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Dihydroorotase (DHOase) possesses a binuclear metal center in which two Zn ions are bridged by a posttranslationally car-
bamylated lysine. DHOase catalyzes the reversible cyclization ofN-carbamoyl aspartate (CA-asp) to dihydroorotate (DHO) in the
third step of the pathway for the biosynthesis of pyrimidine nucleotides and is an attractive target for potential anticancer and
antimalarial chemotherapy. Crystal structures of ligand-bound DHOase show that the flexible loop extends toward the active site
when CA-asp is bound (loop-in mode) or moves away from the active site, facilitating the product DHO release (loop-out mode).
DHOase binds the product-like inhibitor 5-fluoroorotate (5-FOA) in a similar mode to DHO. In the present study, we report the
crystal structure of DHOase from Saccharomyces cerevisiae (ScDHOase) complexed with 5-FOA at 2.5 Å resolution (PDB entry
7CA0). ScDHOase shares structural similarity with Escherichia coli DHOase (EcDHOase). However, our complexed structure
revealed that ScDHOase bound 5-FOA differently from EcDHOase. 5-FOA ligated the Zn atoms in the active site of ScDHOase. In
addition, 5-FOA bound to ScDHOase through the loop-in mode. We also characterized the binding of 5-FOA to ScDHOase by
using the site-directed mutagenesis and fluorescence quenching method. Based on these lines of molecular evidence, we discussed
whether these different binding modes are species- or crystallography-dependent.

1. Introduction

Dihydroorotase (DHOase) is a zinc metalloenzyme that
catalyzes the reversible cyclization of N-carbamoyl aspartate
(CA-asp) to dihydroorotate (DHO) in the third step of the
pathway for the biosynthesis of pyrimidine nucleotides
[1, 2]. +e pharmacological inhibition of this pathway may
provide an approach to targeting cancer cells, malarial

parasites, and pathogens undergoing rapid growth [1–4]. In
mammals, the activity of DHOase is found in a trifunctional
enzyme, CAD, which also has activities of carbamoyl
phosphate synthetase (CPSase) and aspartate trans-
carbamoylase (ATCase) [5]. However, significant variations
are found in different species (Figure 1(a)). In fungi, CPSase
and ATCase are present in a single bifunctional protein,
Ura2, which is a CAD-like polypeptide that contains a
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defective DHOase-like domain [6]. In most prokaryotic
organisms, CPSase, ATCase, and DHOase are expressed
separately and function-independently [7]. Pseudomonas
aeruginosa ATCase noncovalently associates with an inac-
tive DHOase-like polypeptide for the ATCase activity [8].
Aquifex aeolicus DHOase (AaDHOase) is active only when
complexed with AaATCase [9]. +us, establishing the
precise differences in DHOase among species is of con-
siderable interest.

On the basis of known amino acid sequences and
phylogenetic analyses, two major groups of DHOases are
classified [10]. +ese two types of DHOases share a low level
of protein sequence identity (less than 20%). AaDHOase,
Bacillus anthracis DHOase (BaDHOase), and the DHOase
domain (huDHOase) of human CAD are type I DHOases
(about 45 kDa), which are evolutionarily ancient and larger
than their type II counterparts (about 38 kDa), such as those
from eubacteria, fungi, and plants. +e recent structural
analysis indicates that huDHOase should be reclassified as
the type III DHOase [11] due to unique properties.

+e type II DHOase from Escherichia coli (EcDHOase)
was the first for which the structure was determined [12].
+e complexed crystal structure showed that the substrate
CA-asp and the product DHO were found at different active
sites [12]. Further structural work indicated that a flexible
loop extended toward the active site when CA-asp was
bound (loop-in mode) or moved away from the active site,
facilitating the product DHO release (loop-out mode) [13].
+e mutagenesis study identified the importance of two +r
residues (T109 and T110) on the flexible loop in catalysis
[14]. However, the sequence composition and the length of
this loop (Figure 1(b)) in BaDHOase and huDHOase are
significantly distinct [15]. In addition, the huDHOase chi-
mera bearing the EcDHOase flexible loop is inactive, sug-
gesting different catalytic specificities among species [16].
+us, this loop as a lid within the active site of DHOase
should be the prime target for selective inhibitor design.

5-Fluoroorotate (5-FOA) is a potent product-like in-
hibitor of DHOase from the malaria parasite Plasmodium
falciparum [17]. +e purified EcDHOase was inhibited by 5-
FOA with Ki value of 31.8 μM [13]. +e binding modes of
EcDHOase [13] and huDHOase [11] to 5-FOA were
established using the structural information. In these

complex structures, DHOase binds 5-FOA via the loop-out
mode; namely, the flexible loops are not involved in the
binding of 5-FOA. In the present study, we report the crystal
structure of DHOase from Saccharomyces cerevisiae
(ScDHOase) complexed with 5-FOA at 2.5 Å resolution
(PDB entry 7CA0). ScDHOase shares structural similarity
with EcDHOase. Given the same type of enzyme, one might
conclude that the 5-FOA binding mode of ScDHOase must
be similar to that of EcDHOase. However, we found that
their 5-FOA binding modes were very different. We also
characterized the binding of 5-FOA to ScDHOase by using
the fluorescence quenching and mutational analysis.

2. Materials and Methods

2.1. Protein Expression and Purification. ScDHOase was
purified using the protocol described previously [18, 19].
Briefly, E. coli BL21 (DE3) cells were transformed with the
expression vector pET21b-ScDHOase, and the over-
expression of the expression plasmids was induced by in-
cubating with 1mM isopropyl thiogalactopyranoside. +e
protein was purified from the soluble supernatant by using
the Ni2+-affinity chromatography (HiTrap HP; GE
Healthcare Bio-Sciences), eluted with Buffer A (20mM Tris-
HCl, 250mM imidazole, and 0.5M NaCl, pH 7.9), and
dialyzed against a dialysis buffer (20mM Tris-HCl and 0.1M
NaCl, pH 7.9). +e protein purity remained at >97% as
determined using SDS-PAGE (Mini-PROTEAN Tetra Sys-
tem; Bio-Rad, CA, USA).

2.2. Site-DirectedMutagenesis. +e ScDHOasemutants were
generated according to the QuikChange Site-Directed
Mutagenesis Kit protocol (Stratagene; La Jolla, CA, USA), by
using the wild-type plasmid pET21b-ScDHOase as a tem-
plate. +e presence of the mutation was verified by DNA
sequencing in each construct. +e recombinant mutant
proteins were purified using the protocol for the wild-type
ScDHOase by Ni2+-affinity chromatography.

2.3. Crystallization Experiment. Before crystallization, the
purified ScDHOase was concentrated to 11mg/mL. +e
crystals of ScDHOase complexed with 5-FOA were grown at
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Figure 1: Comparison of DHOases. (a) +e gene products for the first three reactions of pyrimidine biosynthesis are different among
species.+e higher eukaryotic human CAD consists of DHOase, CPSase, and ATCase domains fused covalently. Bacterial DHOase, CPSase,
and ATCase function separately. However, CPSase and ATCase activities in S. cerevisiae are present in a single bifunctional protein, Ura2.
Ura2 is a CAD-like polypeptide that contains a defective DHOase-like domain. (b) Sequence alignment of the flexible loop.+e amino acids
that are involved in catalysis are in red. +e sequence composition and the length of these flexible loops are significantly distinct.

2 Bioinorganic Chemistry and Applications



room temperature through the hanging drop vapor diffusion
in 16% PEG 4000 and 100mM imidazole-malate, pH 6.8.
+e crystals of ScDHOase were validated in the beamline
TLS 15A1 of the National Synchrotron Radiation Research
Center (NSRRC; Hsinchu, Taiwan).

2.4. X-Ray Diffraction Data and Structure Determination.
+e native and the Zn-anomalous data were collected at
beamline BL44XU at SPring-8 (Harima, Japan) with MX300-
HE CCD detector and at beamline TPS 05A1 at the NSRRC
(Hsinchu, Taiwan) with MX300-HS CCD detector. Datasets
were indexed, integrated, and scaled by HKL-2000 [20] and
XDS [21]. +e initial phase, density modification, and model
building were performed using the AutoSol program [22] in
the PHENIX. +e iterative model building and the structure
refinement were performed using Refmac in the CCP4
software suite [23] and Phenix refine in the PHENIX software
suite [24]. +e initial phases of ScDHOase complexed with 5-
FOA were determined through the molecular replacement
software Phaser-MR [25] by using the monomeric ScDHOase
derived from ScDHOase-malate complex [18] as the search
model. After 12 cycles ofmodel refinements, the bestmodel of
ScDHOase was utilized to calculate the real-space averaged
OMIT |Fo|− |Fc| map using mapmask and maprot in the
CCP4 software suite [23]. Based on the real-space averaged
OMIT |Fo|− |Fc| map, the 5-FOA position was determined.
Coot was used for manual model corrections and density fit
analyses [26, 27]. +e density fit value of 5-FOA is 0.95 using
density fit analysis in Coot. +e correctness of the stereo-
chemistry of the models was verified using MolProbity [28].
Atomic coordinates and related structure factors were de-
posited in the PDB with accession code 7CA0.

2.5. Determination of the Dissociation Constant (Kd). +e Kd
value of the purified ScDHOase was determined using the
fluorescence quenching method as previously described for
dihydropyrimidinase (DHPase) [29–31]. Briefly, an aliquot
of the compound was added to the solution containing
ScDHOase (1 μM) and 50mM HEPES at pH 7.0. +e de-
crease in the intrinsic fluorescence of ScDHOase was
measured at 324 nm upon excitation at 280 nm and 25°C
with a spectrofluorimeter (Hitachi F-2700; Hitachi High-
Technologies, Japan). Kd was obtained using the following
equation: ΔF�ΔFmax −Kd (ΔF/[compound]).

3. Results and Discussion

+e DHOase activity is found in all organisms for the
biosynthesis of pyrimidine nucleotides, but phylogenetic
and structural analyses reveal at least three different DHOase
forms [2, 11]. In bacteria and yeast, DHOase is mono-
functional and belongs to the type II enzyme. As a eukaryotic
DHOase, ScDHOase may be an evolutionary link between
the Gram-negative bacterial DHOase (type II) and the
higher eukaryotic DHOase domain of CAD (type III). +us,
the important differences between the prokaryotic EcD-
HOase and the eukaryotic ScDHOase are worth
investigating.

3.1. Crystallization. We attempted to crystallize the
ScDHOase-5-FOA complex by crystallization screening, but
no crystal was formed. ScDHOase formed crystals only in
the presence of malate [18]. +us, we incubated 5-FOA with
the crystal of the ScDHOase-malate complex and obtained
the crystal of the ScDHOase-5-FOA complex successfully.
+e crystals of the ScDHOase complex belonged to space
group P21 with cell dimensions of a� 85.47, b� 88.59, and
c� 103.57 Å. +e crystal structure of ScDHOase complexed
with 5-FOA was solved at 2.5 Å resolution (Table 1).

3.2. Crystal Structure of ScDHOase Complexed with 5-FOA.
An asymmetric unit of the crystal contained four crystal-
lography-independent ScDHOase monomers (Figure 2(a)).
+e global architecture of each ScDHOasemonomer showed
a TIM-barrel structure and consisted of 15 α-helices, 12
β-sheets, 2 Zn ions, and 1 5-FOA molecule. +e Lys residue
(K98) remained carbamylated regardless of 5-FOA binding.
+e dimetal center (Znα/Znβ) in ScDHOase containing 4
His (i.e., H14, H16, H137, and H180), 1 Asp (i.e., D258), and
1 carbamylated Lys (i.e., Kcx98) was still self-assembled. +e
structure revealed a long flexible loop in each subunit which
extended toward the active site when 5-FOA was bound
(Figure 2(b)). +e occupancy refinement was performed
using the PHENIX.refine software [24]. +e occupancy of 5-
FOA in each subunit is 0.74–0.78. Possibly, the partial oc-
cupancy of 5-FOA resulted from the replacement or

Table 1: Data collection and refinement statistics.

Data collection
Crystal 5-FOA-ScDHOase
Wavelength (Å) 0.9 Å
Resolution (Å) 44.57–2.50 (2.589–2.5)
Space group P21
Cell dimension a, b, c (Å)/β (°) 85.47, 88.59, 103.57/95.3
Redundancy 2.0 (2.0)
Completeness (%) 98.05 (99.81)
<I/σI> 8.2 (1.2)
CC1/2 0.997 (0.80)

Refinement
Resolution (Å) 44.57–2.50
No. of reflections 52420
Rwork/Rfree 0.205/0.248
No. of atoms
Ligands 56
Macromolecules 11376
Zinc 8
Water 186
Protein residues 1456

r.m.s deviations
Bond lengths (Å) 0.010
Bond angles (°) 1.29

Ramachandran plot
Favored (%) 96.45
Allowed (%) 3.55
Outliers (%) 0

PDB entry 7CA0
Values in parentheses are for the highest resolution shell. CC1/2 is the
percentage of correlation between intensities of random half datasets.
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disturbance of malate in the mother liquid [18]. +e two+r
residues, +r109 and +r110 in EcDHOase, important for
stabilizing the transition state but not interacting with 5-
FOA [13], were also conserved in ScDHOase (+r105 and
+r106). However, these two +r residues did interact with
5-FOA revealed by our complex structure.

3.3. 5-FOABindingMode. +e binding modes of EcDHOase
[13] and huDHOase [11] to 5-FOA were well established
using the structural information. In these structures, 5-FOA
bound to the active site in a similar mode to DHO. However,
our complexed structure revealed that ScDHOase bound 5-
FOA (Figures 2(c) and 2(d)) differently from EcDHOase and
huDHOase. To confirm the different binding mode, we
compared their density fit values of the bound 5-FOA for
ScDHOase using Coot. +e binding mode of 5-FOA ob-
served from EcDHOase and huDHOase was refined using
the rigid body real-space refinement in Coot to the averaged
omit map for ScDHOase. +e density fit value of the bound
5-FOA in ScDHOase to the averaged omit map is 0.95.

When using the posture of 5-FOA from EcDHOase and
huDHOase, the density fit value of the bound 5-FOA in
ScDHOase is 0.81. Based on these results, we ruled out the
possibility that the 5-FOA binding mode of ScDHOase must
be similar to that of EcDHOase and huDHOase.

To strengthen the conclusion that ScDHOase bound 5-
FOA differently from EcDHOase and huDHOase, we also
checked the averaged RMSZs (indicators of ligand geometry)
of 5-FOA in our complexed structure of ScDHOase (PDB
entry 7CA0; 1.58 of bond lengths and 2.02 of bond angles)
and compared with the reported 5-FOA structures bound in
huDHOase (PDB entry 4C6M; 4.12 of bond lengths and 6.11
of bond angles) and in EcDHOase (PDB entry 2EG8, 3.0 of
bond lengths and 4.58 of bond angles). Based on these values,
the proposed 5-FOA bindingmode of ScDHOase through the
complex structure is reasonable and evident.

For ScDHOase, the carboxylate group of 5-FOA ligated
the Zn atoms (Figure 3(a)) rather than interacting with the
positively charged side chain of Arg18 as that in EcDHOase
(Figure 3(b)) and huDHOase (Figure 3(c)). +e bound 5-
FOA by ScDHOase adopted the reverse orientation
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Figure 2: Structure of ScDHOase complexed with 5-FOA. (a) Ribbon diagram of the ScDHOase-5-FOA complex tetramer. Each monomer
is color-coded. Two zinc ions in the active site are presented as black spheres. (b) Structural comparison of the active sites in ScDHOase
tetramer. +e superimposed structures of these 5-FOA-bound states revealed that the flexible loop is in loop-in conformation in each
subunit. (c) Stereo view of the real-space averaged OMIT |Fo|− |Fc| map (green mesh, contoured at 3σ) of 5-FOA bound to ScDHOase. +e
bound 5-FOA (cyan) and ScDHOase (light blue) are shown as sticks. +e carboxylate group of 5-FOA ligates the Zn atoms (gray spheres).
(d)+e composite OMITmap (blue mesh, contoured at 1σ) of 5-FOA bound to ScDHOase.+e bound 5-FOA (green) and ScDHOase (light
blue) are shown as sticks. Two zinc atoms are shown as gray spheres.
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compared with those by EcDHOase and huDHOase. In
addition, all flexible loops in each subunit of ScDHOase were
involved in the binding of 5-FOA (Figure 2(b)). +e two+r
residues (+r105 and+r106) in ScDHOase played a crucial
role in binding. For EcDHOase (Figure 3(d)) and huD-
HOase (Figure 3(e)), the flexible loop is not involved in the
binding of 5-FOA. Despite having a similar active site, the 5-
FOA binding pose and the conformation of the catalytic loop
of ScDHOase for 5-FOA binding (via the loop-in mode)
differed from those of EcDHOase (Figure 3(f)) and huD-
HOase (via the loop-out mode). We concluded that the 5-
FOA binding and the inhibition mechanism of ScDHOase
were different from those of EcDHOase and huDHOase.

According to our structure, Arg18, Asn43, His262,
+r105, +r106, and Lys230 of ScDHOase were involved in
the 5-FOA binding (Figure 4). +e 5-FOA binding mode for
ScDHOase was somehow similar to the binding mode of
EcDHOase to 2-oxo-1,2,3,6-tetrahydropyrimidine-4,6-di-
carboxylic acid (HDDP) [13]. EcDHOase bound HDDP via
the loop-in mode. Similarly, the boundHDDP in EcDHOase
utilized its carboxylate group to interact with Zn atoms and
stabilize the flexible loop. Like the ScDHOase-5-FOA
complex, +r109 and +r110 in EcDHOase played a crucial
role in the binding of HDDP.

3.4. Binding and Mutational Analysis. Fluorescence
quenching method was used for determining the dissocia-
tion constant (Kd) of ScDHOase bound to 5-FOA
(Figure 5(a)). Kd of the ScDHOase mutants R18A

(Figure 5(b)) and T106A (Figure 5(c)) was also determined
through the fluorescence quenching to confirm the strength
of interaction of ScDHOase with 5-FOA. Quenching refers
to the complex formation process that decreases the fluo-
rescence intensity of the protein. ScDHOase displayed
strong intrinsic fluorescence with a peak wavelength of
324 nm when excited at 280 nm (Figure 5(a)). When 5-FOA
was titrated into the ScDHOase solution, the intrinsic
fluorescence of the protein was progressively quenched.
Upon the addition of 200 μM 5-FOA, the intrinsic fluo-
rescence of ScDHOase, ScDHOase-R18A, and ScDHOase-
T106A was quenched by 78.2%, 75.9%, and 64.6%, respec-
tively (Table 2). Adding 5-FOA resulted in a red shift in the
ScDHOase emission wavelength (∼11.5 nm; λmax from 324.0
to 335.5 nm). Adding 5-FOA also resulted in red shifts in the
ScDHOase-R18A (∼10.0 nm; λmax from 324.5 to 334.5 nm)
and ScDHOase-T106A (∼5.5 nm; λmax from 328.0 to
333.5 nm). +e λem shift of ScDHOase-T106A (5.5 nm)
produced by 5-FOA was significantly lower than that of
ScDHOase (11.5 nm). +ese observations indicated that
ScDHOase, ScDHOase-R18A, and ScDHOase-T106A could
form a stable complex with 5-FOA, respectively; however,
the binding affinities for these ScDHOases were different. As
determined through the titration curves (Figure 5(d)), theKd
values of ScDHOase, ScDHOase-R18A, and ScDHOase-
T106A bound to 5-FOA were 83.8± 1.5, 143.6± 2.1, and
114.8± 3.7 μM, respectively. We also compared the binding
affinities of ScDHOase to the anticancer drugs 5-fluorouracil
(5-FU) and 5-aminouracil (5-AU). Based on theKd values, the
strength of complex formation followed the following order:
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Figure 3: New binding mode of 5-FOA. (a) +e active site of ScDHOase with 5-FOA. (b) +e active site of EcDHOase with 5-FOA (PDB
entry 2EG8).+e binding mode of 5-FOA to the active site is very similar to that of DHO. (c)+e active site of huDHOase with 5-FOA (PDB
entry 4C6M). By comparison, the bound 5-FOA by ScDHOase adopted the reverse orientation as compared to that in the active site of
EcDHOase and huDHOase. (d) +e loop-out binding mode of EcDHOase. (e) +e loop-out binding mode of huDHOase. +e flexible loop
in EcDHOase and huDHOase is not involved in the binding of 5-FOA. (f ) Superposition of the ScDHOase and EcDHOase complexes.
Despite having a similar active site, the 5-FOA binding pose and the conformation of the catalytic loop of ScDHOase differ from those of
EcDHOase.
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ScDHOase-5-FOA> ScDHOase-R18A-5-FOA> ScDHOase-
T106A-5-FOA> ScDHOase-5-FU> ScDHOase-5-AU [18].
+us, ScDHOase preferred the binding of 5-FOA (Table 2)
over 5-FU and 5-AU [18].

+e decrease in the intrinsic fluorescence of ScDHOase
was measured with a spectrofluorimeter (Hitachi F-2700;
Hitachi High-Technologies, Japan). Kd was obtained using
the following equation: ΔF�ΔFmax −Kd (ΔF/[5-FOA]).

3.5. Binding of 5-FOA via Loop-In Mode. Despite the evo-
lutionary divergence (Figure 1), an important flexible loop as
a lid within the active site of DHOase for catalysis and
substrate binding is conserved from E. coli [13] to humans
[11]. 5-FOA, a product-like inhibitor, binds to the active site
of EcDHOase in a similar manner to DHO via the loop-out
binding mode (Figures 2 and 3); that is, the loop does not
interact with the ligand or with the rest of the active site [13].
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Figure 4: 5-FOA bindingmode of ScDHOase. Arg18, Asn43, His262,+r105,+r106, and Lys230 of ScDHOase were involved in the 5-FOA
binding.
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Despite a very similar active site, ScDHOase bound 5-FOA
by using different mechanism. +rough the loop-in mode,
the bound 5-FOA by ScDHOase adopted the reverse ori-
entation, as compared with that by EcDHOase. We also
observed that ScDHOase bound 5-AU, 5-FU, and malate via
the loop-in mode [18]. To date, we have not found the loop-
out mode of ScDHOase to bind ligand. Whether ScDHOase
can bind ligand via the loop-out conformation is still un-
known. Given that the flexible loop in ScDHOase is the
longest among these DHOases (Figure 1(b)), they may be
somehow different in their binding mechanisms (Figure 3).
Perhaps, the conformational change of this loop in

ScDHOase is not necessary due to the steric hindrance.
Whether these different binding modes are species- or
crystallography-dependent should be elucidated
experimentally.

+e loop-in binding mode is also found in DHPase
[29, 32, 33] and allantoinase (ALLase) [34]. DHOase [1],
DHPase [35–37], and ALLase [38, 39] are members of the
cyclic amidohydrolase family [32, 40]. +ese metal-depen-
dent enzymes catalyze the hydrolysis of the cyclic amide
bond of each substrate in either 5- or 6-membered rings in
the metabolism of purines and pyrimidines [1, 32]. +e
conserved Tyr residue located within a dynamic loop in
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Figure 5: Fluorescence titration of ScDHOase with 5-FOA. (a) +e fluorescence emission spectra of ScDHOase with 5-FOA of different
concentrations (0–200 μM; 0, 10, 20, 50, 75, 100, 125, 150, 175, and 200 μM).+e decrease in intrinsic fluorescence of protein was measured
at 324 nm upon excitation at 280 nm with a spectrofluorimeter. +e fluorescence intensity emission spectra of ScDHOase significantly
quenched with 5-FOA. (b) +e fluorescence emission spectra of ScDHOase-R18A with 5-FOA of different concentrations (0–200 μM). (c)
+e fluorescence emission spectra of ScDHOase-T106A with 5-FOA of different concentrations (0–200 μM). ScDHOase-R18A and
ScDHOase-T106A individually displayed strong intrinsic fluorescence with a peak wavelength of 324.5 and 328 nm when excited at 280 nm.
(d) An aliquot amount of 5-FOA was added to the enzyme solution for determining Kd. Kd was obtained by the following equation:
ΔF�ΔFmax −Kd (ΔF/[5-FOA]). Data points are an average of 2-3 determinations within 10% error.

Table 2: Binding parameters of ScDHOase to 5-FOA.

DHOase λmax (nm) λem shift (nm) Quenching (%) Kd value (μM)
ScDHOase From 324 to 335.5 11.5 78.2 83.8± 1.5
ScDHOase-R18A From 324.5 to 334.5 10.0 75.9 143.6± 2.1
ScDHOase-T106A From 328 to 333.5 5.5 64.6 114.8± 3.7
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DHPase [30, 33] plays an essential role in the stabilization of
the tetrahedral transition state during hydrolysis of the
substrate, collapse of the transition state, formation of a
product, and release of the product. +us, the dynamic loop
in these cyclic amidohydrolases could be a suitable drug
target for inhibitor design [30, 41]. Structural analyses are
still needed to decipher the architecture and the function of
different DHOases.

4. Conclusion

+e complexed crystal structure of ScDHOase with inhibitor
5-FOA determined at 2.5 Å resolution revealed a new
binding mode. Although ScDHOase shares structural sim-
ilarity with EcDHOase, they appear to bind 5-FOA differ-
ently. We also characterized the binding of 5-FOA to
ScDHOase by using the fluorescence quenching and mu-
tational analysis. +rough the loop-in mode, the conserved
+r residue located within a flexible loop in ScDHOase was
crucial for binding of 5-FOA. Structure-function analyses
indicated that the inherent difference in the flexible loop
among DHOase species may be a determinant of the 5-FOA
binding mode. Further research can directly focus on de-
termining why DHOases need to evolve the different flexible
loops for catalysis during evolution.
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