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Abstract: Urinary tract infection (UTI) is one of the most common bacterial infections in the world,
which is associated with high morbidity and mortality rates. Enterobacterales species are consid-
ered the most causative agent for UTI, especially uropathogenic Escherichia coli (UPEC). Here,
we investigated the antibacterial activity of the green fungal metabolite, 6-pentyl α pyrone lac-
tone, alone or in combination with zinc oxide nanoparticles (ZnONPs) against multidrug-resistant
Enterobacterales recovered from UTI. The results revealed that 57.27% of human urine samples were
positive for Enterobacterales, where E. coli was the most prevalent bacterial pathogen (66.67%). Of
note, 98.41% of Enterobacterales isolates were multidrug-resistant (MDR) with multiple antimicrobial
resistance (MAR) indices ranged from 0.437 to 1. Fifty percent of the examined isolates were positive
for the integrase gene; 60% out of them harbored class 2 integron, whereas the other 40% carried
class 1 integrons. The broth microdilution assay ensured that the 6-pentyl-α-pyrone lactone had a
reasonable antimicrobial effect against the examined isolates (Minimum inhibitory concentration
(MIC) values of 16–32 µg/mL). However, ZnONPs showed a strong antimicrobial effect against
the investigated isolates with MIC values ranging from 0.015 to 32 µg/mL. Interestingly, the MICs
decreased 5–12 fold and 3–11 fold for 6-pentyl-α-pyrone lactone and ZnONPs, respectively, against
examined isolates after their combination. This is the first report suggesting the use of 6-pentyl α
pyrone lactone and ZnONPs combination as a promising candidate against MDR Enterobacterales
recovered from UTI.

Keywords: urinary tract infection; zinc oxide nanoparticles; Enterobacterales; integron; green therapy

1. Introduction

Urinary tract infection (UTI) is a common worldwide disease. Symptoms are fre-
quently accompanied by difficult urination, burning, and inflammations, which may de-
velop into cystitis, leading to renal failure and further complications. Severity of the disease
may increase the hospitalization period, which sustains more financial costs and may be
associated with high morbidity and mortality rates [1]. Enterobacterales species represent
the most infection cause, particularly the uropathogenic Escherichia coli (UPEC), which
involves more than 80% of all UTIs [2]. Other Enterobacterales members such as Klebsiella,
Citrobacter and Proteus species are also incriminated in UTI infections.
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Enterobacterales could acquire antimicrobial resistance properties through various resis-
tance genes, which may be transmitted between bacterial isolates by determinants known
as mobile genetic elements (MGE) such as integrons [3]. The integron is an arrangement
of gene cassettes. It possesses an integrase gene (intI), which encodes a site-specific re-
combinase, acting as a reservoir for resistance-associated genes, and a specific promoter
that is responsible for the expression of any appropriately integrated gene. Integrons
were classified into many classes; class I and class II are commonly identified among
Enterobacterales [4]. These integrons are located on either bacterial plasmids or chromo-
somes and strongly related to multidrug resistance (MDR) in Enterobacterales species [5].
High resistance of Enterobacterales to the commonly used antibiotics are considered a severe
health and economic problem [6]. Thus, there is an urgent need to develop alternative av-
enues as herbal compounds or nanomaterial-based approaches for countering antimicrobial
resistance in Enterobacterales [7].

Green therapy with naturally bioactive compounds is a good way to fight bacterial
resistance because of their safety and efficiency. The green fungal metabolite, 6-pentyl-
α-pyrone lactone that is produced by Trichoderma species showed a strong antifungal
activity [8], but their antibacterial activity is still under study. Therefore, we aimed to
investigate the activity of 6-pentyl-α-pyrone lactone either alone or in combination with
zinc oxide nanoparticles (ZnONPs) against Enterobacterales species isolated from human
urine samples, which may be a promising alternative to the antimicrobial agents.

2. Materials and Methods
2.1. Clinical Urine Samples

One hundred and ten human urine samples of both sex [females (n = 70) and males
(n = 40)] were collected from different hospitals and medical laboratories in Zagazig City,
Sharkia Governorate, Egypt during the period from January to August 2020. Those samples
were categorized into young adult (n = 54), middle adult (n = 27), old adult (n = 13),
child (n = 9), and early adolescence (n = 7). All urine samples were collected from UTI
patients; these samples included pus cells, nitrite and many epithelial cells. Samples were
placed in sterile urine cups, kept in an icebox packed with ice and directly transferred
to the Microbiology laboratory, Faculty of Veterinary Medicine, Zagazig University for
bacteriological examination and further analyses. The study was conducted following
the Ethics of the World Medical Association (Declaration of Helsinki). Written informed
consent was obtained from the patients for participation in this study.

2.2. Bacteriological Examination

One mL from each collected sample was added to 9 mL of buffered peptone water
(BPW; Conda, Madrid, Spain) for pre-enrichment of human urine samples. A loopful from
each pre-enrichment urine sample was cultured onto MacConkey’s agar (HI media, India);
then, the growing colonies were sub-cultured on eosin-methylene blue (EMB; HI media,
India) agar media [9]. Various biochemical tests as Simmons’ citrate, urease and indole,
as well as the characteristic reactions on triple sugar iron (TSI; Oxoid, UK) agar media
were examined according to Finegold et al. [10] for further differentiation of Enterobacterales
members. Polymerase chain reaction (PCR)-based confirmation of Enterobacterales was
applied using oligonucleotide primers listed in Table S1 [11–14].

2.3. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing of Enterobacterales isolates was done, adopting
the standardized disc diffusion method [15]. Sixteen widely used antimicrobial agents
of nine antimicrobial classes were tested (Bioanalyse, Ankara, Turkey). They included
cefepime (30 µg), cefuroxime (30 µg), cefotaxime (30 µg), imipenem (10 µg), meropenem
(10 µg), amoxicillin/clavulanic acid (20/10 µg), piperacillin/tazobactam (100/10 µg), ampi-
cillin/sulbactam (10/10 µg), trimethoprim/sulphamethoxazole (1.25/23.75 µg), doxycy-
cline (30 µg), erythromycin (15 µg), levofloxacin (5 µg), ciprofloxacin (5 µg), gentamicin
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(10 µg), amikacin (30 µg), and nitrofurantoin (300 µg). The inhibition zone diameters were
interpreted according to the Clinical and Laboratory Standards Institute and European
Committee on Antimicrobial Susceptibility Testing [16,17] guidelines. Bacterial isolates
showing resistance to ≥three antimicrobial classes were considered MDR. Multiple antibi-
otic resistance (MAR) index was determined for each isolate by calculating the number of
antimicrobials showed resistance/total number of tested antimicrobial agents, while the
MAR index for each antimicrobial = total number of recorded resistance/(total number of
tested antimicrobials × total number of isolates) [18].

2.4. Plasmid Extraction and Detection of the Integrase Gene

Plasmid extraction of MDR Enterobacterales isolates was done using the QIAprep Spin
Miniprep Kits according to the manufacturer’s instructions (Qiagen, Gmbh, Germany).
Conventional PCR was applied to hybridize the conserved regions of the integrase encoded
genes, intI1 and intI2, using hep35 and hep36 [19] oligonucleotide primers presented in
Table S1. PCR amplifications were performed with a total volume of 25 µL of the following
reaction mixture: 12.5 µL DreamTaq Green PCR Master Mix (2X) (Thermo Fisher Scientific,
Waltham, MA, USA), 1 µL of each primer (20 pmole), 2 µL template DNA and 8.5 µL water
nuclease-free.

2.5. Restriction Fragment Length Polymorphism (RFLP) for Integrons Categorization

Using RsaI restriction Enzyme 11, the PCR products were digested, then class 1 integron
cassette structures were amplified using hep58 and hep59 primer segments, while class
2 integrons were amplified using hep74 and hep51 primer regions (Table S1). PCR amplifi-
cations were performed using a PTC-100TM programmable thermal cycler (MJ Research Inc.,
Waltham, MA, USA) as described elsewhere [19]. A positive control (an integrase positive
E. coli isolate) and a negative control (Master Mix without DNA) were included. PCR
amplicons were separated by electrophoresis on 1.5% agarose gel (Sigma-Aldrich, St. Louis,
MO, USA) stained with 0.5 µg/mL ethidium bromide (Sigma-Aldrich, USA). A gene ruler
100 bp DNA ladder (Thermofisher Scientific, Waltham, MA, USA) was used to measure the
fragment sizes of class 1 (491 bp) and class 2 (334 bp and 157 bp fragments) integrons.

2.6. Preparation of 6-Pentyl-α-Pyrone Lactone and Zinc Oxide Nanoparticles

A stock solution of 100% commercially available 6-pentyl-α-pyrone lactone (Sigma
Aldrich, Germany) was prepared by dissolving in methanol (98%; ALPHA Chemika,
Mumbai, India) according to Ismaiel et al. [8]. Synthesized ZnONPs of spherical shape,
with an average size of 54.53 nm and a specific surface area of 20.28 m2 g−1 [20] were
purchased from Naqaa Co. (Cairo, Egypt). The ZnONPs stock solution was prepared as
1 µg/mL by dissolving in a desired volume of sterile distilled water.

2.7. Antimicrobial Activities of 6-Pentyl-α-Pyrone Lactone, Zinc Oxide Nanoparticles and Their
Combination

The activities of 6-Pentyl-α-pyrone lactone and ZnONPs against MDR Enterobacterales
isolates were screened by the agar well diffusion method, as described previously [21]. Min-
imum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs)
of 6-pentyl-α-pyrone lactone and ZnONPs were determined by the broth microdilution
technique according to Rankin [22]. The interaction activities of antimicrobial combination
were assessed by the checkerboard method [23] using Muller–Hinton broth (Oxoid, Hamp-
shire, UK) and a bacterial density of 5 × 105 CFU/mL. Fractional inhibitory concentrations
(FIC) of the antimicrobial combination were calculated as mentioned by Hsieh et al. [24].
The combination is considered synergistic when the FIC index (ΣFIC) is ≤0.5, indifferent
when the ΣFIC is >0.5 to <2, and antagonistic when the ΣFIC is ≥2. The MIC 50 and MIC
90 were calculated using an orderly array method [25].
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2.8. Statistical Analysis

The data presented in the study were analyzed in Microsoft Excel software (Microsoft
Corporation, Redmond, WA, USA). Sample size was detected according to Thompson
equation at CI = 95%, Z = 1.96, α = 0.05, D = 0.05 and p = 0.50 [26]. Binary logistic regression
analysis (PROC LOGISTIC; SAS Institute Inc., Cary, NC, USA) was run setting the level
of significance at α = 0.05 to examine the effects of the potential risk factors including
age and sex on Enterobacterales occurrence [27]. Significant differences in antimicrobial
susceptibilities of Enterobacterales isolates, as well as the differences among explanatory
variables, were tested via Fisher’s Exact Test. The differences between MIC means of each
examined antimicrobial agent and their combination were separated by Tukey’s studentized
range (HSD) test. Statistical significance was set at p-value less than 0.05.

3. Results
3.1. Occurrence of Enterobacterales in Clinical Urine Samples

As presented in Table 1, sixty-three Enterobacterales isolates were recovered from
110 human urine samples (57.27%), which were more frequent in females (n = 52; 74.29%)
than in males (n = 11; 27.50%) (p < 0.05). Young adults represented the most common
cases (75.47%), followed by old adults (53.85%), and middle adults (42.86%), whereas
young ages, e.g., childhood and early adolescence, represented the lowest infectious cases
(33.33% and 14.29%, respectively). Enterobacterales isolates were classified into four species;
E. coli, which was the most prevalent bacterial pathogen (66.67%), followed by Klebsiella
(28.57%), Citobacter (3.17%) and Proteus (1.58%) species. Higher frequencies of E. coli
and Klebsiella species were observed in the young adulthood period and females. The
probability of Enterobacterales occurrence decreased by 85% (0.153), 74% (0.266), 67% (0.33),
and 5% (0.952) during the periods of older adulthood, middle adulthood, early adolescence,
and young adulthood, respectively, compared to the childhood period. With regard to sex,
males had 80% (0.200) lower odds of Enterobacterales occurrence than females.

Table 1. Occurrence of Enterobacterales in human urine samples.

Enterobacterales Species
Age Sex

C
(n = 9)

EA
(n = 7)

YA
(n = 53)

MA
(n = 28)

OA
(n = 13)

F
(n = 70)

M
(n = 40)

E. coli 2 (22.22) 1 (14.29) 23 (43.39) * 11 (39.28) 5 (38.46) 33 (47.14) * 9 (30)

Klebsiella 1 (11.11) - 16 (30.18) * - 1 (7.69) 17 (24.28) * 1 (3.33)

Citrobacter - - 1 (1.88) 1 (3.57) - 2 (2.85) NE -

Proteus - - - - 1 (7.69) - 1 (3.33) NE

Total 3 (33.33)
(Ref.)

1 (14.29)
(0.33 ¶) *

40 (75.47)
(0.952 ¶) ns

12 (42.86)
(0.266 ¶) *

7 (53.85)
(0.153 ¶) *

52 (74.29)
(Ref.)

11 (27.50)
(0.200 ¶) *

C, Childhood (0–11 years); EA, Early Adolescence (12–18 years); YA, Young Adulthood (19–44 years); MA,
Middle Adulthood (45–64 years); OA, Older Adulthood (65 years and older); F, female, M, male; (-), not detected;
ns, non-significant; NE, statistical value none estimated; Ref., reference. Data are represented by frequencies (%).
* Significant at p-value < 0.05; ¶ represented the odds ratio.

3.2. Antimicrobial Susceptibility Results

The antimicrobial susceptibilities of Enterobacterales isolates (n = 63) against 16 broadly
used antimicrobial agents of various antimicrobial classes (n = 9) are depicted in Table 2.
The lowest resistance percentage was reported for meropenem (38.09%), nitrofurantoin
(41.26%) and imipenem (46.03%). Nevertheless, high resistance level was observed with
cefotaxime (100%), followed by cefepime (96.82%), cefuroxime (95.23%), erythromycin
(92.05%), ciprofloxacin (84.12%), piperacillin/tazobactam (82.53%), amoxicillin-clavulanic
acid (79.36%), and levofloxacin (77.77%). Sixty-two (98.41%) Enterobacterales isolates were
categorized as MDR; they exhibited resistant to more than three antimicrobial classes, and
their MAR indices were greater than 0.4 (0.437–1). Statistical analysis revealed significant
differences (p = 0.001) in antimicrobial susceptibilities of Enterobacterales isolates recovered
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from clinical urine samples for all antimicrobial agents except for meropenem (p = 0.404)
and nitrofurantoin (p = 0.228).

Table 2. Antimicrobial susceptibilities of Enterobacterales isolates (n = 63) recovered from clinical
urine samples.

Antimicrobial Agent
Susceptibility *

MAR Index p-Value
Sensitive Intermediate Resistant

Amoxicillin clavulanic acid (AMC) 7 (11.11) 6 (9.52) 50 (79.36) 0.050 0.001
Ampicillin sulbactam (SAM) 6 (9.52) 11 (17.46) 46 (73.01) 0.045 0.001

Piperacillin tazobactam (TPZ) 7 (11.11) 4 (6.34) 52 (82.53) 0.051 0.001
Amikacin (AK) 17 (26.98) 4 (6.34) 42 (66.67) 0.042 0.001

Gentamycin (CN) 12 (19.04) 6 (9.52) 45 (71.42) 0.044 0.001
Imipenem (IMP) 25 (39.68) 9 (14.28) 29 (46.03) 0.028 0.004

Meropenem (MEM) 23 (36.50) 16 (25.39) 24 (38.09) 0.023 0.404
Doxycycline (DO) 27 (42.85) 3 (4.76) 33 (52.38) 0.033 0.001

Ciprofloxacin (CIP) 7 (11.11) 3 (4.76) 53 (84.12) 0.052 0.001
Levofloxacin (LEV) 10 (15.87) 4 (6.34) 49 (77.77) 0.047 0.001

Trimethoprime + sulfamethaxazole (SXT) 11 (17.46) 6 (9.52) 46 (73.01) 0.047 0.001
Nitrofurantoin (F) 22 (34.92) 15 (23.80) 26 (41.26) 0.027 0.228
Cefuroxime (CXM) 1 (52.17) 2 (00.00) 60 (47.82) 0.059 0.001

Cefepime (FEB) 0 (00.00) 2 (3.17) 61 (96.82) 0.060 0.001
Cefotaxime (CTX) 0 (00.00) 0 (00.00) 63 (100.00) 0.062 NE
Erythromycin (E) 4 (6.34) 1 (1.58) 58 (92.06) 0.057 0.001

Antimicrobial sensitivity cut-off values were determined following CLSI 2020 and EUCAST, 2021. MAR,
multiple antibiotic resistance; NE, not estimated. * Data are presented by No. (%). p-values < 0.05 are
statistically significant.

3.3. Existence of the Integrase Gene among MDR Enterobacterales Isolates

Multidrug-resistant Enterobacterales isolates with high MAR indices (0.687–1; n = 10)
were screened for the presence of the integrase gene (intI) located on plasmid by conven-
tional PCR. Fifty percent of the examined isolates were positive for the integrase gene
(Figure 1). Of note, 20% of the positive isolates were E. coli, while the higher prevalence of
intI gene was recorded for Klebsiella species (80%).
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Figure 1. Agarose gel electrophoresis of the integrase gene among Enterobacterales isolates.
Lane L: 100-bp ladder; +C: positive control; −C: negative control; lanes 1, 3, 5, 6 and 7: positive
integrase targeted at 491 bp.

3.4. Detection of Class 1 and Class 2 Integrons by PCR-RFLP

Positive integrase isolates (n = 5) were screened for the presence of class 1 and class 2
integrons by PCR-RFLP. The results revealed that 60% of isolates harbored class 2 (frag-
ments’ sizes = 157 and 334 bp), while 40% of the isolates carried class 1 integrons (product
size = 491 bp) (Figure 2).
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Figure 2. PCR-RFLP assay for differentiation of class 1 and class 2 integrons using RsaI restriction
enzyme. Lane L: 100-bp ladder; Lanes 2, 4 and 5 (334 bp and 157 bp) represent class II integrons;
Lanes 1 and 3 (491 bp) represent class I integrons.

3.5. Antimicrobial Activities of 6-Pentyl-α-Pyrone Lactone and Zinc Oxide Nanoparticles against
MDR Enterobacterales Isolates

Six-pentyl-α-pyrone lactone fungal metabolite and ZnONPs were tested against MDR
Enterobacterales of high MAR indices, including those harbored integrons (Table 3). The
results showed that all isolates were resistant to 6-pentyl-α-pyrone lactone using agar
well diffusion method, while ZnONPs was effective against all tested isolates (inhibition
zone diameters are ≥15 mm). The broth microdilution assay ensured that the 6-pentyl-
α-pyrone had a weak antimicrobial effect against the examined isolates with MIC values
of 16–32 µg/mL. However, ZnONPs showed a strong antimicrobial effect against the
investigated isolates with MIC values ranging from 0.015 to 32 µg/mL. Moreover, ZnONPs
were reported to have a strong bactericidal activity against 60% of examined isolates with
MIC similar to MBC for E.coli (16 µg/mL) and Klebsiella (8 µg/mL) species. Checkerboard
assay was applied for determination of the antimicrobial activity of 6-pentyl-α-pyrone
lactone and ZnONPs combinations against the MDR Enterobacterales isolated from human
urine samples. As mentioned in Table 3, the ΣFIC revealed synergism activity for 90%
of the examined isolates, while the latest 10% displayed indifference activity. Of note,
the MICs decreased 5–12 fold and 3–11 fold for 6-pentyl-α-pyrone lactone and ZnONPs,
respectively against the examined isolates after their combination. MIC 50 and MIC 90 of
6-pentyl-α-pyrone lactone, ZnONPs and their combination against analyzed isolates are
shown in Table 4.
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Table 3. MIC results of 6-pentyl-α-pyrone fungal metabolite, zinc oxide nanoparticles, and their combinations against MDR Enterobacterales isolates.

Isolate No. Antimicrobial Resistant Pattern
Bacterial
Species

MIC (µg/mL)
Interactive CategoryFungal

Extract ZnONPs Fungal Extract/ZnONPs ΣFIC

1 SAM, TPZ, AK, CN, IPM, DO, CIP, LEV, SXT, CXM, FEP, CTX, E E. coli 32 32 1⁄2 0.0937 Synergism

2 AMC, SAM, TPZ, AK, CN, IPM, MEM, DO, CIP, LEV, SXT, CXM, FEP, CTX, E E. coli 32 0.015 0.0075/0.015 0.5004 Synergism

3 AMC, SAM, TPZ, AK, CN, IPM, MEM, DO, CIP, LEV, SXT, F, CXM, FEP, CTX, E Klebsiella 16 0.015 0.0075/0.015 0.5009 Synergism

4 AMC, SAM, TPZ, CN, DO, CIP, LEV, SXT, F, CXM, FEP, CTX, E Klebsiella 32 0.062 0.0075/0.015 0.1214 Synergism

5 AMC, SAM, CN, IPM, DO, CIP, LEV, SXT, CXM, FEP, CTX, E Klebsiella 32 1 0.0075/0.015 0.0079 Synergism

6 AMC, SAM, TPZ, AK, CN, IPM, MEM, DO, CIP, LEV, SXT, F, CXM, FEP, CTX, E Klebsiella 16 8 0.031/0.062 0.0077 Synergism

7 AMC, SAM, TPZ, AK, CN, IPM, MEM, DO, CIP, LEV, SXT, F, CXM, FEP, CTX, E Klebsiella 32 1 0.0075/0.015 0.0079 Synergism

8 AMC, SAM, TPZ, AK, CN, IPM, MEM, CIP, LEV, SXT, F, CXM, FEP, CTX, E E. coli 32 16 0.0075/0.015 0.00093 Synergism

9 AMC, SAM, TPZ, AK, CN, IPM, MEM, DO, CIP, LEV, SXT, F, CXM, FEP, CTX, E E. coli 32 0.015 0.015/0.031 1.0009 Indifference

10 AMC, SAM, TPZ, AK, CN, IPM, DO, CIP, LEV, SXT, CXM, FEP, CTX, E Klebsiella 16 32 0.0075/0.015 0.0032 Synergism

Means ± SE 27.2 ± 2.44 9.01 ± 4.16 * 0.109 ± 0.09/0.219 ± 0.197 *,‡

MIC, minimum inhibitory concentration; ZnONPs, zinc oxide nanoparticles; ΣFIC, fractional inhibitory concentrations index. The antimicrobial agents are considered to have synergistic
activity if the ΣFIC value is less than or equal 0.5. The effect is considered to be additive, if the ΣFIC value is more than 0.5 but less than or equal to 1.0 (ΣFIC > 0.5 but ≤1). The effects
are considered indifferent when the value lies between 1.0 and 4.0. The agents are considered to possess antagonistic activity if the value of ΣFIC is ≥4.0: SE; standard error; * differ
significantly with fungal extract (p < 0.05): ‡ differ significantly with ZnONPs (p < 0.05).
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Table 4. MIC 50 and MIC 90 of the fungal metabolite, zinc oxide nanoparticles and their combination.

MIC
Antibacterial Agents (µg/mL)

Fungal Metabolite ZnONPs Combinations of ZnONPs and Fungal Metabolite

MIC range 16–64 0.015–32 0.0075/0.015-1⁄2
MIC 50 a 32 1 0.0075/0.015
MIC 90 b 16 0.015 0.0075/0.015

MIC, minimum inhibitory concentration; a MIC 50, the MIC at which 50% of the bacterial cells are inhibited;
b MIC 90, the MIC at which 90% of the bacterial cells are inhibited; ZnONPs, zinc oxide nanoparticles.

4. Discussion

Multidrug resistance in UTI patients is considered a common healthcare problem [28].
Such resistance in cases of Enterobacterales infection may increase the mortality rate due to
limited medication, which developed into a long residence in hospitals leading to financial
load [29,30].

In this study, 57.27% of Enterobacterales isolates were isolated from UTI in patients,
with a higher percentage in females (74.29%) than in males (27.50%), which was consistent
with that recorded previously [31], and contrary to that reported by Elshamy et al. [32], who
revealed 43.4% Enterobacterales isolates in females and 56.6% in males. This variation may
be attributed to the UTI risk factors or geographical distribution. In addition, the young
adults showed the most infection cases here, that was in conformity with the previously
reported results in Upper Egypt [33], which may relate to the UTI incidence in this age or
age variations. In the current study, E. coli represents the most prevalent pathogen (66.67%),
followed by Klebsiella species (28.57%) as reported previously in Egypt (38.69 and 21.35%,
respectively) [34], and in Turkey (71.7 and 10.7%, respectively) [35].

The development of bacterial resistance to various antimicrobials has become a grave
threat, as there are fewer effective antimicrobial agents helpful for treating these organ-
isms. Herein, the antimicrobial susceptibility testing revealed that cefotaxime showed the
highest resistance rate against Enterobacterales (100%), followed by cefepime, cefuroxime,
erythromycin, ciprofloxacin and piperacillin/tazobactam (≥80% of isolates), which is in
conformity with recently published researches [36,37]. High sensitivity level was observed
for meropenem, nitrofurantoin, and imipenem, which was similar to those reported earlier
in Egypt [36,38] and Ethiopia [39]. Also, MAR indices were more than 0.4 in this study for
all resistant isolates, which agreed with what was mentioned previously in Egypt [40–42]
and in Iraq [43] from different clinical samples where urine was included. Integrons are
considered a fundamental cause of multiple antimicrobial resistance gene cassettes trans-
mission in Gram-negative bacteria causing MDR phenotype [44]. In the current study,
integron genes located on plasmids were presented in 50% of examined isolates, which
potentially reflect the transmission of resistance genes among isolates. Abdel-Rhman and
coauthors [45] documented nearly similar results (44%) in Mansoura, Egypt. Of interest,
class 2 integron was more frequent than class 1, which is contrary to a recent study [46]
in which the class 1 and class 2 percentages were 50% and 2.4%, respectively. Another
study [47] in Nigeria showed that only class 1 integron was detected.

Six-pentyl-α-pyrone lactone is a fungal metabolite purified from Trichoderma species,
which has an antimicrobial effect. In our study, 6-pentyl-α-pyrone lactone exhibited lower
antibacterial activity in both agar well diffusion and broth microdilution assay against
Enterobacterales isolates. The same results were previously reported in Egypt [8] against
a standard E. coli strain (ATCC 11229) and a klebsiella isolate sourced from urine samples.
ZnONPs have emerged a promising prospective in biomedicine, particularly in anticancer
and antibacterial fields. Previous studies proved that ZnONPs have become one of the
most prevalent metal oxide nanoparticles in biological applications due to their brilliant
biocompatibility economic, and low toxicity [48]. Herein, ZnONPs provided a strong
antimicrobial effect against tested isolates of Enterobacterales (E. coli and Klebsiella). Similar
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results were documented previously in Egypt [7] against E. coli and Klebsiella strains isolated
from UTI patients.

In this study, six-pentyl-α-pyrone lactone and ZnONPs combination success to develop
a greater activity (synergism) than each one alone in 90% of tested isolates. The small size
of ZnONPs may help the combined 6-pentyl-α-pyrone lactone to enter the bacterial cell
and express its antimicrobial effect. In addition to the action of ZnONPs against bacterial
strains, their combination with the fungal metabolite could decrease the MICs to 11–12 fold,
suggesting a new promising candidate for treating MDR bacteria incriminated in UTI.

5. Conclusions

Multidrug resistance among Enterobacterales species causing UTI is a severe problem
that is developed in our country and needs more attention. Six-pentyl-α-pyrone lactone and
its synergistic effect with ZnONPs against MDR Enterobacterales species may be promising
agents to overcome increasing resistance as a first report. The knowledge gained from this
study is the in vitro preliminary validation of the fungal metabolite and nanoparticles for
the mitigation of bacterial resistance. However, no method supports the clinical use of
these compounds in UTI without in vivo studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics11040440/s1. Table S1: Oligonucleotide primer sequences
used in this study.
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