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Abstract: Cardiovascular diseases are a leading cause of death. Blood–cell interactions and endothe-
lial dysfunction are fundamental in thrombus formation, and so further knowledge of the pathways
involved in such cellular crosstalk could lead to new therapeutical approaches. Neutrophils are
secretory cells that release well-known soluble inflammatory signaling mediators and other complex
cellular structures whose role is not fully understood. Studies have reported that neutrophil extracel-
lular vesicles (EVs) and neutrophil extracellular traps (NETs) contribute to thrombosis. The objective
of this review is to study the role of EVs and NETs as key factors in the transition from inflammation
to thrombosis. The neutrophil secretome can promote thrombosis due to the presence of different
factors in the EVs bilayer that can trigger blood clotting, and to the release of soluble mediators that
induce platelet activation or aggregation. On the other hand, one of the main pathways by which
NETs induce thrombosis is through the creation of a scaffold to which platelets and other blood cells
adhere. In this context, platelet activation has been associated with the induction of NETs release.
Hence, the structure and composition of EVs and NETs, as well as the feedback mechanism between
the two processes that causes pathological thrombus formation, require exhaustive analysis to clarify
their role in thrombosis.

Keywords: neutrophil; thrombosis; inflammation; secretome; neutrophil extracellular traps; platelets;
extracellular vesicles

1. Introduction

Cardiovascular diseases are the most common non-communicable diseases and one
of the main causes of death throughout the world [1]. In fact, the number of global deaths
has steadily increased to 18.6 million in 2019, representing over 30% of total deaths [2].
The prevalence of cardiovascular diseases is likely to increase substantially as a result
of population growth and aging. Cardiovascular diseases include myocardial infarction,
stroke, and pulmonary embolism, and result from the thrombotic occlusion of vessels.
Additionally, patients with other pathologies, such as cancer or Alzheimer’s disease, have
a high risk of developing thromboembolism [3–5]. Advances have been made in the
diagnosis, treatment, and prevention of these events, with anticoagulant therapy and
antiplatelet drugs being the current standard of care [6]. Non-vitamin K oral anticoagulants
have been shown to be as effective and safe as heparins/warfarin [6,7]. Nonetheless,
short-term mortality is 15–20% for pulmonary embolism [8,9] and remains high for any
venous thromboembolism, even 3 years after the event [10]. Moreover, approximately
30% of patients with venous thromboembolism have a recurrence within 10 years [2].
Indeed, such diseases reduce the quality of life of patients and exert a grave socioeconomic
burden, despite continued improvements in disease treatment and management [1,2].
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The use of anticoagulants drugs, which decrease the synthesis of coagulation factors or
interrupt the coagulation cascade, and antiplatelet drugs, which block cyclooxygenase or
purinergic receptors, fails to fully resolve the complexity of the thrombotic event and the
risk of vascular events remains high [11,12]. Therefore, to study the precise process and
mechanisms of thrombus formation is of vital importance to the development of novel and
more effective therapeutical approaches.

Platelet function plays a crucial role in thrombotic events; however, although platelets
can perform some of their functions individually, it is well known that interactions between
them and other vascular cells are essential for numerous other functions [13–16]. In this
context, the role of neutrophils in thrombosis has attracted much attention in recent years.
While the recruitment of neutrophils within thrombi has been acknowledged for a long
time [17,18], their exact mechanistic roles in this process have not been well characterized.
Due to the fact that neutrophils are key for innate immunity and inflammation, and
also because of their ability to crosstalk with other vascular cells, including endothelial
cells and specially platelets, they may constitute the link between inflammation and the
triggering of the initial thrombotic process. Additionally, neutrophils are secretory cells that
release well-known soluble inflammatory signaling mediators and other complex cellular
structures whose role is not fully understood. In this context, several reports have shown
that neutrophil-derived extracellular vesicles (EVs) and neutrophil extracellular traps
(NETs) may contribute to thrombosis, and further knowledge of the pathways involved
in such cellular crosstalk could lead to the development of new therapeutical approaches.
Therefore, the objective of the present review is to determine whether neutrophils—through
EVs and NETs—are key factors in the transition from inflammation to thrombosis.

2. Role of Neutrophils in the Transition from Inflammation to Thrombosis

The processes of inflammation and coagulation are related, as tissue injuries require
both an inflammatory immune response against pathogens and efficient blood clotting to
stop bleeding. Neutrophils are essential for the innate immune response against local and
systemic tissue insults, and are also major cellular mediators that support inflammation–
coagulation interactions [13,19,20]. Upon inflammation, multiple chemotactic stimuli
(cytokines, chemokines, etc.) are released to promote neutrophil activation, extravasation,
and migration towards the infectious foci.

One of the first steps of the inflammatory process is leukocyte–endothelium interac-
tions [21–23]. Upon a proinflammatory stimulus, leukocytes circulating through the blood
vessels—specifically neutrophil—reduce their flow velocity and start tethering to endothe-
lial cells in a process induced by the binding of neutrophil surface ligands, such as P-selectin
glycoprotein ligand-1(PSGL-1) or E-selectin ligand-1, with P- and E-selectin molecules
expressed on activated endothelial cells. This process is followed by their rolling along the
endothelium. Rolling neutrophils develop membrane extensions at their rear end (tethers)
and front (slings), which stabilize neutrophil rolling. Subsequently, neutrophils firmly
adhere to the endothelium in a process mediated by the binding of neutrophil integrins,
such as macrophage-1 antigen (Mac-1) (cluster of differentiation (CD)11b/CD18), with
endothelial immunoglobulins, such as intercellular adhesion molecule-1 (ICAM-1). Rolling
and adhesion may be followed by crawling and transcellular (through endothelial cells) or
paracellular (between endothelial cells) transmigration [21,24,25]. Neutrophil activation
can also induce the adhesion of platelets to leukocytes, mainly through the interaction
of PSGL-1 on leukocytes with P-selectin on platelets [26–29]. Platelets and endothelial
cells can become activated during these neutrophil–platelet interactions [26]. During the
inflammatory responses, numerous soluble factors, such as proteinases, leukotriene A4,
and vascular endothelial growth factor, are released from neutrophils and subsequently
act on endothelium receptors, therefore inducing changes in the endothelium cytoskeleton
that result in cell contraction and loss of barrier integrity. This process induces the release
by endothelial cells of cytokines, complement, and antibodies, which further promotes
neutrophil recruitment and activation [30]. Upon activation, endothelial cells express
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several adhesion molecules and consequently initiate the adhesion of platelets to the ac-
tivated and/or dysfunctional endothelium [26,31]. Simultaneously to these processes,
platelets can interact with each other once they are activated, inducing platelet aggregation,
which can eventually trigger thrombus formation [26]. All these processes per se, or the
release of proinflammatory mediators by any of the cell types involved, can induce the
activation of other vascular cells, thus promoting a continuous crosstalk between neu-
trophils, platelets, and endothelial cells and leading to the transition from inflammation to
thrombosis (Figure 1).
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Figure 1. Neutrophils’, platelets’, and endothelial cells’ interactions that promote the transition from inflammation to
thrombosis. Upon an inflammatory signal, neutrophils circulating across the vessels reduce their flow velocity and start
rolling along endothelial cells, eventually adhering to them. This process can induce the activation and recruitment of further
neutrophils, in addition to endothelium activation or dysfunction, which can trigger platelet adhesion to the endothelium
and to neutrophils. The interactions between these three types of vascular cells, and with circulating monocytes and
erythrocytes, trigger the thrombus formation that can produce vessel occlusion.

Among the different molecular pathways present in neutrophils, the inflammasome is
a multiprotein signaling platform that controls the inflammatory response and coordinates
host defenses [32]. The inflammasome activates caspases-proteases, which cause the matu-
ration of the cytokines interleukin (IL)-1β and IL-18, and induces an inflammatory form of
lytic-type programmed cell death known as pyroptosis, which occurs upon intracellular
infection as a part of the defense response [33]. Recent evidence has demonstrated that
activation of the inflammasome by an infection stimulus leads to tissue factor (TF) release
in the form of microvesicles, which triggers systemic coagulation [32]. This mediator is a
high-affinity receptor and cofactor for clotting factor (F)VII/VIIa, and TF and FVIIa form a
complex that constitutes the primary initiator of blood coagulation [34]. The study in ques-
tion showed that TF release from pyroptotic leukocytes initiates systemic coagulation and
thrombosis in tissues; furthermore, the authors observed that inflammasome activation-
induced coagulation requires caspase-1 but does not require IL-1β and IL-18 [32]. This is
consistent with previous findings in which caspase-1 activation by adenosine triphosphate
(ATP) promoted TF-positive microvesicles’ release [35].

Nuclear factor of the k-chain in B cells (NF-kB) is another central mediator of in-
flammation, and is fundamentally involved in the molecular link between inflammatory
and thrombotic processes [36]. NF-kB activity is not only triggered by inflammatory cy-
tokines, such as tumor necrosis factor alpha (TNF-α) or IL-1, but also by bacterial cell wall
components, such as lipopolysaccharides (LPS), by viruses, and even by physical stress con-
ditions [37–39]. This could explain the various types of target genes that are upregulated or
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induced after neutrophil NF-kB activation, including cytokines and chemokines, immune
receptors, adhesion molecules, antiapoptotic genes, acute phase proteins, various enzymes,
stress response genes, and coagulation regulators. In fact, TF, FVIII, urokinase-type plas-
minogen activator (uPA), and plasminogen activator inhibitor-1 (PAI-1) are induced by
NF-kB activation [40–43]. Thus, NF-kB contributes to coagulatory events, not only via
cellular activation processes, but also by transcriptional induction of proteins of the plas-
matic coagulations cascade. This provides another molecular explanation for the functional
molecular link between inflammation and thrombosis that contributes to an increased
cardiovascular risk in situations of acute or chronic inflammation [36].

Platelets are cells prepared to respond to stimuli with rich surface membrane recep-
tors, but not for the “de novo” synthesis of mediators, since they are anucleated cells. In
contrast, neutrophils are cells with the genetic machinery necessary for the synthesis of
new molecules that could be key for understanding the thrombotic processes. Therefore,
it is important to analyze what structures are released by neutrophil and how they influ-
ence platelets. Neutrophils can be induced to release proinflammatory and procoagulant
molecules, such as cytokines, TF, matrix metalloproteinases, damage-associated molecular
patterns (DAMPs) - including histones, high-mobility group protein B1 (HMGB1) or DNA
fragments - and also EVs and NETs [44–52]. These mediators have an influence on several
aspects of thrombus formation, including platelet activation and adhesion, as well as
activation of the intrinsic and extrinsic coagulation pathways.

3. Neutrophil Extracellular Vesicles (EVs)

Neutrophils are secretory cells whose cytosol contains a large variety of granules
formed sequentially during myeloid cell differentiation [53,54]. There are three gener-
ally recognized types of granules that differ from each other in their content, function,
and signals required for secretion: azurophilic granules, specific granules, and gelatinase
granules [53–56]. Nevertheless, these granules are not totally exclusive, as there is some
overlapping among them. The content of all these granules is important if we are to
understand the role of neutrophils in triggering thrombotic events, since some proteins and
mediators released by these granules may activate platelets and induce platelet aggregation
and/or coagulation. Azurophilic granules contain a potent mixture of antimicrobial effec-
tors, including neutrophil elastase (NE), myeloperoxidase (MPO), and cathepsin G [53,54].
Specific granules and gelatinase granules enclose proteins, which support migration, and
some antimicrobial proteins, such as collagenase, gelatinase, lactoferrin. or uPA [53,54]. The
specific content of these granules is detailed elsewhere [54,56–59], and this field of research
is constantly updated as new proteins are discovered in the content of the different granules.
Recently, it has been described that, when neutrophils release the content of their granules,
they additionally release EVs into the extracellular space. EVs were originally described
as “platelet dust” [60], but over the years their role in cellular communication has become
patent [61]. Therefore, they are no longer regarded as “cell dust”, but rather as messengers
between adjacent and distant cells, since EVs serve as vehicles for the intercellular exchange
of biological material and information [62]. In this way, EVs have become an important
focus of attention in thrombosis research. These EVs are formed by a phospholipid bilayer,
proteins of the cytosol, and of the cellular membrane, nuclear material, and non-coding
RNAs [63,64]. The four distinct populations of EVs described are exosomes, microparticles,
microvesicles, and apoptotic bodies. EVs can promote neutrophil activation and migration,
specific immune responses, inflammatory reactions, atherogenesis, plaque rupture, and
thrombosis. The content of EVs varies considerably according to their release activation
stimulus and posterior function [53]. Neutrophils generate EVs either spontaneously or
in response to various stimulants during immune responses, which bears testimony to
the importance of their role in the effector functions of neutrophils. The stimulants for
EVs release can be classified in three categories: bacteria and bacterial products (LPS),
cytokines and chemokines (IL-8, TNF-α), and exogenous compounds (Phorbol 12-myristate
13-acetate (PMA), zymosan) [65,66]. The functions and content of EVs are more diverse and



Int. J. Mol. Sci. 2021, 22, 4170 5 of 22

dynamic than those of other granules, which has led to them being highlighted as crucial
elements of the role of neutrophils in thrombus formation. In addition, and because of their
heterogeneity, it is important to study the different populations of EVs stimulated by the
diverse endogenous stimuli that are present in different patophysiological conditions. For
instance, upon bacterial infection during the innate immune response, neutrophils release
EVs that contain arachidonic acid (AA), which stimulates platelets, thus supporting the link
between proinflammatory and proaggregating mediators [67]. EVs usually contain inflam-
matory cytokines, ICAM-1, PSGL-1, TF, complement receptor 3 (CR3), metalloproteases,
and nucleic acids (e.g., tRNAs, mRNAs, miRNAs) [68–72]. In this regard, many studies
have shown non-coding RNAs—for instance, miR-21, miR-126 or miR-146a—as potential
therapeutic targets or biomarkers in the progression of cardiovascular diseases [73–75].

It is currently known that neutrophils can induce thrombosis through the release of
soluble factors from their granules (Figure 2A). Neutrophils are a source of cytokines and
release soluble factors into the milleu. Proinflamatory cytokines, such as IL-1, IL-6, TNF-α,
interferon (IFN)-α, and IFN-Υ, induce the expression and release of TF. These cytokines
not only trigger procoagulant activity but also inhibit the anticoagulant pathway of throm-
bomodulin/protein C and affect fibrinolysis by upregulating uPA and PAI-1. The role of
cytokines in inflammation and thrombosis has been acknowledged [76], while that of EVs
is beginning to be clarified. Thus, they can promote thrombosis via various mechanisms
(Table 1), including: the presence of phosphatidylserine (PS) in the phospholipid bilayer
of EVs from activated neutrophils [77–79] promotes platelet activation and formation of
blood clots (Figure 2B) [80]; EVs express several integrins (such as Mac-1) that can interact
with platelets, inducing platelet P-selectin expression and their activation (Figure 2C) [81];
activation of the coagulation cascade by both intrinsic and extrinsic pathways due to the
presence of TF and polyphosphates (PolyP) in the membrane of EVs (Figure 2D) [77,82];
and the presence of MPO on EVs is associated with thrombosis, since MPO causes en-
dothelial damage, promoting the adherence and activation of platelets (Figure 2E) [64]
(Table 1).
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can induce thrombosis. (A) Soluble mediators released by neutrophils, (B) phosphatidylserine (PS) and (C) different adhesion
molecules present in the membrane of EVs interact with platelets, thereby inducing platelet activation and aggregation. (D)
EVs activate both intrinsic and extrinsic coagulation pathways. Polyphosphates (PolyP) and tissue factor (TF) in EVs can
activate the coagulation cascade, thus producing thrombin from its inactive form of pro-thrombin, and thrombin finally
induces the formation of fibrin from fibrinogen. (E) Myeloperoxidase (MPO) in EVs can induce endothelial dysfunction,
which triggers platelet activation and aggregation. F: factor; GP: glycoprotein; PSGL-1: P-selectin glycoprotein ligand-1.
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In the last decade, microvesicles have become increasingly important in the context
of thrombosis, with many reports published about them (Table 1). As we have discussed
in the previous section, the presence of TF on the surface of microvesicles is widely as-
sociated with thrombotic events. Alternatively, other reported evidence suggests that
the presence of PolyP in microvesicles promotes thrombosis through a TF-independent
route [82]. PolyP is a highly anionic linear polymer synthesized from ATP, and affects
numerous steps in the coagulation cascade, including the activation of FXII, thus enhanc-
ing the activation of FV and increasing the activity of the thrombin-activated fibrinolysis
inhibitor and inhibiting the TF pathway inhibitor. In addition, PolyP is thought to enhance
fibrin clot structure stability [83–85]. Another study revealed the presence of enzymes that
synthetize leukotriene B4 (LTB4) in neutrophil exosomes, and the presence of the primary
substrate AA, suggesting an active exosomal LTB4 synthesis that can promote platelet
activation [86,87]. A proteomic analysis in microvesicles demonstrated the presence of 116
proteins, 31 of which were significatively different between baseline and two days after
thrombosis induction. The authors in question discovered microvesicles with fibrinogen on
their surface [88]. Fibrinogen is a six-chain protein precursor of the clot structural protein,
fibrin, and dimer of α, β, and γ polypeptides [89,90]. Therefore, they suggested that the
presence of fibrinogen pointed to the implication of microvesicles in thrombotic processes
by playing an essential role in platelet aggregation, inflammation and wound healing.
Another proteomic study [91], in this case performed on exosomes of unstimulated and
LPS-stimulated neutrophils, identified 271 unique proteins, the majority of which were
identified in both conditions, thus demonstrating the constant composition of exosomes.
However, 16 of these proteins were differentially expressed upon LPS neutrophil stimu-
lation: phosphatidylcholine-sterolacyltransferase, tenascin-X, thrombospondin-1 (TSP-1),
annexin A7, neurogenic locus notch homolog protein 2, lactotransferrin, integrin-linked pro-
tein kinase, fibrinogen A-α chain, serpin peptidase inhibitor clade B member 6, lipocalin 2,
α-1-acid glycoprotein 3, complement 3, profilin-1, protein S100A9, triosephosphate iso-
merase, and β2 integrins. Some of these proteins have already been associated with
coagulation and thrombotic processes—for instance, thrombospondin-1 [92], fibrinogen
A-α chain [89], and complement 3 [15]—but we cannot rule out that the others may also be
involved in said processes. Another proteomic study executed on secretomes of a carotid
atherosclerotic plaque and a non-atherosclerotic mammary artery identified a total of 162
proteins [93], 25 of which exhibited significant differences in their levels in the secretome,
and most of which, including extracellular superoxide dismutase and peroxiredoxin-2, were
downregulated. The abovementioned proteins are antioxidant enzymes that can prevent
oxidative stress and, thus, endothelial dysfunction [94,95]. Consequently, if these enzymes
are downregulated, endothelial dysfunction can occur and platelet activation and adhesion
can be induced. In contrast, the levels of other proteins, such as neutrophil defensin 1,
apolipoprotein E, clusterin, and zinc-alpha-2-glycoprotein, were increased. Neutrophil
defensin 1 induces the binding of fibrinogen and thrombospondin-1 to platelets and causes
platelet aggregation [96]. Clusterin participates in lipid transport and is considered an
adhesion molecule, and thus induces cell aggregates [97]. Zinc-alpha-2-glycoprotein is an
adipokine and has been shown to be involved in endothelial dysfunction processes [98–100]
(Table 1).

Hence, it is evident that the neutrophil secretome contains a large number of different
proteins, which are not only released upon proinflammatory or prothrombotic stimuli,
but also under basal or non-pathological conditions. This also signifies that there are
many pathways by which thrombi can be induced, and it is likely that not all of them
have been described yet. Therefore, further investigations are required to determine the
biological mechanisms by which EVs are released, and the exact roles played by their
released mediators. In this regard, omics approaches, such as proteomics, metabolomics,
and transcriptomics, have enabled the overall characterization of complex global biological
systems at the molecular level and their alterations during pathological processes. In
this context, proteomics has emerged as a useful tool for analyzing the proteins present
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in the secretome of neutrophils and those involved in the pathogenesis of thrombosis.
Moreover, new biomarkers may have the potential to improve risk stratification, diagnosis,
and/or treatment.

Table 1. Secretome components that could trigger thrombosis.

Secretome Component Secretome Compartment Relation to Thrombosis References

PS EVs/NMP Platelet activation [77–80]
Adhesion molecules NMP Cell-cell adhesion [81]

MPO EVs Endothelial dysfunction [101]
TF NMP Coagulation cascade activation [77,81]

PolyP EVs Coagulation cascade activation [82]
LTB4 Exosomes Platelet activation via AA [86,87]

Fibrinogen NMP/Exosomes Platelet aggregation [88,89,91]
TSP-1 Exosomes Platelet aggregation [91,92]

Complement 3 Exosomes Atherosclerotic lesions [15,91]
Neutrophil defensin Secretome Platelet aggregation [93,96]

Clusterin Secretome Cell-cell adhesion [93,97]
Zinc-alpha-2-glycoprotein Secretome Endothelial dysfunction [93,98–100]

PS: Phosphatidylserine. EVs: Extracellular vesicles. NMP: Neutrophil-derived microparticles. MPO: Myeloperoxidase. TF: Tissue factor.
PolyP: Polyphosphates. LTB4: Leukotriene B4. AA: Arachidonic acid. TSP-1: Thrombospondin-1.

4. Neutrophil Extracellular Traps (NETs)

Another mechanism by which neutrophils may represent a link between inflammation
and thrombosis is the release of NETs [15,102,103]. NETs were first described in 2004 by
Brinkman and colleagues as a novel immune defense mechanism of neutrophils, acting
as a physical barrier that prevents the spread of pathogens and facilitates the clearance of
microbes by phagocytosis and by exposing them to high concentrations of antimicrobial
proteins [104]. NETs are a network of extracellular decondensed filaments of DNA, from
the nucleus or mitochondria [105], and are associated with histones and cytosolic and gran-
ule proteins, such as histones themselves, NE, MPO, calprotectin, cathelicidins, cathepsin
G, leukocyte proteinase 3, lactoferrin, gelatinase, lysozyme C, HMGB1, peptidyl arginine
deiminase 4 (PAD4), defensins, and actin [51,52,106,107]. From all the studies published on
the subject, it can be concluded that the composition of NETs varies depending on the dif-
ferent neutrophil stimulus employed. In this regard, whether and how differences in NETs’
composition impact NET function remains to be investigated. Two different mechanisms
of NET release have been described; one called NETosis, which occurs through the cell
death process, and another termed non-lytic NETosis, which leads to a more rapid release
of NETs in the absence of cell death [108,109]. In short, NETosis consists of neutrophils
arresting their actin dynamics and depolarizing, leading to nuclear delobulation and the
disassembling of the nuclear envelope, followed by nuclear chromatin decondensing into
the cytoplasm and mixing with cytoplasmatic and granule components [108,110]. Sub-
sequently, the plasma membrane permeabilizes and NETs expand into the extracellular
space in a process that takes place 3–8 h after neutrophil activation. In contrast, non-lytic
NETosis occurs within minutes, is accompanied by the release of granule proteins through
degranulation, and does not lead to rupture of the cell membrane [111–113].

As shown in Figure 3, the process of NETosis is initiated by a great variety of
stimuli, all yet to be determined, and which interact with NETosis-inducing receptors.
PMA was the original stimulus by which NETs were discovered [104]; however, a large
number of other NETosis stimuli have already been described, including bacteria, fungi,
viruses, auto-antibodies or immune complexes, IL-8, TNF-α, miR-146a, hydrogen
peroxide, urate and cholesterol crystals, Oxidized low-density lipoprotein (oxLDL),
cigarette smoke, ionophores, complement-derived peptides, HMGB1, and activated
platelets [74,104,105,108,112,114–124]. These aforementioned stimuli act through their
binding or the activation of receptors, such as Toll-like receptor (TLR) 2, 4, 6, 7, and 8;
dectin 2 (while dectin 1 inhibits it); receptor for advanced glycation end products (RAGE);
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CR3; FcγR; CD36; and PSGL-1 [112,115,123,125–129]. Independently of the stimulus, NETs
formation does not require transcription [130]. Specifically, PMA directly binds to pro-
tein kinase C (PKC), inducing calcium release from intracellular stores. Consequently,
the Raf- mitogen-activated protein kinase (MEK)- extracellular signal-regulated kinase
(ERK) pathway is activated, thus promoting nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase generation of reactive oxygen species (ROS) [108,131–133]. Downstream,
as part of the protein complex known as the azurosome, MPO promotes the release of NE
from azurophilic granules. Subsequently, MPO and NE translocate to the nucleus, where
MPO binds to chromatin and synergizes with NE, which partially degrades histones, thus
contributing to chromatin decondensation [134]. The involvement of NE in NETosis has
also been demonstrated in patients with mutations in the cysteine protease cathepsin C,
which processes NE into its mature form, since NETosis proved to be defective in these
patients [135,136]. The mobilization of intracellular calcium and ROS generated by NADPH
have been described as inducers of PAD4 activation and translocation to the nucleus, where
PAD4 contribute to chromatin decondensation through citrullination of the histones, which
is a well-acknowledged aspect of NETosis [137–140]. PAD4 modifies arginine residues of
histones H3 and H4 by citrullination, which causes a loss of positive charge and of hydro-
gen bonds between DNA and histones, thus leading to decondensation and swelling of the
nucleus [141,142]. Indeed, PAD4 was originally suggested to be a specific and universal
mediator of NET formation; however, some recent findings have suggested that NETs can
be released in a PAD4-independent manner [119]. The mechanism leading to rupture of
the nuclear and plasma membranes is not yet well understood, but recent studies point
to the contribution of the pore-forming gasdermin D [143]. In this sense, after proteolytic
cleavage, gasdermin D was shown to enhance the release of neutrophil proteases into the
cytosol by forming pores in the granule membranes, allowing the translocation of NE to the
nucleus, as well as the release of the content of granules, therefore allowing granules and
cytosolic proteins to mix with the NETs scaffold [143,144]. Furthermore, cleaved gasdermin
D formed pores in the plasma membrane, facilitating NETs release. Interestingly, it has
been suggested that gasdermin D-dependent NET formation is independent of ROS, NE,
and PAD4 [143,144]. It has also been shown that the ATP-binding cassette transporter
A1/G1 and downstream NLRP3 inflammasome activation led to NETs formation [145].
An additional pivotal event required for NETosis is autophagy [146]. This process occurs
independently from ROS production and involves the cessation of mammalian target of
rapamycin (mTOR) (Figure 3).

Besides the acknowledged role against pathogens of NETs in the immune system,
there is also evidence pointing to NETs as a new link between immunity and thrombosis,
since the treatment of mice with DNase I and PAD4 or NE inhibitors prevents thrombus
formation in a similar way to heparin [102]. Moreover, patients with acute thrombosis
exhibit lower levels of plasma DNase I activity [147]. In this context, the inflammatory
microenvironment and the rupture of the plaque induce neutrophils to release NETs
expressing bioactive TF, thus causing thrombus formation in patients with myocardial
infarction [148]. Some mechanisms that trigger NETs formation leading to myocardial
infarction include elevation of the monocyte chemoattractant protein-1, plasma glucose
levels, and complement activation [149–151].
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Figure 3. Molecular pathways of the release of neutrophil extracellular traps (NETs). Different stimuli and several receptors
can induce NETs’ release. One of the first intracellular events that initiate this phenomenon is reactive oxygen species (ROS)
production via nicotinamide adenine dinucleotide phosphate (NADPH) or by mitochondria. ROS induce the activation
and translocation to the nucleus of peptidyl arginine deiminase 4 (PAD4), which citrullinates histones and contributes to
chromatin decondensation. On the other hand, ROS induce myeloperoxidase (MPO) activation, thus promoting neutrophil
elastase (NE) release from granules and their translocation to the nucleus, where NE can degrade histones and promotes
chromatin decondensation. NE also activates proteolytically gasdermin D, which can facilitate NE translocation to the
nucleus, thus increasing chromatin decondensation. Gasdermin D promotes the disassembly of the nuclear envelope, after
which nuclear chromatin decondenses into the cytoplasm, mixing with the cytoplasmatic and granule components and also
the permeabilization of plasma membrane, thus allowing NETs to expand into the extracellular space. Autophagy is another
cellular mechanism that can trigger the release of NETs. DNA: Deoxyribonucleic acid. TLR: Toll-like receptor. RAGE:
Receptor for advanced glycation end products. CD: cluster of differentiation. PSGL-1: P-selectin glycoprotein ligand-1. IL:
interleukin. TNF-α: Tumor necrosis factor alpha. PMA: Phorbol 12-myristate 13-acetate. HMGB1: high-mobility group
protein B1. miR-146a: micro Ribonucleic acid 146a. oxLDL: oxidized low-density lipoprotein.

NETs can be toxic to endothelial cells, as they promote endothelial dysfunction, which
in turn activates the endothelium and induces NETs formation, triggering a vicious cycle
that results in further damage [152–154]. In this regard, an injured endothelium can lead
to atherosclerosis characterized by the accumulation of lipoproteins, cholesterol crystals,
and oxLDL, molecules that in turn can induce NETosis. This network plays a significant
role in the progression towards plaque formation in a process that can obstruct blood flow
over time [119]. Interestingly, due to the ability of NETs to act as a scaffold for platelet and
erythrocyte adhesion, it can trigger the formation of large aggregates that may obstruct
small blood vessels. In the case of erythrocytes, their adhesion to NETs results in a red
thrombus [102]. Nevertheless, the crucial role of NETs in the multiple facets of thrombosis
is mostly attributed to the interactions of neutrophils and NETs with platelets. NETs can
capture platelets, promoting platelet activation and aggregation. NETs have also been
shown to promote thrombin formation by providing a scaffold for procoagulant molecules,
such as von Willebrand Factor (VWF), fibronectin, fibrinogen, FXII, TF, and pro-coagulant
EVs, including TF-EVs [15,102,155–159]. As such, the DNA–histones backbone is thought
to add stability to the fibrin scaffold in thrombi [160], despite the fact that the NETs scaffold
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itself can support clot formation without the presence of fibrin [161]. Furthermore, NETs
components promote the gene expression of coagulation factors [162]. NETs seem to
promote vessel occlusion in both fibrin-dependent and -independent manners, and also
activate the coagulation cascade via intrinsic and extrinsic pathways [15,103]. In addition to
their function as a scaffold, many of the components of NETs can induce platelet activation
and blood coagulation, thus triggering thrombus formation.

The multiple mechanisms by which NETs can induce thrombus formation have been
summarized in Table 2. DNA can activate coagulation by FXII (a protein that promotes
coagulation and mobilizes endothelial cell Weibel–Palade bodies that contain VWF, P-
selectin, and FXIIa) of the intrinsic pathway and enhance the activity of coagulation serine
proteases [163,164]. Furthermore, nucleic acids interfere in the inhibition of clot clearance
by impairing fibrinolysis through the inhibition of plasmin-mediated fibrin degradation
forming complexes with plasmin and fibrin [165] (Table 2).

Histones induce TF expression in vascular endothelial cells, macrophages, and mono-
cytes, which would activate coagulation via the extrinsic pathway [166,167]. In addition,
H3 and H4 specifically trigger platelet activation and aggregation, the release of procoagu-
lant polyphosphates from platelet granules, and an increase of local thrombin generation by
interacting with platelets directly via TLR2 and TLR4 [102,154,168,169]. Histones can also
bind to VWF, fibrinogen, and fibrin to recruit platelets and erythrocytes [170]. Conversely,
histones have also been shown to increase thrombin generation through modulation or
degradation of plasma anticoagulants. Indeed, histones interact with thrombomodulin
and protein C, thus inhibiting thrombomodulin-mediated protein C activation and further
boosting plasma thrombin generation [171] (Table 2).

NE degrades the anticoagulant protein tissue factor pathway inhibitor (TFPI) but also
enhances FXa activity and proteolytically activates platelet receptors to increase platelet
accumulation [103] (Table 2). Similarly, cathepsin G cleaves to TFPI, thereby impeding clot
clearance, and has recently been identified as an inducer of platelet activation via protease-
activated receptor 4 (PAR4) [103]. Cathepsin G-induced activation seems to involve the
P2Y12 platelet receptor, the integrin glycoprotein (GP)IIbIIIa, and Syk kinase [172]. Inter-
estingly, a recent article supports a regulatory role of NETs in the production and molecular
integrity of TSP-1. NE and cathepsin G induce the proteolysis of TSP-1 to a smaller isoform,
which exhibits better hemostatic properties than its precursor molecule. NETs enhance
the production of TSP-1 and prevent its complete degradation after extracellular exposure
to excessive protease concentrations [173] (Table 2). This is important because TSP-1 is a
protein released by platelets and endothelial cells, which participates in hemostasis. In
this context, PAD4 released by NETs has been reported to citrullinate a disintegrin and
metalloproteinase with thrombospondin type-1 motif-13 (ADAMTS13), thus reducing
its activity [174]. ADAMTS13 is involved in the clearance of VWF–platelet complexes,
contributing to thrombosis resolution [175], so the inhibition of ADAMTS13 activity by
PAD4 is an important prothrombotic mechanism. On the other hand, HMGB1 can promote
platelet–leukocyte adhesion and NETs release [46,117,123,124,126] (Table 2).

NETs are important to platelet activation and thrombotic processes, but activated
platelets are also capable of triggering NET formation [103,112], thus implicating platelet-
neutrophil interactions not only in thrombosis, but also in inflammation and related
disorders. In turn, in response to various classic platelet agonists, such as adenosine
triphosphate (ADP), collagen, AA, and thrombin, activated platelets induce the produc-
tion of NETs in a platelet number-dependent manner [123,176]. Thus, platelets induce
NETosis through pathways involving TLR4, HMGB1, and P-selectin [27,112,117,123,124].
The compelling evidence provided above demonstrates the complex crosstalk between
platelets, neutrophils, and NETs release that triggers a vicious circle leading to pathological
thrombus formation.
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Table 2. Relation of NETs components to thrombosis.

NETs Component Relation to Thrombosis References

DNA
Coagulation cascade activation

[163–165]Endothelial Weibel-Palade bodies mobilization
Clot clearance inhibition

Histones (H3, H4)

TF expression

[102,154,166–171]
Recruit platelets and erythrocytes

Thrombin generation
Platelet activation and aggregation

MPO Endothelial dysfuntion [101]

NE
TFPI degradation (avoid clot clearance)

[103,173]Recruit platelet
TSP-1 production

Cathepsin G
TFPI degradation (avoid clot clearance)

[103,172,173]Platelet activation
TSP-1 production

PAD4 ADAMTS13 inactivation (avoid clot clearance) [174,175]

HMGB1
Platelet-leukocyte adhesion

[46,117,123,124,126]NETs release

NETs: Neutrophil extracellular traps. DNA: Desoxyribonucleic acid. TF: tissue factor. MPO: Myeloperoxidase. NE: neutrophil elastase.
TFPI: Tissue factor pathway inhibitor. TSP-1: Thrombospondin-1. PAD4: peptidyl arginine deiminase 4. ADAMTS13: A disintegrin and
metalloproteinase with thrombospondin type-1 motif-13. HMGB1: high-mobility group protein B1.

Moreover, clinical studies have placed the focus on NETs as a crucial source of biomark-
ers in plasma and tissue samples from patients with diverse prothrombotic and thrombotic
diseases, as a key to preventing and treating these pathologies. The common biomarkers
identified in studies that have analyzed NETs release were: DNA (double-strain DNA
or cell-free DNA), nucleosomes, citH3 or citH4, MPO, NE, and diverse molecular com-
plexes formed by the combination of these biomarkers (such as nucleosomes, DNA-citH3
complexes, DNA-MPO complexes, nucleosomes-MPO complexes, MPO-NE complexes,
NE-DNA complexes, etc.) (Table 3). In fact, the presence of the abovementioned NETs
has been described in patients suffering from arterial (acute coronary syndrome, coro-
nary artery disease, and stroke) and venous (deep vein thrombosis, pulmonary embolism)
thrombotic episodes, and other related syndromes (thrombocytopenia, septic shock with
disseminated intravascular coagulation, Behçet’s disease, Cushing disease) [150,177–195].
These clinical studies correlated a specific molecular pattern of the NETs with the severity
of tissue damage using parameters and signs, such as infarct size, stenosis grade, elec-
trocardiogram disturbances, stroke scores, thrombus stabilization and growth, thrombin
potential ratio, tronponin T peak, hypercoagulability markers, protein C reactive, and
glucose levels (Table 3). It has also been reported that NETs stimulate fibrin formation and
deposition, and that fibrin colocalizes with NETs in blood clots [15,102,103]. Interestingly,
the presence of DNA and MPO as NETs forms have also been described in patients with
hypertension, considered a common risk factor for cardiovascular disease rather than a
thrombotic event, with NETs correlating with the homocysteinemia in these hypertensive
patients. In other studies, patients with cancer (such as pancreatic, lung, brain, breast,
and ovarian cancers) have a higher risk of developing venous thromboembolism, and
experimental data indicate that NETs play an important role in this association [3,196].
Furthermore, NETs have been implicated in cancer progression; they entrap cancer cells in
the vasculature, which correlates with increased tumor metastasis [197].



Int. J. Mol. Sci. 2021, 22, 4170 12 of 22

Table 3. NETs components detected in patients with different pathologies related to thrombosis.

Biomarker Patients Sign Correlated to the Biomarker References

DNA

Arterial thrombotic events and diseases

Infarct size

[150,177–186,189,190]

Stenosis grade
Severe stroke scores

Hypercoagulability markers
High glucose levels

Thrombus age

Venous thromboembolic events
Thromboembolism extent

[187,188]C-reactive protein

Hypertension Homocysteinemia [193]

Other diseases
ITP: Platelet CD62 *† [191]

Behçet’s disease: Vascular involvement [192]
Cushing disease: ETP ratio [194]

Nucleosomes
Arterial thrombotic events and diseases

Infarct size

[178,185,190]
Stenosis grade

Severe stroke scores
High glucose levels

Venous thromboembolic events Thromboembolism extent [187]

Other diseases Cushing disease: ETP ratio [194]

citH3/H4

Arterial thrombotic events and diseases

Infarct size

[180,181,184,189,190]
Stenosis grade

Severe stroke scores †

High glucose levels †

Thrombus age, stabilization and growth

Venous thromboembolic events Lactate levels [195]

Other diseases ITP: Platelet CD62 *† [191]

MPO

Arterial thrombotic events and diseases Stenosis grade ‡ [185]

Venous thromboembolic events
C-reactive protein

[195]D-dimer

Hypertension Homocysteinemia ‡ [193]

Other diseases
Behçet’s disease: Vascular involvement ‡ [192]

Cushing disease: ETP ratio [194]

NE Arterial thrombotic events and diseases Thrombus stabilization and growth [184]

NETs: Neutrophil extracellular traps. DNA: Desoxyribonucleic acid. citH3/H4: citrullinated histone H3/H4. MPO: Myeloperoxidase.
NE: neutrophil elastase. ITP: Primary immune thrombocytopenia. CD: cluster of differentiation. ETP: Endogenous thrombin potential.
* Negative correlation. † DNA-citH3 complexes. ‡ DNA-MPO complexes.

5. Conclusions and Future Challenges

Neutrophils are activated upon some inflammatory stimuli, causing complexes, such
as the inflammasome and the transcription factor NF-kB, to induce the release of a whole
series of mediators that mediate both inflammatory and thrombotic processes, including
EVs and NETs. By themselves or through their components, these machineries activate
platelets to trigger thrombi formation. Furthermore, their composition, and especially that
of EVs, can vary significantly depending on the stimulus that activates the neutrophils and
promotes their release.

Many previous studies have blocked various molecules or employed knockout strains
to inhibit the release of EVs and/or NETs, and some or all of these molecules may represent
therapeutic targets. Among the currently identified and promising targets for inhibiting
NETosis are ROS production, PAD4, and DNase, currently the most used inhibitor. The
administration of DNase1 disrupts NETs and reduces disease severity in some mouse
models [198]. Although DNase1 disrupts the DNA-formed scaffold, it does not have an
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effect on other NETs components that can attach to vessel walls and continue causing
damage. Further studies are needed to clarify these issues.

EVs have recently been proposed, not only for therapeutics, but also for drug delivery
purposes due to their unique properties, which allow a drug to be directed through a
target cell. To generate theragnostic EVs, diagnostic agents and therapeutic molecules
can be incorporated into EVs [199]. In addition, EVs and NETs have emerged as alter-
native biomarkers for the detection of cardiovascular diseases, thus they may provide
information regarding the pathology and the efficacy of a treatment regimen. Nevertheless,
more research is necessary before EVs and NETs can be used as reliable biomarkers in
thrombotic diseases.

Thus, precise studies must be carried out in order to analyze these structures (EVs and
NETs), not only in samples from patients with different pathological conditions related to
thrombosis, but also in in vitro studies employing neutrophil stimulation with different
endogenous mediators. Such approaches may be sure to throw light on the elements
of these machineries that trigger disorders, with the goal of developing effective new
therapeutical approaches that are specific for each condition.
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AA Arachidonic acid
ADAMTS13 Disintegrin and metalloproteinase with thrombospondin type-1 motif-13
ADP Adenosine diphosphate
ATP Adenosine triphosphate
CD Cluster of differentiation
CR3 Complement receptor 3
DAMPs Damage-associated molecular patterns
DNA Deoxyribonucleic acid
ERK Extracellular signal-regulated kinase
EVs Extracellular vesicles
F Factor
GP Glycoprotein
HMGB1 High-mobility group protein B1
ICAM-1 Intercellular adhesion molecule-1
IFN Interferon
IL Interleukin
LPS Lipopolysaccharides
LTB4 Leukotriene B4
Mac-1 Macrophage-1 antigen
MEK Mitogen-activated protein kinase kinase
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miRNA micro Ribonucleic acid
MPO Myeloperoxidase
mRNA messenger Ribonucleic acid
mTOR mechanistic target of rapamycin
NADPH Nicotinamide adenine dinucleotide phosphate
NE Neutrophil elastase
NETs Neutrophil extracellular traps
NF-kB Nuclear Factor of the k-chain in B-cells

NLRP3
Nucleotide-binding and oligomerization domain-, leucine-rich repeat- and
pyrin domain-containing protein 3

oxLDL Oxidized low-density lipoprotein
PAD4 Peptidyl arginine deiminase 4
PAI-1 Plasminogen activator inhibitor-1
PKC Protein kinase C
PMA Phorbol 12-myristate 13-acetate
PolyP Polyphosphate
PS Phosphatidylserine
PSGL-1 P-selectin glycoprotein ligand-1
Raf Rapidly accelerated fibrosarcoma
RAGE Receptor for advanced glycation end products
ROS Reactive oxygen species
TF Tissue factor
TFPI Tissue factor pathway inhibitor
TLR Toll-like receptor
TNF-α Tumor necrosis factor alpha
tRNA transfer Ribonucleic acid
TSP-1 Thrombospondin-1
uPA Urokinase-type plasminogen activator
VWF von Willebrand Factor
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