistent with the cryo-EM

results.

It should be stated that, although the model proposed by Chang

et al. generally recapitulates most of the in vitro findings in the

literature, there is one minor shortcoming: the model does not

attempt to explain the role of the RNA packaging signal, which is

crucial for in vivo initiation of RNP packaging [34,71]. Rather,

according to the model, all RNA sequences should be more or less

equivalent, which might be true after RNP formation is initiated in

vivo. Despite this minor flaw, this model is currently the only one

that provides a biophysical working framework for CoV RNP

formation.

Insights into development of therapeutics against
coronaviruses by targeting N protein
Viral nucleocapsid proteins often are multifunctional and have

crucial roles in the viral lifecycle. Previous studies have suggested

that the N protein could be used as a target for antiviral drug

development against viral infections [41,42,58,72]. For example,

the low sequence variation between strains of influenza viruses

suggest that N proteins are genetically stable and less prone to

develop resistance against putative inhibitors [42,72]. Although

CoV N protein sequences from different strains of the same

species also are highly conserved, the same cannot be said when

comparing the N protein sequences between different CoV spe-

cies. This is particularly true when comparing the degree of

sequence conservation among CoV N proteins with that of

CoV replicase proteins, which include more-traditional drug

targets such as proteases, polymerases and helicases. However,

targeting the CoV N protein has some advantages. First, there is a

wealth of high-resolution structural information about N pro-

teins from various CoV species, which provides researchers with a
TABLE 1

Listing of compounds acting on CoV N proteins.

Ligand Classification 

PJ34 Chemical 

H3 Chemical 

N377–389 Peptide 

(�)-Catechin gallate Polyphenol compound 

(�)-Gallocatechingallate Polyphenol compound 

Abbreviations: CoV, coronavirus; H3, 6-chloro-7-(2-morpholin-4-yl-ethylamino) quinoxaline-5, 8

dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide hydrochloride.

566 www.drugdiscoverytoday.com
good starting point for structure-based drug discovery, whereas

the structures of most replicase proteins are still unknown. The

availability of high-resolution structures is especially important

for drug discovery targeting enzymatic activities, because crucial

elements for enzyme function might not be detected from prima-

ry sequence analyses [73]. Moreover, CoV N proteins share a

common modular organization with highly conserved protein

structures, which would allow the development of broad-spec-

trum anticoronavirus drugs. Second, antiviral drug targets that

participate in essential oligomeric interactions are less likely to

develop drug-resistant variants [74]. Compounds targeting CoV N

proteins could also be used in conjunction with compounds that

target the CoV replicase proteins to develop ‘cocktail’ therapies.

Two strategies to inhibit oligomeric N protein function have

been reported [75]. The first strategy is to develop antiviral agents

that target the RNA-binding site, which contains a number of

conserved residues, and specifically block the formation of RNP

during genome replication. For example, naproxen and its deri-

vatives have been proposed to intercalate into the hydrophobic

pocket on the RNA-binding groove of influenza virus N protein

and inhibit its RNA-binding ability, resulting in reduced viral

replication [76,77]. Inhibition of RNP formation by several fami-

lies of compounds targeting the zinc fingers of HIV N protein has

also been demonstrated [43]. A second strategy is to hamper

normal N protein oligomerization by enhancing or inhibiting

the interaction between N protein molecules. Nucleozin and its

derivatives obtained by high-throughput methods have been

shown to prevent RNP formation in influenza virus by interfering

with N protein oligomerization [78,79]. Similar stratagems can be

applied toward development of anticoronaviral agents. In the

following sections, we summarize the CoV N-protein-related

actions of existing ligands, newly developed chemicals, peptides

and polyphenol compounds (Table 1). We will also briefly describe

developments in coronaviral N protein vaccines.

The N-terminal domain of coronavirus N protein as an antiviral
target
A detailed high-resolution structure of HCoV-OC43 N-NTD in

complex with ribonucleotide monophosphate has been reported

by Lin et al. [80]. They identified a unique ribonucleotide-binding

pocket in the center of the N-NTD comprising conserved RNA-

binding residues including Arg 122, Tyr 124, Tyr 126 and Arg 164.

Mutation of these residues resulted in significant decrease of the

RNA-binding affinity of the protein and subsequent decrease

in viral replication. This led the authors to postulate that the
Target site Function Refs

NTD Inhibition of RNA binding [49]

NTD Inhibition of RNA binding [81]

C terminus Inhibition of oligomerization [57]

ND Inhibition of RNA binding [82]

ND Inhibition of RNA binding [82]

-dione; ND, not determined; NTD, N-terminal domain; PJ34, N-(6-oxo-5,6-
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N-terminal RNA-binding domain of a CoV N protein could serve as

a target for development of RNA-binding inhibitors that could act

as broad-spectrum antiviral drugs. Compounds binding to this site

that act as competitive N protein inhibitors could be employed to

combat highly pathogenic CoVs. One such compound is N-(6-oxo-

5,6-dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide

hydrochloride (PJ34) (Fig. 2a), which we found to inhibit corona-

virus replication and have a potent inhibitory effect on the RNA-

binding activity of HCoV-OC43N protein. PJ34 has been reported

to protect mice against brain ischemia, splanchnic ischemia,

reperfusion and lipopolysaccharide (LPS) toxicity in various mod-

els of local inflammation. The crystal structure of PJ34 in complex

with HCoV-OC43 N-NTD shows that its aromatic core stacks onto

Tyr 124 of N-NTD (Fig. 2b,c). The aromatic core also contains a

number of H-bond-forming moieties that mediate specific inter-

actions with the protein. It also has an attached branching moiety

that fits into the ribonucleotide-binding pocket of N-NTD. Inter-

estingly, binding of PJ34 to N-NTD mimics that of AMP to N-NTD,

but PJ34 is buried deeper into the hydrophobic pocket of the

protein. Compared with AMP, PJ34 binds more closely to the N-

terminal loop of N-NTD, and the branched moiety of PJ34 inserts

into an interior core of N-NTD. By contrast, PJ34 and AMP interact

with Ser 64, Tyr 124 and Tyr 26, indicating that these three

residues have important roles in RNA binding. Because the three

residues are structurally conserved they are suitable interaction

targets for drug screening endeavors against the N protein. Based

on careful study of the chemical features and mechanisms of

action of AMP and PJ34, we formulated three general guidelines

for development of agents targeting CoV N-NTD. First, a polycyclic

aromatic core is required to enable p–p stacking with the tyrosine

residues in the N-NTD. Second, the aromatic core requires the

presence of moieties capable of forming specific H-bond interac-

tions with the N-NTD. Finally, attaching a branched moiety (or

moieties) that fits into the ribonucleotide-binding pocket can

enhance the affinity and specificity of the compound (Fig. 2d).

Using these guidelines as a selection tool for virtual screening, a

second compound, 6-chloro-7-(2-morpholin-4-yl-ethylamino)

quinoxaline-5, 8-dione (H3), was recently identified as a potential

antiviral compound (Fig. 2e) [81]. H3 was shown to inhibit the

RNA-binding activity of HCoV-OC43 N-NTD with higher efficacy

than PJ34 in vitro. Structural studies showed that, compared with

PJ34, H3 adopted a bound conformation more similar to that of

bound AMP, which could suggest that the similarity of a com-

pound’s bound conformation to that of AMP might influence its

inhibitory activity toward CoV N-NTDs.

Inhibition of coronaviral N protein oligomerization by
developing competing peptides
The C-terminal tail has been found to participate in the oligomer-

ization of the SARS-CoV N protein because removal of 40 amino

acids from the C terminus apparently decreased the ability of the

protein to oligomerize [48]. In HCoV-229E, the HCoV-229E N

protein CTD lacking 13 amino acids (residues 377–389) from

the C-tail impaired higher-order oligomerization [58]. Based on

computer-assisted prediction of its secondary structure and exper-

imental CD results, the end of the C-terminal tail of HCoV-229E N

protein CTD forms a short b-strand. H-bonds across the tetramer

interface formed by the main chain atoms of the short b-strand can
stabilize oligomerization of the C-terminal domain of the N pro-

tein through domain swapping. Inhibition of viral N protein

oligomerization by developing competing peptides and small

organic compounds is an attractive therapeutic strategy against

viral infection [82–84]. We have shown that an excess of a peptide

based on the sequence of the C-terminal tail interfered with

oligomerization of the C-terminal domain of HCoV-229E N pro-

tein and had an inhibitory effect on the viral titer [58]. These

results suggest that small molecules or peptides designed against

the oligomer interface could be potential inhibitors of CoV.

The inhibition of coronaviral N protein RNA-binding activity by
gallate derivatives
Roh reported a novel method for the discovery of inhibitors

targeting the CoV N protein by quantum dot (QD)-conjugated

oligonucleotides [85]. This novel method provides a facile and

sensitive way of screening compounds against RNA/DNA-binding

virus proteins, particularly when incorporated into a biochip

system. Roh immobilized SARS-CoV N protein onto a glass chip

and screened chemical compounds that inhibited RNA-binding

activity of the protein. Two polyphenolic compounds, (�)-cate-

chin gallate and (�)-gallocatechin gallate (Fig. 2e), showed remark-

able inhibitory activity in a concentration-dependent fashion in

vitro. At a concentration of �110 mM (0.05 mg/ml), (�)-catechin

gallate and (�)-gallocatechin gallate showed more than 40% inhi-

bition activity on a nanoparticle-based RNA oligonucleotide bio-

chip system. However, their binding mechanism to the CoV N

protein is still unclear. Interestingly, the structures of these com-

pounds generally conform to the guidelines presented above. First,

one of the benzene rings and the dihydropyran cycle forms a bulky

aromatic core that can participate in stacking interactions. Second,

the multiple hydroxyl groups on the aromatic core also have the

potential to form H-bonds with the residues on N-NTD. Finally,

the remaining benzene rings branching out of the aromatic core

can interact with the ribonucleotide-binding pocket of N-NTD.

The striking agreement between the catechin gallate compounds

and our proposed guidelines raises the possibility that their inhib-

itory activity arises from the interaction between the compounds

and N-NTD. More studies will be required to test this possibility. In

addition, the efficacy of these compounds in cells or tissue cultures

is unknown and remains to be assessed.

Coronavirus vaccination via nucleocapsid protein
Coronaviral N protein has been considered a desirable target for

DNA or recombinant-protein-mediated vaccination. Because the

N protein resides inside the virus particle, it does not elicit neu-

tralizing antibodies so the goal of viral vaccine development using

the N protein has focused on how to induce the generation of

cytotoxic T lymphocytes (CTLs) capable of destroying infected

cells. Zhu et al. and Zhao et al. introduced SARS-CoV N protein

DNA in mice and were able to induce high CTL activity [86,87].

Expression of SARS-CoV N protein by other viral vectors, such as

the vaccine virus Ankara (MVA-NC), measles virus (rMV-N) and

baculovirus (vAc-N), were successful at generating potent SARS-

CoV-specific humoral and T-cell-mediated immune responses [88–

90]. To enhance N-protein-induced CTLs, fusion proteins where

the N protein is attached to a known antigen protein, such as

lysosome-associated membrane protein and calreticulin, were also
www.drugdiscoverytoday.com 567
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FIGURE 2

(a) Chemical structure of N-(6-oxo-5,6-dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide hydrochloride (PJ34). (b) Structural overview of human

coronavirus OC43 (HCoV-OC43) N-N-terminal-domain(NTD)–PJ34 complex. A ribbon representation of the HCoV-OC43 N-NTD with PJ34 depicted as a stick
model is shown on the left, whereas the electrostatic surface of the HCoV-OC43 N-NTD–PJ34 complex is shown on the right. Blue denotes positive charge

potential, red indicates negative charge potential. (c) Detailed view of the interactions between PJ34 and HCoV-OC43 N-NTD, with the H-bonds depicted as

green dotted lines. (d) Three general guidelines for the design of compounds that bind to the nucleotide-binding  pocket of CoV N-NTD, deduced from the
molecular structures of PJ34 and AMP. (e) Chemical structure of 6-chloro-7-(2-morpholin-4-yl-ethylamino) quinoxaline-5, 8-dione (H3) (left) and a detailed view

of the interactions between H3 and HCoV-OC43 N-NTD. H-bonds mediated by the side- and main-chain atoms are marked as red and black dotted lines,

respectively. Anion-p and stacking interactions are denoted in blue and green dashed lines, respectively. (f) Chemical structure of (�)-catechin gallate and (�)-
gallocatechin gallate.

568 www.drugdiscoverytoday.com

R
eview

s
�F
O
U
N
D
A
T
IO
N

R
E
V
IE
W



Drug Discovery Today � Volume 21, Number 4 �April 2016 REVIEWS

R
ev
ie
w
s
�
F
O
U
N
D
A
T
IO
N

R
E
V
IE
W

tested in mice and generated strong N-protein-specific humoral

and cellular immunity [91,92]. CTL epitopes in the N protein of

SARS-CoV have also been mapped and several regions within the N

protein induced cellular immune response in the peptide form

[93]. However, the generation of N-protein-specific T cells in

different mouse strains required different peptide sequences cor-

responding to different regions of the N protein. Zhao et al. and

Cheung et al. reported that the N protein peptides NP111, NP331,

NP351 and NP220 stimulated proliferation of N-protein-specific T

cells in C57BL/6, C3H, BALB/c and HLA-A2.1Kb, respectively

[94,95]. A more promising approach is the development of a fusion

protein vaccine containing truncated SARS-CoV S and N proteins

to generate specific neutralizing antibodies and induce specific

CTLs at the same time [95]. The vaccine was shown to have low

cross-reactivity to HCoV-229E or HCoV-OC43. Mice immunized

with the vaccine were protected from SARS-CoV when challenged

with the virus. However, a major stumbling block in the develop-

ment of an N-protein-based vaccine is the induction of undesired
(a)

(c)

Ribonucleotide-binding pocke

FIGURE 3

(a) Ribbon representation of Middle-East respiratory syndrome coronavirus (MERS
MERS-CoV N-NTD structure (right). Blue denotes positive charge potential, red indica

residues of MERS-CoV N-NTD (green) involved in RNA binding with N-NTDs from sev

2ofz) and human coronavirus OC43 (HCoV-OC43) (cyan) (PDB code: 3v3p). (c) Putat
on the MERS-CoV N-NTD structure. (d) Front (left) and back (right) views of the mo

arrows indicate the position of the two pyramidal hydrophobic cores that stabiliz
immune responses that can cause immunopathology [96]. Unfor-

tunately, this could be a general feature of the N protein, because N

proteins from other nidoviruses were also shown to induce dele-

terious immune responses [97]. It is debatable at this stage whether

the N protein should be included in subunit vaccines, because it

could cause adverse effects if the induction of neutralizing anti-

bodies is not strong enough [98]. Provided that researchers ulti-

mately overcome these problems, the challenge to translate

laboratory results to real clinical situations still remains.

Future perspectives and concluding remarks
There is no doubt that CoVs have joined the ranks of important

human pathogens in this century. This is particularly true when

we consider that there have already been two major CoV outbreaks

in the past 15 years showing severe clinical signs. The emergence of

SARS and MERS has made the identification of potential drug

targets and development of effective lead compounds against

CoVs an urgent task. During the SARS outbreak, many SARS
(b)

(d)

t

Pyramidal hydrophobic core
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-CoV) N-N-terminal-domain (NTD) structure (left). Electrostatic surface of the
tes negative charge potential. (b) Structural superimposition of the conserved

ere acute respiratory syndrome coronavirus (SARS-CoV) (magenta) (PDB code:

ive drug-binding sites predicted by metaPocket are shown as brown spheres
deled dimer structure of MERS-CoV N-C-terminal-domain (CTD). The two red

e the CTD dimer.

www.drugdiscoverytoday.com 569



REVIEWS Drug Discovery Today �Volume 21, Number 4 �April 2016

R
eview

s
�F
O
U
N
D
A
T
IO
N

R
E
V
IE
W

patients were treated with one of many medication combinations,

including ribavirin with corticosteroids, interferon (alfacon-1)

with corticosteroids or ribavirin with protease inhibitors, with

some encouraging outcomes [99–101]. Although a combination

of ribavirin and interferon has shown synergistic effects against

MERS-CoV under in vitro conditions, results from human trials

have been inconclusive [102], and there is still no definitive

treatment regimen established for MERS. It is worrying that there

is a lack of specialized therapeutics against CoVs. Current experi-

mental compounds developed to treat CoV infections primarily

target the 3C-like (3CL) and papain-like (PLP) proteases, and heli-

case (Nsp13) [103,104]. However, antiviral inhibitors targeting

these enzymes can act nonspecifically on homologous proteins

in the cell, causing host cell toxicity and severe side effects.

Therefore, new antiviral strategies and targets are needed to com-

bat infections caused by CoV.

The N protein is an appealing target because it serves as the

protein building-block of CoV RNPs involved in viral transcrip-

tion and replication. In addition to the development of antiviral

drugs, CoV N proteins have also been used for the development of

vaccines against CoV infections. However, it is unknown whether

the vaccine could successfully translate to real clinical situations,

or whether it would be equally effective against other CoV dis-

eases such as MERS. To facilitate the discovery of agents that

specifically block the formation of RNP during MERS-CoV ge-

nome replication, we have solved the crystal structure of the

MERS-CoV N-NTD (residues 39 to 165) to a resolution of 2.63 Å

(Fig. 3a) [105]. Similar to the structures of N-NTDs from other

coronaviruses, MERS-CoV N-NTD forms a single domain com-

posed of a five-stranded b-sheet core sandwiched between loops

(or short 310 helix). Owing to the flexibility of the long loop

between strands b2 and b3, it was relatively difficult to locate its

precise position. Based on the surface charge distribution and

superimposition with HCoV-OC43 and SARS-CoV N-NTDs, we

identified the ribonucleotide-binding pocket in the MERS-CoV N-

NTD which also contained the conserved RNA-binding residues

found in other CoV N-NTDs (Fig. 3a,b). This pocket could be a

validated target for antiviral drugs that interfere with the RNA-

binding activity of the MERS-CoV N protein. In addition to the

ribonucleotide-binding pocket, several sites comprising con-

served residues on the MERS-CoV N-NTD could be potential
570 www.drugdiscoverytoday.com
ligand-binding sites based on the results of drug-binding site

prediction (Fig. 3c) [106]. Although these sites might not be

directly involved in RNA binding, the binding of small molecule

compounds to these sites could still interfere with N protein

function, for example through allostery, and could be alternative

targets for antiviral drug development.

Based on SARS-CoV N-CTD crystal structures, we expect that the

two b-strands of the b-hairpin in the CTD of MERS-CoV N protein

would be located within residues 311–315 and 329–337, respec-

tively (Fig. 3d). In addition to the H-bonds across the dimer

interface formed by the main chain atoms, hydrophobic interac-

tions involving several hydrophobic residues generate two pyra-

midal hydrophobic cores in the SARS-CoV N-CTD; these resemble

a bow-tie-shaped pocket and stabilize the dimerization of the C-

terminal domain of the N protein [45]. We found that the hydro-

phobic residues contributing to the dimer formation of the SARS-

CoV N protein are conserved in MERS-CoV N-CTD. We suggest

that the two pyramidal hydrophobic cores in MERS-CoV N-CTD

could also participate in stabilizing the dimers of the MERS-CoV N

protein. Targeting this hydrophobic pocket seems to be a promis-

ing avenue for the development of anti-MERS-CoV drugs.

In summary, finding small-molecule ligands that bind with

high affinity to N protein could be a substantial step toward

developing effective therapeutic agents for CoV diseases. The fact

that the CoV N protein has many conserved sites that are crucial

for its correct function bodes well for the future outlook of this

approach. By contrast, because one is essentially trying to block

physical phenomena (binding to RNA and self-association) instead

of chemical reactions, intimate understanding of the biophysical

aspects of the protein are essential for this approach to work. In

this regard, advances in our knowledge of CoV N protein structure

and physical behavior during this century has helped tremendous-

ly. We hope that this review will benefit the development of drugs

that act on the assembly of CoV RNP through the N protein.
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