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Abstract: Multicopper oxidases (MCOs) are a diverse group of enzymes that could catalyze the
oxidation of different xenobiotic compounds, with simultaneous reduction in oxygen to water. Aside
from laccase, one member of the MCO superfamily has shown great potential in the biodegradation
of mycotoxins; however, the mycotoxin degradation ability of other MCOs is uncertain. In this
study, a novel MCO-encoding gene, StMCO, from Streptomyces thermocarboxydus, was identified,
cloned, and heterologously expressed in Escherichia coli. The purified recombinant StMCO exhibited
the characteristic blue color and bivalent copper ion-dependent enzyme activity. It was capable of
oxidizing the model substrate ABTS, phenolic compound DMP, and azo dye RB5. Notably, StMCO
could directly degrade aflatoxin B1 (AFB1) and zearalenone (ZEN) in the absence of mediators.
Meanwhile, the presence of various lignin unit-derived natural mediators or ABTS could significantly
accelerate the degradation of AFB1 and ZEN by StMCO. Furthermore, the biological toxicities of their
corresponding degradation products, AFQ1 and 13-OH-ZEN-quinone, were remarkably decreased.
Our findings suggested that efficient degradation of mycotoxins with mediators might be a common
feature of the MCOs superfamily. In summary, the unique properties of MCOs make them good
candidates for degrading multiple major mycotoxins in contaminated feed and food.
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Key Contribution: The laccase-like multicopper oxidase StMCO could effectively degrade aflatoxin B1

and zearalenone in the presence of mediators, especially various lignin unit-derived natural mediators.

1. Introduction

Mycotoxins are toxic fungal secondary metabolites that are widely distributed in contam-
inated feed and food, bringing about many adverse health effects on livestock and humans,
as well as huge economic losses in animal husbandry and the food industry [1]. As of now,
there are hundreds of types of mycotoxins that have been identified, but the most frequently
observed mycotoxins in contaminated feed and food are aflatoxin B1 (AFB1), zearalenone
(ZEN), deoxynivalenol, fumonisin B1, and ochratoxin A [2]. AFB1 is mainly produced by As-
pergillus flavus and A. parasitica, displaying carcinogenic, teratogenic, and immunosuppressive
toxicity [3], and has been recognized as a group I carcinogen by the International Agency for
Research on Cancer [4]. ZEN is primarily produced by Fusarium graminearum, F. culmorum, F.
cerealis, F. equiseti, and F. verticillioides, exerting reproductive toxicity, hepatotoxicity, immuno-
toxicity, and genotoxicity [5,6]. Moreover, according to the Food and Agriculture Organization
of the United Nations report, about 25% of global food crops are contaminated with these
mycotoxins, resulting in an economic loss of billions of dollars each year [7]. Therefore,
efficient mycotoxin detoxification strategies are in great demand.
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In comparison with traditional physical and chemical detoxification methods, the
biological detoxification of mycotoxins using microorganisms and enzymes is one of the
most promising methods because of its high efficiency, irreversibility, and environmental
friendliness [8]. During the past three decades, a variety of pre- and post-harvest biological
control strategies have been developed to reduce mycotoxin contamination in feed and
food [9–12]. On the one hand, bacteria, such as Bacillus and Pseudomonas, and fungi
belonging the genus Trichoderma are used as the main biocontrol agents to limit the growth
of mycotoxin-producing molds at the pre-harvest stage [9]. On the other hand, different
microorganisms, including bacteria, yeast, and fungi, as well as their enzymes, are adopted
to transform mycotoxins into less toxic or nontoxic metabolites during the post-harvest
period [12].

In recent years, the degradation of mycotoxins with ligninolytic microorganisms and
their corresponding ligninolytic enzymes has received more and more attention from
researchers [13–18]. Interestingly, the broad substrate specificity of ligninolytic enzymes
enables them to degrade different structural types of mycotoxins, including AFB1, ZEN,
deoxynivalenol, fumonisin B1, and ochratoxin A [16,17]. Meanwhile, ligninolytic enzymes,
such as laccase and dye-decolorizing peroxidase, can significantly accelerate the degra-
dation of mycotoxins in the presence of mediators [19,20]. These catalytic properties of
ligninolytic enzymes make them promising candidates for mycotoxin degradation. Signifi-
cantly, laccase belongs to a member of the multicopper oxidase superfamily that contains
laccase, laccase-like multicopper oxidase, ferroxidase, and so on [21], and it is not yet clear
whether other MCOs could be able to degrade multiple major mycotoxins. In addition,
there is a lack of systematic assessments of lignocellulose-derived compounds as the natural
mediators of MCOs for mycotoxin degradation.

Streptomyces species are well-known bacteria capable of lignin degradation, and their
ligninolytic enzyme system comprises multicopper oxidase, dye-decolorizing peroxidase,
and lignin peroxidase, based on the genome-wide annotation analysis [20,22]. In this study,
a novel laccase-like multicopper oxidase, StMCO, from Streptomyces thermocarboxydus 41291,
was heterogeneously expressed, purified, and biochemically characterized. Moreover, the
AFB1 and ZEN degradation properties of purified recombinant StMCO, in the presence
of different structural lignin model compounds or ABTS, were analyzed and evaluated.
Furthermore, their degradation products were identified by UPLC-MS/MS.

2. Results and Discussion
2.1. Gene Cloning and Sequence Analysis of StMCO from S. thermocarboxydus

It had been reported that the ligninolytic enzyme system of S. thermocarboxydus 41291
consisted of multicopper oxidase and dye-decolorizing peroxidase [20]. In this study, one
novel multicopper oxidase-encoding gene, StMCO, was cloned from the genomic DNA
of S. thermocarboxydus 41291. It was composed of a 990 bp open reading frame encoding
329 amino acid residues with a calculated molecular weight of approximately 36 kDa. The
deduced amino acid sequence contained a putative twin-arginine signal peptide of 31
amino acid residues for secretory expression. Based on the BLAST search in NCBI, StMCO
only contained two cupredoxin domains, while most multicopper oxidases consisted of
three domains [23,24]. Additionally, each cupredoxin domain of StMCO encompassed
one copper binding site. The multiple sequence alignment further revealed that there
was one T2/T3 trinuclear copper binding site (two conserved HxH motifs) and one T1
copper binding site (conserved HxxHxH and HCHxxxH motifs) in the first and second
cupredoxin domain, respectively (Figure S1). Moreover, according to the number and
location of the T1 copper binding sites, the two-domain multicopper oxidase (2dMCO)
superfamily was subdivided into the following three subfamilies: A, B, and C [24]. Type A
2dMCO contained two T1 copper binding sites. In contrast, type B and C 2dMCO included
one T1 copper binding site in the second and first domain, respectively. Taken together,
StMCO belonged to type B 2dMCO.
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2.2. Expression and Purification of StMCO

Given that Escherichia coli was the most popular approach for producing recombinant
proteins, the recombinant plasmid pCold I-StMCO was transformed into E. coli Transetta
(DE3) for heterologous expression. After isopropyl-β-D-thiogalactoside (IPTG) induction,
there was obvious multicopper oxidase activity in the supernatant of the cell lysates,
indicating that StMCO was successfully heterologously expressed in E. coli Transetta (DE3).
After purification via nickel-immobilized metal ion affinity chromatography, a strong blue
color was observed in the eluted fraction. Meanwhile, the SDS-PAGE analysis of the eluted
fraction corresponding to StMCO exhibited a signal protein band at ~36 kDa (Figure 1a).
Significantly, StMCO was found to generate a multimer with a molecular mass >100 kDa in
native PAGE (Figure S2), which was consistent with the structural feature of active 2dMCO
in multimeric forms (homotrimer or homohexamer) [25,26].
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2.3. Biochemical Characterization of Purified Recombinant StMCO

Multicopper oxidase was reported to include at least two highly conserved copper
centers, which are as follows: one T1 copper center for substrate oxidation and one T2/T3
trinuclear copper center for oxygen reduction [27]. Notably, the T1 copper center exhibited
an absorption peak around 600 nm, giving rise to the characteristic blue color [28]. As
shown in Figure 1b, the UV–visible spectrum of purified recombinant StMCO displayed
a maximum absorption peak at ~600 nm, indicating that it was a typical blue multicop-
per oxidase.

Considering that multicopper oxidases used metal ions as cofactors to oxidize different
substrates [29], the effect of metal ions, at a concentration of 1 mM, on the activity of purified
recombinant StMCO was evaluated. As shown in Figure 2a, most metal ions, such as Na+,
K+, Ca2+, Co2+, Mn2+, Mg2+, and Zn2+, had no effect on multicopper oxidase activity. It was
worth noting that Cu2+ could remarkably increase enzymatic activity by 348%, while Fe2+

displayed 80% inhibition of enzymatic activity. Moreover, the enzymatic activity of StMCO
was further enhanced with increasing Cu2+ concentrations, and reached its maximum in
the range of 5 to 10 mM Cu2+ (Figure 2b). When the concentration of copper ions was
higher than 10 mM, the multicopper oxidase activity began to decrease, suggesting that
the optimal Cu2+ concentration was 5−10 mM for maximal activity. These results were in
agreement with those obtained from previous studies that found that increased copper
concentrations led to higher enzymatic activity because Cu2+ was the essential cofactor for
multicopper oxidases [29–31].



Toxins 2021, 13, 754 4 of 10

Toxins 2021, 13, x FOR PEER REVIEW 4 of 11 
 

 

activity of StMCO was further enhanced with increasing Cu2+ concentrations, and reached 
its maximum in the range of 5 to 10 mM Cu2+ (Figure 2b). When the concentration of cop-
per ions was higher than 10 mM, the multicopper oxidase activity began to decrease, sug-
gesting that the optimal Cu2+ concentration was 5−10 mM for maximal activity. These re-
sults were in agreement with those obtained from previous studies that found that in-
creased copper concentrations led to higher enzymatic activity because Cu2+ was the es-
sential cofactor for multicopper oxidases [29–31]. 

 
Figure 2. The effect of metal ion (a) and copper ion concentration (b) on the activity of purified recombinant StMCO. 

Multicopper oxidases, particularly laccase, were able to catalyze reactions involving 
a broad range of substrates, such as the model substrate 2,2′-azino-bis(3-ethylbenzothia-
zoline-6-sulfonic acid) (ABTS), lignin-related aromatic compounds, metal ions, and so on 
[32]. The purified recombinant StMCO was capable of oxidizing various substrates, in-
cluding the model substrate ABTS, phenolic compound 2,6-dimethylphenol (DMP), and 
azo dye reactive black 5 (RB5), but it could not oxidize the phenolic compound guaiacol 
(GUA), non-phenolic compound veratryl alcohol (VA), and anthraquinone dye reactive 
blue 19 (RB19), which was similar to the substrate specificity of most other reported bac-
terial laccases [33,34]. However, the accurate classification of multicopper oxidase, as-
signed as laccase, still remained unclear [33], thus StMCO was termed a laccase-like mul-
ticopper oxidase. In addition, the optimum pH for the oxidation of different substrates by 
StMCO was 4.0 for ABTS, 7.0 for DMP, and 7.0 for RB5, respectively (Figure 3), exhibiting 
a substrate-dependent shift of optimum pH. The specific activity of purified recombinant 
StMCO towards ABTS, DMP, and RB5 at optimum pH was 0.259±0.009, 0.207±0.023, and 
0.051±0.002 U/mg, respectively. Surprisingly, the specific activity of StMCO against DMP 
was one order of magnitude lower than that of ABTS, which might be attributed to the 
different bisubstrate reaction mechanism. It was reported that the bisubstrate models of 
ABTS and DMP oxidation by multicopper oxidases were ping-pong and Theorell–Chance, 
respectively [35]. 
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Multicopper oxidases, particularly laccase, were able to catalyze reactions involving a
broad range of substrates, such as the model substrate 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS), lignin-related aromatic compounds, metal ions, and so on [32].
The purified recombinant StMCO was capable of oxidizing various substrates, including
the model substrate ABTS, phenolic compound 2,6-dimethylphenol (DMP), and azo dye
reactive black 5 (RB5), but it could not oxidize the phenolic compound guaiacol (GUA),
non-phenolic compound veratryl alcohol (VA), and anthraquinone dye reactive blue 19
(RB19), which was similar to the substrate specificity of most other reported bacterial
laccases [33,34]. However, the accurate classification of multicopper oxidase, assigned as
laccase, still remained unclear [33], thus StMCO was termed a laccase-like multicopper
oxidase. In addition, the optimum pH for the oxidation of different substrates by StMCO
was 4.0 for ABTS, 7.0 for DMP, and 7.0 for RB5, respectively (Figure 3), exhibiting a
substrate-dependent shift of optimum pH. The specific activity of purified recombinant
StMCO towards ABTS, DMP, and RB5 at optimum pH was 0.259±0.009, 0.207±0.023, and
0.051±0.002 U/mg, respectively. Surprisingly, the specific activity of StMCO against DMP
was one order of magnitude lower than that of ABTS, which might be attributed to the
different bisubstrate reaction mechanism. It was reported that the bisubstrate models of
ABTS and DMP oxidation by multicopper oxidases were ping-pong and Theorell–Chance,
respectively [35].

Toxins 2021, 13, x FOR PEER REVIEW 5 of 11 
 

 

. 

Figure 3. The optimum pH of purified recombinant StMCO for the oxidation of the following different substrates: ABTS 
(a), DMP (b), and RB5 (c). 

2.4. Enzymatic Degradation of AFB1 and ZEN by StMCO 
Recently, several laccases have been reported to be able to degrade multiple major 

mycotoxins, such as AFB1 and ZEN, in the presence of various mediators [19,36,37]. How-
ever, it was not clear whether mycotoxin degradation is the common feature of the multi-
copper oxidase superfamily. Besides, lignin-derived compounds as the natural mediators 
of MCOs for mycotoxin degradation lacked systematic evaluation. Herein, the degrada-
tion capacity of AFB1 and ZEN by the laccase-like multicopper oxidase StMCO, in the 
absence and presence of various structural lignin unit-derived mediators, was further 
evaluated. 

As reported, Lac2 from Pleurotus pulmonarius [36], Ery4 from P. eryngii [37], and 
BsCotA from Bacillus subtilis [19] were not able to directly degrade mycotoxins. However, 
as shown in Figure 4, StMCO could directly degrade AFB1 and ZEN in the absence of 
mediators, with pH 7 being the optimum pH. The degradation percentage of AFB1 and 
ZEN after the 24 h reaction was 31.87 ± 3.99% and 8.58 ± 1.63%, respectively, suggesting 
that enzyme–substrate interactions might exist between StMCO and mycotoxins. 

 
Figure 4. The optimum pH of purified recombinant StMCO for direct degradation of AFB1 (a) and ZEN (b) in 50 mM 
acetate buffer supplemented with 5 mM CuSO4 for 24 h at 30 °C. 

Moreover, different lignin unit-derived natural mediators, including H-type mono-
mers (p-coumaric acid and p-hydroxybenzoic acid), G-type monomers (vanillin, vanillic 
acid, and ferulic acid), S-type monomers (syringic acid, syringaldehyde, and acetosyrin-
gone), 1-hydroxybenzotriazole (1-HBT), and ABTS, were chosen to explore the effect on 
the degradation of AFB1 and ZEN by StMCO. As shown in Figure 5, most mediators were 
found to significantly increase the degradation percentage of AFB1 and ZEN. As for AFB1, 

Figure 3. The optimum pH of purified recombinant StMCO for the oxidation of the following different substrates: ABTS (a),
DMP (b), and RB5 (c).



Toxins 2021, 13, 754 5 of 10

2.4. Enzymatic Degradation of AFB1 and ZEN by StMCO

Recently, several laccases have been reported to be able to degrade multiple major my-
cotoxins, such as AFB1 and ZEN, in the presence of various mediators [19,36,37]. However,
it was not clear whether mycotoxin degradation is the common feature of the multicopper
oxidase superfamily. Besides, lignin-derived compounds as the natural mediators of MCOs
for mycotoxin degradation lacked systematic evaluation. Herein, the degradation capacity
of AFB1 and ZEN by the laccase-like multicopper oxidase StMCO, in the absence and
presence of various structural lignin unit-derived mediators, was further evaluated.

As reported, Lac2 from Pleurotus pulmonarius [36], Ery4 from P. eryngii [37], and
BsCotA from Bacillus subtilis [19] were not able to directly degrade mycotoxins. However,
as shown in Figure 4, StMCO could directly degrade AFB1 and ZEN in the absence of
mediators, with pH 7 being the optimum pH. The degradation percentage of AFB1 and
ZEN after the 24 h reaction was 31.87 ± 3.99% and 8.58 ± 1.63%, respectively, suggesting
that enzyme–substrate interactions might exist between StMCO and mycotoxins.
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Figure 4. The optimum pH of purified recombinant StMCO for direct degradation of AFB1 (a) and ZEN (b) in 50 mM
acetate buffer supplemented with 5 mM CuSO4 for 24 h at 30 ◦C.

Moreover, different lignin unit-derived natural mediators, including H-type monomers
(p-coumaric acid and p-hydroxybenzoic acid), G-type monomers (vanillin, vanillic acid,
and ferulic acid), S-type monomers (syringic acid, syringaldehyde, and acetosyringone),
1-hydroxybenzotriazole (1-HBT), and ABTS, were chosen to explore the effect on the degra-
dation of AFB1 and ZEN by StMCO. As shown in Figure 5, most mediators were found
to significantly increase the degradation percentage of AFB1 and ZEN. As for AFB1, ace-
tosyringone was the best mediator, with 99.85% degradation, followed by syringaldehyde
(93.03%), ferulic acid (81.19%), ABTS (79.11%), vanillin (76.26%), vanillic acid (76.22%),
syringic acid (72.48%), and p-coumaric acid (56.66%), while p-hydroxybenzoic acid and
1-HBT were ineffective (Figure 5a). With regards to ZEN, ABTS was the best performing
mediator, with a degradation percentage of 100%, followed by 97.35% for acetosyringone,
70.05% for ferulic acid, 46.53% for syringaldehyde, 23.98% for vanillic acid, and 21.96% for
1-HBT, but no improvement in the degradation of ZEN was observed for p-coumaric acid,
p-hydroxybenzoic acid, vanillin, and syringic acid (Figure 5b). These results indicated that
lignin unit-derived natural mediators might be alternative mediators for mycotoxin degra-
dation by StMCO, in terms of the economic cost and environmental friendliness. Moreover,
the great improvement in AFB1 and ZEN degradation in the presence of acetosyringone
and ABTS might be attributed to the generation of high potential radicals, aryloxy radicals,
and ABTS++, respectively [36]. Generally speaking, these results proved that StMCO might
be a promising candidate for the efficient and simultaneous degradation of multiple major
mycotoxins, with the use of a single or multiple mediators.
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acetate buffer (pH 7.0) containing 1 mg/L AFB1 or ZEN, 5 mM CuSO4, and 1 mM mediator for 24 h at 30 ◦C.

Furthermore, the time courses of AFB1 and ZEN degradation by StMCO, in the
presence of their most efficient mediators, acetosyringone and ABTS, were determined. As
shown in Figure 6, there was no significant change in the degradation of AFB1 and ZEN
by StMCO in the absence of mediators after a 1 h reaction. In contrast, it was notable that
AFB1 and ZEN were rapidly removed by StMCO in the presence of acetosyringone and
ABTS, respectively.
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2.5. Identification of AFB1 and ZEN Degradation Products

Considering that the biological detoxification of mycotoxins was defined as the
degradation or enzymatic transformation of mycotoxins into less toxic or nontoxic com-
pounds [38], the degradation products of AFB1 and ZEN by StMCO, in the presence of the
most efficient mediator, were identified by UPLC-MS/MS, and their biological toxicities
were further elucidated.

AFQ1 was the main degradation product of AFB1, corresponding to the parent ion
at m/z 329 [M+H]+, and daughter ions at m/z 311 [M+H-H2O]+ and m/z 283 [M+H-
CH2O2]+ (Figure 7a), though the AFQ1 content decreased slightly over time (Figure S3a).
The identified degradation product AFQ1 was in accordance with the product of AFB1
degradation catalyzed by laccases [14,18], indicating that the ability to degrade mycotoxins
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might be the common feature of the multicopper oxidase superfamily. Notably, the toxic
effects of AFQ1 on the chicken embryo were reported to be about 18 times less than
AFB1 [39]. Moreover, AFQ1 had a lack of cytotoxicity in the human liver cells L-02 [18].
In addition, 13-OH-ZEN-quinone was found to be the main intermediate degradation
product of ZEN, exhibiting the parent ion at m/z 311 [M-H]−, and daughter ions at m/z
303 [M-H-CO]− and m/z 287 [M-H-CO2]− (Figure 7b). With the prolongation of the
reaction time, 13-OH-ZEN-quinone was further metabolized (Figure S3b). As reported for
the relationship between the chemical structure and biological toxicity, hydroxylation of
the aromatic moiety in ZEN exhibited a remarkable decrease in estrogenic activity when
compared with ZEN [40]. Therefore, the biological toxicity of 13-OH-ZEN-quinone might
be less toxic than ZEN.
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3. Conclusions

In this study, a novel laccase-like multicopper oxidase, StMCO, from Streptomyces
thermocarboxydus, was identified, cloned, and heterologously expressed in E. coli. StMCO
was a typical blue multicopper oxidase and showed copper-dependent enzyme activity.
Most importantly, StMCO could not only directly degrade multiple major mycotoxins,
including AFB1 and ZEN, but also accelerate the degradation of AFB1 and ZEN in the
presence of various lignin unit-derived natural mediators and ABTS. Moreover, biological
toxicities of their corresponding degradation products, AFQ1 and 13-OH-ZEN-quinone,
were significantly removed. These findings indicated that MCOs could serve as a promising
biological tool for degrading multiple major mycotoxins in contaminated feed and food.

4. Material and Methods
4.1. Substrates and Chemicals

Substrates ABTS, DMP, GUA, VA, RB5, RB19, AFB1, ZEN, and various structural
mediators including p-coumaric acid, p-hydroxybenzoic acid, vanillin, vanillic acid, ferulic
acid, syringic acid, syringaldehyde, acetosyringone, and 1-HBT were purchased from
Sigma-Aldrich (St. Louis, USA). All other chemicals were of analytical grade and purchased
from Sinopharm Chemical Reagent (Beijing, China).

4.2. Strains and Plasmid

S. thermocarboxydus 41291 was obtained from the Agricultural Culture Collection of
China (Beijing, China). The E. coli strains Trans1-T1 and Transetta (DE3) were purchased
from TransGen (Beijing, China). The expression vector pCold I was purchased from Takara
(Beijing, China).
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4.3. Cloning, Expression and Purification of StMCO

The StMCO-encoding gene devoid of its signal sequence was amplified from the
mycelia of S. thermocarboxydus 41291 with gene-specific primers (StMCO-Nde I-F: 5′ AT-
CATC ATATCGAAGGTAGGCATATGTCCACCACGGCGAGAACCGCG 3′; StMCO-Xba
I-R: 5′ TTTTAAGCAGAGATTACCTATCTAGAGTGCGCGTGCCCGG ACTTCTC 3′). The
PCR product was then ligated into the expression vector pCold I predigested with Nde I
and Xba I to generate the recombinant plasmid pCold I-StMCO, which was transformed
into E. coli Trans1-T1 for cloning and sequencing. After confirmation by sequencing, the
recombinant plasmid pCold I-StMCO was extracted and subsequently transformed into
Transetta (DE3) expression strain.

The E. coli Transetta (DE3) transformant containing pCold I-StMCO was picked and
grown in LB broth supplemented with 100 µg/mL ampicillin and 20 µg/mL chloram-
phenicol at 37 ◦C to OD600 of 0.8−1.0, followed by adding IPTG and CuSO4 at a final
concentration of 0.5 and 1 mM, respectively. After induction at 16 ◦C for 12 h, the cells were
harvested by centrifugation, resuspended in binding buffer (20 mM sodium phosphate,
500 mM NaCl, pH 7.4), and lysed by sonication. The sonicated supernatant containing
recombinant StMCO was then purified by nickel-immobilized metal ion affinity chromatog-
raphy. The purity of recombinant StMCO was verified by 12% SDS-PAGE.

4.4. Biochemical Characterization of StMCO

The multicopper oxidase activity was determined by monitoring the oxidation of
ABTS (ε420 = 36,000 M−1·cm−1) at 420 nm in 50 mM acetate buffer containing 1 mM ABTS,
5 mM CuSO4, and the appropriate diluted enzyme solution. One unit (U) of enzyme
activity was defined as the amount of enzyme that oxidized 1 µmol of ABTS per min at
25 ◦C.

The UV–visible spectrum of purified recombinant StMCO was measured in phosphate
buffer (20 mM, pH 7.4) in the range from 230 to 800 nm. The effect of metal ions such as
Na+, K+, Ca2+, Co2+, Fe2+, Mn2+, Mg2+, Cu2+, and Zn2+ at a concentration of 1 mM on the
activity of purified recombinant StMCO was evaluated in 50 mM acetate buffer (pH 4.0).
The effect of copper ion concentration ranging from 1 to 100 mM on the activity of purified
recombinant StMCO was determined in 50 mM acetate buffer (pH 4.0). The substrate
specificity of purified recombinant StMCO was studied for the oxidation of six different
substrates ABTS, DMP (ε470 = 12,100 M−1·cm−1), GUA (ε465 = 49,600 M−1·cm−1), VA
(ε310 = 9,300 M−1·cm−1), RB5 (ε596 = 30,000 M−1·cm−1), and RB19 (ε595 = 10,000 M−1·cm−1)
in 50 mM acetate buffer with pH ranging from 3.0 to 7.0.

4.5. Enzymatic Degradation of AFB1 and ZEN by StMCO

The evaluation of StMCO for AFB1 and ZEN degradation ability was carried out in
50 mM acetate buffer with pH ranging from 3.0 to 7.0 containing 1 mg/L AFB1 or ZEN,
5 mM CuSO4, and 0.2 U/mL StMCO for 24 h at 30 ◦C.

The effect of mediators, including p-coumaric acid, p-hydroxybenzoic acid, vanillin,
vanillic acid, ferulic acid, syringic acid, syringaldehyde, AS, 1-HBT, and ABTS, on AFB1 and
ZEN degradation by StMCO was determined in 50 mM acetate buffer (pH 7.0) containing
1 mg/L AFB1 or ZEN, 5 mM CuSO4, 1 mM mediator, and 0.2 U/mL StMCO for 24 h at
30 ◦C.

The time course of AFB1 and ZEN degradation by StMCO in the presence of the most
efficient mediator was determined in 50 mM acetate buffer (pH 7.0) containing 1 mg/L
AFB1 or ZEN, 5 mM CuSO4, 1 mM AS or ABTS, and 0.2 U/mL StMCO for 1, 3, 6, 9, 12,
and 24 h at 30 ◦C.

The degradation of AFB1 and ZEN was analyzed by high-performance liquid chro-
matography coupled to RF-20A fluorescence detector using previous analytical meth-
ods [16]. In addition, their degradation products were identified by UPLC-MS/MS methods
described in our previous studies [16,20].
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxins13110754/s1, Figure S1. The amino acid sequence alignment of StMCO with a two
domain multicopper oxidase SLAC from Streptomyces coelicolor. Blue boxes indicate the copper
binding motifs. Figure S2. The native PAGE analysis of StMCO from S. thermocarboxydus. Lane
M, the protein molecular mass marker; lane 1, the purified recombinant StMCO. Figure S3. The
time-course analysis of AFB1 and ZEN degradation products by UPLC-MS/MS, including AFQ1 (a)
and 13-OH-ZEN-quinone (b).
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