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A B S T R A C T   

A photoacoustic (PA) graphic equalization (PAGE) algorithm was developed to characterize the relative size of 
optical absorbing aggregates. This technique divides the PA signal into frequency bands related to different-sized 
optical absorbers. Simulations of a material containing optical absorbing microparticles of varying size were used 
to assess PAGE performance. Experiments were performed on phantom materials containing microspheres of 
varying size and concentration. Additional experiments were performed using tubes with fresh clotting blood. PA 
data was obtained using a Vevo LAZR-X system (FUJIFILM VisualSonics Inc). PAGE imaging of phantoms with 
varying-sized optical absorbers found a 1.5-fold difference in mean image intensity (p < 0.001). Conversely, PA 
images from these same materials exhibited no intensity changes (p = 0.68). PAGE imaging results from clotting 
blood exhibited differences for clot sizes in the range 0.30–0.64 mm (p < 0.001). In summary, PAGE imaging can 
distinguish optical absorbing aggregates of varying size.   

1. Introduction 

Photoacoustic (PA) imaging combines both optical and ultrasound 
modalities to obtain images detailing optical absorption [1]. In practice, 
the target tissue or material to be imaged is optically excited, which 
leads to a transient temperature rise, thermoelastic expansion of the 
optical absorbers, and then emission of ultrasound pressure waves. The 
emitted pressure waves are detected using standard ultrasound trans-
ducers and images are generated using reconstruction algorithm to 
represent a spatial map of tissue absorption. The main endogenous op-
tical absorbers in tissue include lipids, water, and chromophores like 
hemoglobin and melanin, versus exogenously delivered contrast agents. 
Given the unique optical absorption properties of deoxygenated and 
oxygenated hemoglobin in the near infrared wavelength range, hemo-
globin is a popular target of PA imaging to visualize blood vessels [2]. 
PA imaging has achieved considerable progress in both the preclinical 
and clinical settings because it provides both high contrast and high 
spatial resolution in tissues [3,4]. 

PA images are reconstructed using the envelope of recorded PA 
signals from underlying tissue. This procedure is very similar to 
brightness-modulated (B-mode) ultrasound imaging, except intensity in 
PA imaging is governed by optical absorption in comparison to ultra-
sound images that are based on local variations in acoustic impedance 

[5]. However, a nonlinear relationship between the time-dependent PA 
signal and optical absorption leads to inaccurate tissue characterization 
when using PA images [6]. Therefore, considerable research has focused 
on finding encoded features in the local PA data that could reveal 
additional information about tissue function and pathology that cannot 
be seen in the more conventional PA images. To that end, spectral pa-
rameters like spectral slope, mid-band fit, and y-intercept, can be 
extracted from the calibrated power spectrum of the time-dependent PA 
signal and used for quantitative tissue characterization. This 
frequency-domain analysis is adapted from ultrasound imaging methods 
used for tissue characterization [7]. Therefore, it is reasonable to assume 
that spectral parameters from the PA signal will allow similar in-
terpretations as those extracted from ultrasound data. 

Several in vivo preclinical studies using cancer-bearing animals have 
demonstrated that spectral parameter estimations from normal tissue 
and malignant tumors were significantly different [8,9]. More specif-
ically, a frequency analysis of PA signals from capillaries revealed a 
quantitative relationship between blood vessel diameter and spectral 
slope [10]. Given PA spectral parameters are related to the chromophore 
microstructure, they can be used to estimate the size and shape of the 
optical absorbers [11]. PA signal-derived spectral parameters were then 
shown helpful for the detection of tumor changes after administration of 
a vascular-disrupting agent [12,13]. In simulations, Rayleigh and 
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Nakagami distribution parameters from the power spectrum were found 
to differentiate normal and intratumoral vascular structures [14]. In 
another study, size and concentration of regularly-shaped PA absorbers 

were estimated quantitatively using a wavelet-domain analysis of PA 
signals [15]. Frequency-modulated (F-mode) imaging is another quan-
titative PA technique that was introduced to allow visualization of op-
tical absorbing structures of different scale [16]. This method uses 
selective spectral bands to detect small deviations in object size (or 
shape) and produce PA images with scale-specific contrast. In approach, 
these scale-specific images were generated by appropriately dividing the 
power spectrum of the PA signals and then utilizing spectral features 
from the subdivisions. It has been shown that F-mode PA imaging can be 
used for a range of purposes including visualization of organelles in 
cultured cells for selective display to single blood vessels in zebrafish 
larvae. 

In the ultrasound research community, H-scan (where the ‘H’ stands 

Fig. 1. Description of the numerical phantom with spatial measurement ge-
ometry in the x, y, and z planes relative to the origin. Three different-sized 
optical absorbers with diameters of 10, 40, and 100 µm, were evenly distrib-
uted at a depth of z = 40 µm. A rectangular ultrasound detector of size 
2 × 2 µm was created and moved using a spatial sampling period of 2 µm to 
scan the xy plane at fixed depth. 

Fig. 2. Schematic diagram detailing the sequence of photoacoustic (PA) signal processing steps for reconstruction of the PA graphic equalization (PAGE) image. 
Given PA data in radiofrequency (RF) format, ultrasound attenuation correction is applied before application of a Gaussian bandpass filter bank. Time-domain signal 
processing uses an ensemble of convolutional filter and the maximum convolution value at each pixel location is used to generate the PAGE image intensity. 

Fig. 3. Experimental setup detailing the ultrasound transducer, optical fiber 
bundle, and motor assembly for acquiring data in space. Also shown are digital 
images of representative phantom materials containing optical-absorbing mi-
crospheres of different diameter (10–45 or 106–125 µm). 
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for Hermite or hue) imaging has been introduced for high-resolution 
tissue characterization [17]. It is founded on the assumption that 
smaller scatterers produce higher frequency content in the back-
scattered ultrasound signals whereas larger scatterers generate the lower 
frequency signal components. Unique frequency information is extrac-
ted using a set of matched filters corresponding to specific sized ultra-
sound scatterers. Output from the matched filters is then weighted and 
used to colorize an image to provide local discrimination between 
various-sized ultrasound scatterers. Several recent reports have detailed 
the use of in vivo H-scan ultrasound imaging for purposes ranging from 
the early detection of liver steatosis [18–20] to monitoring cancer 
response to treatment [21–23]. We envision that the H-scan ultrasound 
format for tissue characterization can be extrapolated for a similar 
analysis of PA signals. 

In stereophonic sound systems, graphic equalization is a popular 
output control strategy that divides the audio signal into many different 
frequency bands that are centered at a specific frequency and gain 
adjusted to listener preference. Adapted from this technique and 

theoretical considerations, the research presented here details the use of 
a novel PA graphic equalization (PAGE) algorithm to depict the relative 
size of optical absorber aggregates. This PAGE algorithm is a modified 
H-scan ultrasound data processing approach for the analysis of PA sig-
nals. In short, it divides the recorded PA signal into a collection of 

Fig. 4. Images are from numerical simulation, (A) reconstructed PA image without filtering, and PA data processed with different matched filters with a center 
frequency (60% bandwidth) of (B) 150 (90) MHz, (C) 60 (36) MHz, or (D) 15 (9) MHz before PAGE image reconstruction. 

Fig. 5. Normalized signal intensity profile plots from different sized optical 
absorbers and simulated PAGE images processed using different bandpass filter 
center frequencies ranging from 5 to 175 MHz with frequency sampling period 
of 5 MHz. 

Fig. 6. PAGE images and their intensity plot from phantom materials 
embedded with varying sized optical absorbers (0.3% concentration) following 
image reconstruction using different filter counts. Absolute data difference 
(image contrast) was calculated from PAGE image intensities of phantom ma-
terials containing different sized optical-absorbing microspheres. 
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frequency bands using a filterbank, and outputs are used to colorize a 
display to allow tissue characterization functionality. In this paper, we 
expand the PAGE format and introduce a new signal processing and 
image reconstruction approach. Theoretical formulations are introduced 
and experimental validation was performed using a series of in vitro 
phantom material and ex vivo whole blood clot studies. 

2. Methods 

2.1. Theoretical formulation of the PAGE algorithm 

In response to a heat source, the pressure p(r, t) at position r and time 
t in an isotropic, acoustically homogeneous, and inviscid fluid medium 
obeys the following equation [24]: 
(

∇2 −
1
c2

∂2

∂t2

)

p(r, t) = −
β
cp

∂
∂t

H(r, t) (1) 

Fig. 7. Co-registered PA images (left) and PAGE images reconstructed with filter count 8 (right) obtained from phantom materials containing different sized 
spherical optical-absorbing microspheres (10–45 µm and 106–125 µm) and different concentrations (0.3% and 0.6%). The PAGE image colormap denotes relatively 
small to large optical absorber size and ranges from blue to red, respectively. 
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where c is the speed of sound, β is the isobaric volume expansion coef-
ficient, cp is the specific heat, and H(r, t) is the heating function defined 
as the thermal energy deposited by the energy source as a function of 
time and space. The spatiotemporal heating function can be further 
written as: 

H(r, t) = A(r)I(t) (2)  

where A(r) is the spatial absorption function and I(t) is the temporal 
illumination function of the optical source. The latter can be considered 
a short pulse like a Dirac delta function: 

I(t) = δ(t) (3) 

Substituting Eqs. (2) and (3) into Eq. (1) and then taking the Fourier 
transform on variable t = ct yields the following: 

(
∇2 + k2)P(r, k) = jkc2 β

cp
A(r) (4)  

where P(r, k) is the frequency spectrum of the thermoacoustic signal p(r,
t) and k the ultrasound wave number. Note that Eq. (4) represents an 
inhomogeneous Helmholtz wave equation. Assuming that p(r, t) is 
measured on a surface S0 that encloses some sample of interest, the 
spectrum P(r0, k) of the pressure p(r0, t) detected at the position r0 can be 
written as follows [24,25]: 

P(r0, k) = − jk
∫∫∫

V

d3rG̃k(r, r0)pi(r) (5)  

where pi(r) is initial photoacoustic pressure, pi(r) = A(r)c2β/cp and G̃k(r,
r0) is a Green’s function described as: 

G̃k(r, r0) =
1

4π|r − r0|
ejk|r− r0 | (6) 

In principle, a Dirichlet Green’s function G̃
D
k (r, r1) can be constructed 

that satisfies the boundary condition G̃
D
k (r, r1) = 0 for r1 on S and r inside 

S. According to Green’s theorem, the ultrasound pressure P(r, k) inside 
the surface S can be computed by the surface integral: 

P(r, k) =
∫

S

dSP(r0, k)
[
ns

0∇0G̃
(D)

k (r, r0)
]

(7)  

where ∇0 denotes the gradient over a variable r0 and ns
0 is the normal of 

surface S pointing to the source. For planar geometry, the Green’s 
function can be simplified and the reconstruction formula can be written 
as a universal backprojection formula [26,27]: 

P(b)
0 (r) =

1
π

∫

S

dS
∫∞

− ∞

dkP(r0, k)
[
ns

0∇0G̃
(in)
k (r, r0)

]
(8)  

where P(b)
0 (r) = P(b)

0 (r, t = 0). The ultrasound pressure field P(r0, k) can 
be simulated using a defined measurement geometry [6]. Photoacoustic 
signals from uniform spherical absorbers after Dirac delta function (δ) 
illumination is then calculated by: 

P(r0, k) = F [A0U(a − |R − ct| )(R − ct)/2R] (9)  

where F denotes Fourier transform function, A0 is the intensity, a is the 
radius of spherical absorbers, and R is the distance between the detector 
position and absorber center. The operator U is a step function and it is 
defined as: 

U(l) =
{

1, when l > 0
0, when l ≤ 0

}

(10) 

Frequency content of the pressure field will be distinct when optical 
absorbers of different size are present. Therefore, the ultrasound pres-
sure field can be multiplied by a properly constructed bandpass filter to 
isolate information related to different-sized optical absorbers. An 
arbitrary bandpass filter of Gaussian type is described by the following 
formula: 

W̃c(k) = e− [(k2 − k2
0)/kW]

2

(11)  

where k0 = 2πf0/c, f0 is the center frequency and W is the width of the 
filter passband. Calculating the inverse Fourier transform of Eq. (8) 
yields the following time-domain expression [27]: 

p(b)
0 (r) = −

2
Ω0

∇

∫

S0

ns
0dS0

[p(r0, t)
t

]

t=|r− r0 |
(12) 

Further, Eq. (12) can be rewritten in a clear backprojection form as 
follows: 

p(b)
0 (r) =

∫

Ω0

b(r0, t = |r − r0|)dΩ0/Ω0 (13)  

where b(r0,t) = 2p(r0,t) − 2t∂p(r0,t)/∂t is the backprojection term 
related to measurements at position r0 and 
dΩ0 = dS0

|r− r0 |
2 • [ns

0.(r − r0)/|r − r0|] is the solid angle for a detection 

element dS0 with respect to a reconstruction point. 

Fig. 8. Frequency spectra from phantom materials embedded with (A) different 
sized optical absorbers (fixed concentration of 0.3%) and (B) different con-
centrations of optical absorbers (fixed size of 106–125 µm). Note the change in 
peak frequency observed only in different sized optical absorbers. 
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2.2. Theory implementation 

Theoretical formulations were implemented in MATLAB R2020 
(MathWorks, Inc., Natick, MA) to produce spatial (2-dimensional, 2-D) 
images. A numerical phantom was created as shown in Fig. 1. Three 
different-sized optical absorbers with diameters of 10, 40, and 100 µm 
were positioned at spatial coordinates (− 80, 0, 40), (− 25, 0, 40), and 
(70, 0, 40) µm, respectively. Volume data was obtained by scanning the 
entire geometry. For illustration, we scan the xy plane by defining a 
rectangular shaped ultrasound detector of size 2 × 2 µm with a spatial 
sampling period of 2 µm at a depth of z = 40 µm. A finite detector of size 
2 × 2 µm was used in the study, which allowed simulation of optical 
absorber sizes as small as 4 µm. The center of the detector surface rep-
resents the detector position. The entire xy plane is divided into a 
151 × 151 grid to cover x and y axes of range -150 to 150 µm. For ease of 
computation, the detector surface was subdivided into 25 smaller ele-
ments. The total ultrasound pressure signal at the detector was then 
computed to obtain P(r0, k) using Eq. (9). Then an ensemble of Gaussian 
bandpass filters as described by Eq. (11) with different center fre-
quencies (60% bandwidth) were utilized to isolate specific frequency 
content. Finally, the inverse Fourier transform of the product W̃c(k) •
P(r0, k) was calculated and used in Eq. (13) to compute the reconstructed 
PA image. 

2.3. PA data acquisition 

Imaging was performed using a preclinical PA scanner (Vevo LAZR- 
X, FUJIFILM VisualSonics Inc, Toronto, Canada) equipped with a 
21 MHz center frequency linear array transducer (MX250D) with an 
effective bandwidth from 15 to 30 MHz. A pulsed optical parametric 

oscillator (OPO) laser was pumped by a doubled Nd:YAG source with 
pulse width and energy of 5 ns and 45 mJ, respectively. The laser was 
tuned to a wavelength of 680 nm and delivered by optical fiber bundles 
mounted on each side of the ultrasound transducer used for data 
acquisition of an illuminated sample. In-phase and quadrature (IQ) data 
was collected from different image planes by precise movement of the 
fixed transducer using a 3-dimensional (3-D) motorized system (Vevo 
Imaging Station, FUJIFILM VisualSonics Inc) along the elevational di-
rection (total of 30 frames equally spaced 3 µm apart). Saved IQ data 
was then upsampled to radiofrequency (RF) format prior to PA and 
PAGE image reconstruction. 

2.4. PAGE Image reconstruction 

All recorded PA data was corrected for one-way ultrasound signal 
attenuation using global scaling and assuming a nominal value of 
0.5 dB/cm/MHz. Attenuation compensated PA signals were convolved 
with a matched Gaussian filterbank that were equally spaced to span the 
entire transducer bandwidth (N distinct peak frequencies). This appli-
cation of parallel filtering yielded distinct convolutional values between 
the different Gaussian functions and PA data. At each pixel, the filter 
output yielding the maximum convolutional value was selected. Lower 
and higher frequency values were then assigned to a red (R) and blue (B) 
channel, respectively, yielding a colormap scheme with dynamic range 
of N levels. The final PAGE image intensity was calculated as a ratio of 
the R channel to the sum of the R and B channel data. To understand the 
influence on PAGE image reconstruction, we evaluated the use of 
different filter count 2N for N = 0, 1, …, 8, during the matched filtering 
process. The -6 dB bandwidth of these bandpass filters was set to 
7.5 MHz. A generalized schematic of the PAGE image reconstruction 

Fig. 9. Summary of mean PA and PAGE image intensities from phantom materials embedded with different (A, B) concentrations of optical absorbers or (C, D) sized 
optical absorbers. A * denotes a p-value < 0.05. 
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procedure is illustrated in Fig. 2. Traditional PA images were produced 
by computing the envelope of the attenuation corrected RF data via a 
Hilbert transformation and displayed the final image. The dynamic 
range of all images was set to 8-bit format. 

2.5. Experimental setup 

Homogeneous phantom materials were prepared by introducing agar 
and various-sized optical absorbers (fluorescent polyethylene micro-
spheres, CoSpheric LLC, Santa Barbara, CA) to 0.3 L of degassed water 

[28]. The solution was slowly stirred and heated to 65 ◦C before trans-
ferring to a rigid mold (radius × height = 4.3 × 1.8 cm). Phantoms were 
stored at 4 ◦C and allowed to cool overnight before use. A total of four 
different phantoms were created to study the impact of optical absorber 
size (diameters of 10–45 or 106–125 µm) and concentration (0.3 or 
0.6%) on in vitro PA and PAGE imaging. Next, translucent silicone 
elastomer tubes (Liveo, Thermo Fisher Scientific, Waltham, MA) with 
inner lumen diameters of 0.30, 0.51, or 0.64 mm were used for an ex vivo 
study. Picture of phantom materials along with an experimental setup is 
shown in Fig. 3. Tubes were carefully filled with freshly drawn blood 

Fig. 10. (A) Schematic illustration of formation of blood clot in translucent tubes. (B) PA and (C) PAGE images of blood clots formed in tubes with a lumen diameter 
of 0.30, 0.51, or 0.64 mm. Note the progressive changes in PAGE image intensity as vessel diameter and the blood clot size was increased. 
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from healthy rats scheduled for euthanasia and allowed to clot for 1 h. 
Note that blood clots were formed after being separated from liquid 
blood and size of each clot was less than the lumen diameter. PA and 
PAGE imaging of each blood sample was then performed by positioning 
the ultrasound transducer lengthwise along the tubes after submerging 
the area of interest at depth in a water bath. 

2.6. Statistical analysis 

Both PA and PAGE images were used for statistical analysis and in-
tensity was summarized as the mean ± standard deviation (SD). Re-
lationships between different samples was assessed using a Mann- 
Whitney U test. A p-value less than 0.05 was considered statistically 
significant. Analyses were performed using Prism 9.2 (GraphPad Soft-
ware Inc, San Diego, CA). 

3. Results 

Numerical simulations were performed by implementing theoretical 
formulations for a specified measurement geometry as described in 
Fig. 1. Traditional PA and PAGE images were reconstructed from an in 
silico material containing three spaced spherical optical absorbers of 

differing size. A series of reconstructed PA images without frequency 
filtering and also after PAGE processing with matched bandpass filter 
use are shown in Fig. 4. Simulated PAGE images were filtered at center 
frequencies of 150, 60, and 15 MHz to help localize the 10, 40, and 
100 µm-sized optical absorbers, respectively. This example highlights 
the relationship between optical absorber size and production of local 
frequency content in the PA signal. A summary of optical absorber lo-
calizations at different center frequencies ranging from 5 to 175 MHz 
with a sampling of 5 MHz is plotted in Fig. 5. Signal intensity from 
different size optical absorbers was calculated using corresponding 
absorber sized region of interest. It is noted that the signal intensity 
measurements from the smaller absorber (10 µm) region have a peak 
value at a higher center frequency and that from the larger absorber 
(100 µm) peaks at a much lower frequency, which is consistent with 
theoretical predictions. 

Homogeneous phantom materials were prepared to contain optical 
absorbers of varying size (i.e., 10–45 or 106–145 µm) and concentration 
(i.e., 0.3 or 0.6%). To assess the impact of filter count on PAGE image 
intensity, a series of image reconstructions were performed using 
matched filter banks with 2 to 256 equally spaced bandpass filters. 
Reconstructed PAGE images and corresponding intensity plots are pre-
sented in Fig. 6. It can be observed that PAGE image intensity decreases 
as the filter count increases and remains relatively constant after a filter 
count of 32. This is due to the increased filter count and corresponding 
changes in filter overlap (spectral correlation). Assuming absolute dif-
ferences between data acquired in phantoms embedded with the two 
dissimilar sized optical absorbers is a surrogate measure of PAGE image 
contrast, this contrast is maximized using a filter count of 8 and then 
gradually decreases from a maximum of 0.16 to 0.13 as the number of 
filters used during reconstruction is increased from 8 to 256. Hereafter, 
all PAGE images were reconstructed using 8 equally spaced Gaussian 
bandpass filters that encompassed the entire US transducer bandwidth 
(i.e., 15–30 MHz). 

Co-registered PA and PAGE images of homogeneous phantom ma-
terials prepared using various sized optical absorbers (i.e., 10–45 or 
106–145 µm) and concentrations (i.e., 0.3 or 0.6%) are presented in 
Fig. 7. While the PA images obtained from these phantom materials did 
not exhibit any qualitative differences, PAGE images from the phantom 
embedded with the larger optical absorbers displayed a notable redder 
hue. Specifically, mean PAGE image intensity from the phantoms with 
the smaller and larger optical absorbers were 0.30 ± 0.04 and 0.47 
± 0.05, respectively. Conversely, there was no observed change in either 
the PA or PAGE images when the concentration of the optical absorbers 
was varied. Normalized spectral plots of the corresponding PA data are 
shown in Fig. 8. Inspection of these plots reveal a change in the peak 
frequency for data from phantoms embedded with different sized optical 
absorbers. Conversely, no change was found in the PA data from 
phantoms embedded with different concentrations of the same sized 
optical absorbers. A summary of all in vitro PA and PAGE imaging results 
are plotted in Fig. 9. These quantitative measures reveal statistically 
significant difference in mean PAGE image intensity was found when 
imaging the phantom materials embedded with the two different sized 
optical absorbers (p < 0.001). No differences were found in the co- 
registered PA images (p = 0.68). For phantom materials containing 
different concentrations of equal sized optical absorbers, no differences 
were found in either the mean PAGE (p = 0.29) or PA (p = 0.76) image 
intensities. 

Fresh blood was transferred to translucent tubes with different lumen 
size and imaged after allowing clots to form for 1 h. Co-registered PA 
and PAGE images were reconstructed and overlaid on conventional 
grayscale ultrasound images for visual guidance, Fig. 10. Notice the 
image panel indicates a progressive hue shift from bluer to redder as the 
size of the blood clots increased. A summary of PA and PAGE image 
intensities are plotted in Fig. 11. These results reveal statistically sig-
nificant differences between the PAGE images of blood clots in the size 
range from 0.30 to 0.64 mm (p < 0.001). Contrarywise, no significant 

Fig. 11. Summary of mean PA (top) and PAGE (bottom) image intensity results 
from translucent tubes containing blood clots that were either 0.30, 0.51, or 
0.64 mm in size. A * denotes a p-value < 0.05. 
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differences were found in the analysis of the co-registered PA images 
(p > 0.08). 

4. Discussion 

This study introduced the PAGE algorithm for the analysis of recor-
ded PA signals to reveal encoded information about the local size of 
optical absorbing aggregates. Numerical simulations were implemented 
and experiments were performed using phantom materials and trans-
lucent tubes containing blood clots to study the PAGE approach. Both 
simulated and experimental data processed using different matched 
bandpass filters revealed the PAGE format can accurately depict the 
relative size of different optical absorbers. No notable change was 
observed in the PAGE images when different concentrations of the same- 
sized optical absorbers were used. These results were then validated by 
PAGE imaging of formed blood clots of varying size. 

The broadband nature of the PA signal is desirable for frequency 
analysis methods. However, presence of speckle makes it difficult to 
isolate scale specific structures of a particular frequency. In previous 
research, it was shown that PA speckle can develop from non-resolvable 
structures such as multiple absorbers and tissue microvascularity [29]. 
The appearance of speckle curtails the accuracy of frequency analysis 
methods that extract information from specified frequency bands like 
F-mode PA imaging. Quantitative methods, such as spectral slope and 
mid-band fit, are system independent approaches relying on the analysis 
of the recorded PA signals to quantify structural information in the 
presence of speckle. These methods require reference phantom mea-
surements (tissue equivalent calibration standard) that are used to 
remove the impact of imaging system settings during data acquisition. In 
comparison, the proposed PAGE algorithm does not require reference 
measurements. Limitations of the PAGE algorithm are it yields relative 
measures of optical absorber size and results are affected by attenuation 
compensation methods. In this study, we only considered and compen-
sated for ultrasound attenuation, as that has been shown to produce 
clear improvements in the magnitude and resolution of the recon-
structed PA images [30]. 

Results from the PAGE approach showed that PAGE images can 
differentiate optical absorbers of varying size. This is due to the band-
pass filtering of PA signals using filters with limited bandwidth. Further, 
simulation results revealed that very small optical absorbers (i.e., less 
than 10 µm like a red blood cell) can be isolated with high frequencies 
above 100 MHz, but this is not realistic prospect given basic ultrasound 
physics considerations and current linear array transducer technology. 
From phantom materials results, it was noted that the PAGE image in-
tensity changed with the filter count used during image reconstruction. 
Interestingly, filter count corresponds to the degree of spectral overlap 
between neighboring filters. For example, a filter count of 4 corresponds 
to a 50% overlap, 8–75%, 16–90%, 32–95%, and so on. Due to a high 
degree of spectral correlation using a higher number of filters, we did 
not observe any major change in the PAGE images that were processed 
using a matched filter count above 32. The spectral overlap between 
filters can also be changed by varying filter width. 

The PAGE algorithm can be used in clinical applications like for the 
detection of red blood cell aggregation, cancer treatment progression, 
identification of histological microfeatures, etc. Red blood cell aggre-
gation is a particularly important biomarker for a variety of blood dis-
orders and clinical conditions that include bacterial infections, diabetes, 
myocardial infarction, and sickle cell disease. Noteworthy, it was pre-
viously shown that PA signal-derived spectral parameters from red 
blood cell aggregates could be used to differentiate the clusters due to 
varying hematocrit levels [31,32]. Compared to data acquired from a 
blood clot formed in a vessel with a 0.30 mm inner lumen diameter, 
mean PAGE image intensity measurements were found to increase by 
21.6% and 29.7% when imaging the 0.51 and 0.64 mm vessels, 
respectively. Future work may explore the use of the PAGE approach for 
detecting physical changes in the tumor microvascular network 

(morphology) during both cancer growth and drug treatment [13,33]. A 
spectrogram of PA signals also reveals unique molecular and chemical 
components for specific tissue types along with corresponding histo-
logical microfeatures. This could contribute to the diagnosis and man-
agement of other diseases involving diffusive patterns such as found in 
fatty liver [34]. 

5. Conclusions 

The PAGE format was introduced as a new modality for soft tissue 
characterization that divides the PA signal into an ensemble of different 
frequency bands used for image reconstruction. PAGE imaging was 
investigated using numerical simulations, homogeneous phantom ma-
terials embedded with optically absorbing microspheres, and various 
sized blood clots formed inside translucent tubes. Overall, it was shown 
that PAGE imaging can distinguish smaller optically absorbing objects of 
varying sizes. Analysis of the ensemble filter count during PAGE image 
reconstruction demonstrated that intensity corresponds to spectral 
overlap (correlation) of the filter banks used. 
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