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SUMMARY

Droplet generation technology has become increasingly important in a wide range of applications,
including biotechnology and chemical synthesis. T-junction channels are commonly used for droplet gen-
eration due to their integration capability of a larger number of droplet generators in a compact space. In
this study, a finite element analysis (FEA) approach is employed to simulate droplet production and its
dynamic regimes in a T-junction configuration and collect data for post-processing analysis. Next, image
analysis was performed to calculate the droplet length and determine the droplet generation regime.
Furthermore, machine learning (ML) and deep learning (DL) algorithms were applied to estimate outputs
through examination of input parameters within the simulation range. At the end, a graphical user inter-
face (GUI) was developed for estimation of the droplet characteristics based on inputs, enabling the users
to preselect their designs with comparable microfluidic configurations within the studied range.

INTRODUCTION

Microfluidics has emerged as a promising tool for the manipulation and analysis of small volumes of fluids with microscale dimensions.1–6

Microfluidic droplet generation through bringing two or more liquid phases into contact inside microchannels has established a significant

research platform for numerous applications such as segmented fluids,7 biological assays,8 microchemical reactions,9–11 drug delivery,12 sin-

gle cell analysis,13 food engineering,14 extraction processes,15,16 on-chipmicrofluidic applications,17 oil recovery,18 and fuel cell technology.19

Although more complex geometries have been studied in recent years,20,21 simple geometry configurations like T-junctions and flow-

focusing droplet generator schemes are still fundamental,22 and are being commonly used to investigate droplet dynamic behaviors23–25

and droplet generation26 presenting applications in various fields in many cases.22

In droplet generators, shear and squeezing forces resulting from meeting continuous and dispersed phase streams lead to droplet for-

mation, where the size and production rate of droplets can be adjusted by their flow rates and the fluid properties of the liquids.27 The

production of water droplets in oil in a T-junction microchannel was earlier described by Thorsen et al.,28 and experimental research on

some factors influencing droplet formation (e.g., droplet size) in an oil-water system was initially conducted by Nisisako et al.29 Since then,

droplet production has been the subject of a huge number of research works.22 In that regard, many experimental investigations have

been conducted to study droplet generation in T-junction and flow-focusing microchannels. The flow-focusing microchannel has been

a prominent point of experimental investigation, with researchers exploring the effect of various parameters on droplet size control

and monodispersity.30–32 At the same time, the T-junction microchannel, characterized by its simplicity and ease of integrating several

components into a compact space, has been extensively explored in experimental studies. Researchers have investigated the influence

of channel geometry, flow rates, and fluid properties on droplet size and its formation.33–35 Studies have explored the effects of capillary

number, Reynolds number, and surfactant concentration in flow-focusing and T-junction microchannels, revealing some details of the

droplet generation process.26,36–38 These studies have contributed valuable insights into the fundamental dynamics of droplet formation

in flow-focusing and T-junction.

On the other hand, computer-based simulations offer a powerful tool for researchers and engineers to explore the complexities of droplet

formation, aiding in the optimization of microchannel designs and operational parameters for various applications. Advanced numerical

methods, including finite element methods, lattice Boltzmann simulations, and finite volume methods have been employed to model the

dynamic interplay of fluids in microchannels, offering a better understanding of droplet generation processes.38–42 Besides, two-phase

flow numerical simulations have the potential to provide better insight into the interactions between dispersed and continuous phases,

contributing to the prediction and optimization of droplet size distributions.24,43
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3Koç University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Türkiye
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As researchers explore droplet generation through simulations, the synergy between computational tools and experimental validation

becomes increasingly apparent. Conducting simulations prior to experimental work significantly improves the comprehension of microfluidic

processes, presenting a cost-effective approach for optimizing designs. This is especially pertinent in the context of biomedical applications,

where experimental studies can be financially demanding. The significance of fluids, like oil, serving as carriers for cells in droplet-based mi-

crofluidic devices designed for single-cell or microtissue analysis underscores the importance of gaining a general understanding of how the

properties of these fluids impact the overall process of droplet formation.44,45 Simulations allow for a thorough exploration of the system dy-

namics, aiding researchers in refiningmicrofluidic designs andminimizing the need for resource-intensive experimental iterations.46 In partic-

ular, integrating droplet microfluidics with machine learning (ML), deep learning (DL), and artificial intelligence (AI) tools can be a tremendous

practical strategy to build up an automated droplet-based microfluidics platform for processing huge quantities of data.5,47–51 It has been

effectively demonstrated that AI tools can automate the most complicated systems.48,52–54 Automation of the complete microfluidic system,

from flow control to droplet classification, is conceivable with proper training and the use of optimal ML models.55–57 In a study, a web-based

tool was introduced that harnessed ML techniques to anticipate the droplet diameter and flow rate for flow-focusing droplet generators.47

While the flow-focusing droplet generation properties have been estimated and simulated via ML tools,47,58,59 the prediction of droplet for-

mation using a combination of simulation and AI estimation for a T-junction microchannel has still remained unexplored in the literature. In

this study, we established a parametric design for T-junction microfluidic droplet generators, utilizing finite element method (FEM) simula-

tions via COMSOL Multiphysics software. This allowed for a comprehensive investigation of various fluid properties, fluidic conditions,

and fluid-wall interaction on both the resulting droplet length and the associated production regime. To validate the FEM, we conducted

a comparison between the simulation results and relevant experimental data available in the literature, apart from amesh dependency study.

Subsequently, a dataset was collected to train ML and DL algorithms, enabling the prediction of desired outputs. Finally, a graphical user

interface (GUI) was developed to estimate the outputs based on arbitrary and optimal estimation models.
RESULTS

Simulation

In this study, we have numerically investigated two-phase flows inside T-junction microchannels using COMSOL Multiphysics software. The

mathematicalmodel was constructed based on a 2D, laminar, two-phase flowwith the availablemodules in the software. The governing equa-

tions are mathematically described by the mass continuity (Equation 1) and momentum equations (Equation 2), as follows:

V:u = 0 (Equation 1)
rð4Þ½vu = vt + u:Vu� = � Vp +V:t + Fs (Equation 2)

where u and p are the velocity vector and pressure fields, respectively. To account for implementing two-phase model, the level set function

(4) was employed as a continuous step function.Within one fluid domain, 4 has a value of 0, while in the other fluid domain it is 1. The range of

the variable 4 was therefore limited to the interval 0%4% 1. Moreover, the interface between the two fluids in the two-phase flow was

defined by the value 4 = 0:5. The relationship between the deviatoric stress tensor (t) and the rate of deformation tensor (D) is as

t = 2mð4ÞD (Equation 3)

where

D = 0:5
h
ðVuÞ + ðVuÞT

i
(Equation 4)

The density (r) and dynamic viscosity (m) of the two-phase system are as

rð4Þ = rc + ðrd � rcÞ4 (Equation 5)
mð4Þ = mc + ðmd � mcÞ4 (Equation 6)

where the subscripts ’c’ and ’d’ denote the continuous and dispersed phases, respectively.

The interfacial force (Fs) between the two fluids is also determined by

Fs = skdð4Þn (Equation 7)

where s represents the interfacial tension (inmN=m), k refers to the curvature of the interface, dð4Þ represents the Dirac Delta function, and n

denotes the unit normal vector.

The microfluidic configuration for droplet generation simulations was a T-junction microchannel, as previously mentioned, with dimen-

sions in accordance with the previous experimental study,60 as depicted in Figure 1A. The demonstration of the geometry (Figure 1B) con-

sisted of two perpendicular microchannels with a width of 65 mm for the continuous phase (CP) microchannel and 51 mm for the dispersed

phase (DP) microchannel that made a junction at a distance of 200 mm from the CP microchannel. To validate our simulations, we compared

the simulation results with the experimental results of.60 A shallow channel approximation was used to enhance the 2D simulation results ac-

cording to the previous experimental depth of the microfluidic chip,60 which was 30 mm . The sunflower oil was considered as CP entering the
2 iScience 27, 109326, April 19, 2024



Figure 1. Microchannel design for T-junction droplet generation and mesh convergence analysis

(A) Previous experimental study60 on creating water droplets in sunflower oil medium (scale bar, 100 mm). The oil and water microchannels in the microfluidic

device were both flowing at a rate of 50 ml=h. The viscosity of oil and water were 53.5 mPa.s and 1 mPa.s, respectively. The contact angle between the oil

and the microchannels was p=8 rad, and that of water was 3p=5 rad. The interfacial tension between the oil and water was 23:5 mN=m.

(B) Dimensions of T-junction microchannels used in the experimental study60: lc = ld = 200 mm;wc = 65 mm and wd = 51 mm.

(C) Convergence plot illustrating the relationship between mesh refinement and the resulting droplet length in the T-junction microchannel model. The droplet

length of 159 mmwith themaximummesh size ofDmaxðmmÞ = 10 mmwas the closest calculated droplet length to themeasured droplet length in the experimental

study by60 which was 158 mm. See also Figure S1. Subfigure (A) was reproduced from60 with permission from AIP Publishing.
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main channel, chosen from thematerial library in COMSOL software.Water as DP was taken in from side channel. The two fluids entered from

inlets met at the junction, flowing downstream of the main channel, producing droplets. The outlet of the CP channel was open to the ambi-

ence, with the outlet pressure set at zero Pa.

Mesh independent study

The accuracy of numerical results is also dependent on the mesh properties employed for the discretization of the computational domain. A

mesh independence study was carried out to obtain an optimal mesh, balancing result accuracy and computational cost. To investigate the

effect of mesh size on the droplet length formed at the microchannel junction, a mesh independence analysis was performed, as depicted in

Figure 1C. The analysis encompassed maximummesh element sizes (Dmax) ranging from 25 to 8 mm. Table 1 presents the mesh convergence

analysis, illustrating the impact of varying triangular mesh sizes and the total number of mesh elements on the effective droplet formation for

the discussed FEM model. The results demonstrated that the stability of droplet behavior, including formation and length, was greatly

increasedwith a decrease inDmax down to 11 mm, and amesh element count exceeding 3200. Further refinement of themesh had a negligible

impact on the results forDmax < 10 mm, thus indicating that amesh size ofDmax = 10 mmwas sufficient to obtainmesh-independent simulation

results. This mesh size also correlated effectively with the experimental study by,60 yielding a simulated droplet length of 159 mm that closely

matched the measured droplet length of 158 mm in the mentioned reference. Therefore, the subsequent results presented herein are ob-

tained using a non-uniform triangular type with a mesh size of Dmax = 10 mm and 3564 mesh elements. Figure S1 compares the simulation

results when the optimal mesh size was selected and the experimental study,60 and a good agreement between the simulation and exper-

imental results is seen.

DISCUSSION

Estimation process

The main focus of the study is to establish a relationship between input parameters and two critical output variables: droplet length and

regime. The first step involved FEM simulations, wherein the interaction between oil and water was simulated, leading to the production

of phase-defined droplets. Four main input parameters were defined to describe the system: (I) Flow Rate Ratio (Qr ), (II) Capillary Number

(Ca), (III) Wettability of theCP (qc ) and (IV)Wettability of theDP (qd ). Through the LivelinkMATLAB transcript function, images of the generated
iScience 27, 109326, April 19, 2024 3



Table 1. Data from mesh independence study

DmaxðmmÞ Number of mesh elements Generated Droplet

13 2060

12 2619

11 3213

10 3564

9 4485

8 5591

Non-uniform two-dimensional triangular mesh was used for the T-junction microchannel geometry. The interface separating the two fluids in the two-phase flow

was characterized by a value of 4 = 0:5.
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droplets were captured and stored (Figure 2A). Subsequently, FEA and image processing were conducted to convert these images into a

binary format, enhancing the accuracy of measuring droplet length (Figure 2B). From the processed images, two essential outputs, i.e.,

the regime and the droplet length, were extracted (Figure 2C). A dataset was created to involve generated images for various input param-

eters, resulting in a large dataset comprising 8020 data points. Table 2 lists the values for the input parameters that were used for creating the

dataset. Each set of inputs resulted in two outputs, the corresponding regime associated to the droplets produced and the droplet length

(Figure 2D). With the dataset, ML and DL algorithms were developed to train a model to understand and estimate the dynamic relationship

between input parameters and the resulting outputs (Figure 2E). Classification models were utilized to train the droplet generation regime,

while regression models were employed to train numerical droplet length outputs. Furthermore, artificial neural networks (ANNs) were de-

signed and trained to investigate and compare the effectiveness of the trained estimation models. The trainedmodels were used to estimate

the key outputs for the droplet generation setup (Figure 2F). Moreover, all classification, regression, and ANNmethods were executed using

Python.
Regime estimation

It was observed that the variation of the four input parameters can lead to formation of four different droplet regimes, which are (1) Dripping,

(2) Squeezing, (3) Jetting, and (4) Co-flow (Figure 3A). The droplets produced in the ‘Squeezing’ regime aremore stable than those produced

in the other regimes. This superiority could be attributed to the generation of more uniform droplets in size. To determine the regime cor-

responding to each data point, an image analysis approach was applied to the dataset images produced by simulations. Subsequently, a

range of well-established classification and ANN models were employed for the purpose of training. The dataset was partitioned into two

segments to establish distinct data points for the training of models and their subsequent evaluations. The training set encompassed 80%

of the entire dataset, while the remaining 20% of the dataset served as a test set for the assessment of trained models.

Classification models are a type of ML model that is designed to categorize input data into one or more predefined classes or categories.

The classification models employed for training the dataset were logistic regression, k-nearest neighbor (KNN), support vector machine

(SVM), Kernel SVM, Naive Bayes, decision tree, and random forest. After applying each trained model to the test set, an R2 score was

computed for the evaluation ofmodel performance. The R2 score represents a statisticalmetric utilized to ascertain the proportion of variance
4 iScience 27, 109326, April 19, 2024



Figure 2. Dynamic process of the study based on the T-junction droplet simulations

(A) The COMSOL simulation resulted in a phase description of the final generated droplets, stemming from the settings initialized for interaction between oil and

water, which was then conducted using the Livelink MATLAB transcript function of the software to create and store images of phase-defined generated droplets

for various input parameters.

(B) Images resulting from FEAwere then subjected to an image analysis process in which a binary format of those images was used to enhance the performance of

measuring parameters visualized in the droplet formation.

(C) According to measured variables in binary images, two important output parameters were extracted that emphasize the goal of the current research: Regime

and Droplet Length.

(D) In each scenario of image creation, four main inputs resulted in two numerical outputs, which were then ordered in a table to create a dataset of 8020 data

points.

(E) The resulting dataset was then trained withML and DLmethods, including classification models to train the droplet generation regime and regressionmodels

with the purpose of training-droplet length.

(F) Finally, the trained models were used to estimate the main outputs for the proposed T-junction droplet generation setup.
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in an output that can be predicted or elucidated by input parameters. After conducting a thorough assessment of the performance metric R2

score, the Decision Tree classification model with an R2 score of 0.998, denoted as the MLR, was chosen for categorizing the dataset to es-

timate the regimes of droplet generationmodel (Table S1). Decision trees are versatileMLmodels, employing a hierarchical structure tomake

decisions based on input features.61,62 In a decision tree, decision nodes (points where the algorithm makes decisions or splits in the data

based on specific features) contain conditions that guide the data down different branches of the tree, and final leaf nodes then hold the

predicted output. At the end, the chosen model was implemented for the entire dataset to determine the droplet regimes.

Another potential approach to classify the droplet regime is through the application of ANNs. An ANN is a computational model inspired

by the structure and functioning of the human brain’s neural networks, featuring interconnected nodes organized into layers, including input,

hidden, and output layers.63 These nodes are connected by weighted connections, and the corresponding network learns by adjusting these

weights during a training process based on input data and desired output. The architecture that was used for regime classification consisted

of a total of 6 layers that were fully connected to each other, including 4 hidden layers with several neurons of 6, 18, 6, and 18 in each of them,

respectively. The input layer consisted of 18 neurons, while the output layer consisted of 4 neurons, representing themain four outputs for the
Table 2. Determined values of each input parameters

Inputs Values

Flow Rate Ratio (Qr ) 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10

Capillary Number (Ca) 1e-4, 1e-3, 1e-2, 2e-2, 5e-2, 8e-2, 0.1, 0.5, 1

Wettability of Continuous Phase (qc
�) 10, 20, 30, 40, 50, 60, 70, 80, 90

Wettability of Continuous Phase (qd
�) 10, 20, 30, 40, 50, 60, 70, 80, 90

iScience 27, 109326, April 19, 2024 5



Figure 3. Estimation of the droplet regime and length using trained DL models

(A) Demonstration of four different droplet formations and regimes achieved by their corresponding input parameters.

(B) The result of the DLR model in a 2D plot, where variations in Qr and Ca were illustrated while maintaining constant values for qc and qd to facilitate accurate

estimation of the regimes for the specified parameters. The marked datapoints (from26) represent four points within the categorized regimes, withQr = 0:5 and

Ca = 0:0003 for ‘Dripping’, Qr = 0:2 and Ca = 0:08 for ‘Squeezing’, Qr = 0:7 and Ca = 0:05 for ‘Jetting’ and Qr = 2 and Ca = 0:2 for ‘Co-flux’.

(C) The performance of the DLL model by comparing the predicted and calculated values in both the training (blue) and test (red) datapoints.

(D) A 2D plot generated by the DLL model, depicting varyingQr and Cawhile maintaining constant values of 30� and 90� for qc and qd , respectively. The marked

datapoint (from26) represents the point within the ‘Squeezing’ regime, with Qr = 0:2 and Ca = 0:08. See also Figures S2–S7 and Tables S1–S4.
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regimes. An exponential linear unit (ELU) activation function was used for the entire learning network, which applies non-linearity to the

network to learn complex patterns and relationships in data occurring during training when gradients become extremely small. Then, a Soft-

max activation functionwas used to convert vectors of real numbers into a probability distribution for the output layer, allowing the network to

model and predict multiple classes in a mutually exclusive scenario. The model was then optimized by minimizing the loss value and maxi-

mizing the accuracy of the training process, which was calculated as the ratio of correctly predicted instances to the total number of instances.

The loss value was calculated using Equation 8:

Loss = � 1

N

XN
i = 1

Xc

j = 1

yi;j log
�
pi;j

�
Equation 8

whereN is thenumberof examples in thebatch,C is thenumberof classes, yi;j is an indicator that is between0and1 according to thenot-being

or being in the correct class, and pi;j is the predicted probability of each input. Figure S2 shows the loss value convergence of the training and

validationprocesses according to the numberof epochs used in each step. Basedon theoptimizedaccuracy of themodelwith a valueof 0.986,

this architecture was used to group the dataset and estimate the regimes of droplet generation, denoted as the DLR model.

To evaluate the MLR and DLR models for regime identification in this study, twenty pairs of parameters set ofQr and Ca of different values

with contact angles fixed as 30� and 90� for qc and qd , respectively, were simulated using FEM. It is worth noting that the parameter set was

selected to ensure the absence of any data points not found in the original dataset, training set, or test set. These points were distinct from

those encountered by the estimator models during their training and evaluation processes (Figure S3). The simulation results were then

compared with the MLR and DLR predictor models (Table S2). The findings indicate that the DLR model outperformed the MLR model,

correctly estimating 80% of validation points compared to the MLR model’s 70%. To further evaluate the DLR architecture model for regime
6 iScience 27, 109326, April 19, 2024
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determination, four distinct values forQr andCa, corresponding to the delineated regimes, were adopted from a study by26 and employed as

input parameters for the estimation of droplet generation regimes. We have selected the following data points from26 translated to our

regime definitions as: Qr = 0:2 and Ca = 0:08 for Dripping, Qr = 0:5 and Ca = 0:0003 for Squeezing, Qr = 0:7 and Ca = 0:05 for Jetting,

and Qr = 2 and Ca = 0:2 for Co-flux. The corresponding contact angles were also assumed to be at qc = 30� and qd = 90�. Figure 3B illus-

trates the outcomes of the DLRmodel through a 2D plot, demonstrating accurate estimation of the regimes with our DLRmodel in agreement

with the results of.26 The resulted plot for the MLR model is additionally depicted in Figure S4, showing the accurate performance of the

mentioned four points from26 for regime estimation. Based on the overall evaluation of themodels used for regime estimation, theDLRmodel

architecture was selected for the classification of four distinct regimes in this study.

Droplet length estimation

To estimate the droplet length, the regression and ANNmodels were examined. Regressionmodels are a type of statistical model used inML

to predict a continuous target variable based on one or more input features. Before proceeding with the regression models, the predicted

regimes from the previous step were used as an indicator for droplet length calculation. The ‘Squeezing’ regime is characterized by easily

calculable droplet lengths, while the ‘Dripping,’ ‘Jetting,’ and ‘Co-flux’ regimes correspond to cases where either a non-uniform sequence

of droplets is produced, or no droplets exist. Therefore, it is not necessary to calculate and estimate the droplet length for the regimes other

than the squeezing regime. The ANN classification model, the DLR model, was employed to categorize the entire dataset into four regimes,

and the corresponding ‘Squeezing’ regime was only considered for the purpose of droplet length estimation.

The next step was the application of regression and ANNmodels to parameter sets for the ‘Squeezing’ category. The regression models

considered for the training tasks were linear, multiple linear, polynomial, support vector regression (SVR), decision tree, and random forest.

For each trained model applied to the test set, an R2 score was computed, assessing the performance of the regression model. After eval-

uation of the R2 scores, the polynomial regression model, denoted as the MLL, with an R2 score of 0.984, was chosen for the calculation and

estimation of droplet length within the dataset range (Table S3). The predictions obtained by the Polynomial regression model (MLL) yielded

highly pertinent results within the ‘Squeezing’ regime. Despite further efforts, extending the application of this model to estimate droplet

length in other regimes failed, as expected before, due to the lack of a uniform droplet sequence.

Like in the previous section, another method for computing the droplet length can be employing ANNs for regression purposes. The ar-

chitecture utilized for droplet length regression comprised a total of 8 fully connected layers, including 6 hidden layers with 32 neurons each.

The input layer featured 32 neurons, and the output layer had a single neuron representing the primary output for droplet length. A Rectified

Linear Unit (ReLU) activation function was applied across the entire network to introduce non-linearity. The model underwent optimization by

minimizing a customHuber loss function during the training process. In Figure S5, the convergence of loss values in the training and validation

processes is depicted based on the number of epochs utilized in each step. With an optimized R2 score of 0.985, this architecture was em-

ployed, denoted as the DLL model, for estimation of the droplet length within the ‘Squeezing’ regime. Figure 3C depicts the performance of

the DLL model through a comparison between the predicted and computed values within the training set and the test set, illustrating the

accuracy of the DLL model.

To validate theMLL andDLLmodels for droplet length estimation, thirty pairs of parameters set ofQr andCawith fixed contact angles of qc =

30� and qd = 90� were simulated using FEM (Figure S6). Similar to the regime identification case, the parameter set was chosen to guarantee the

exclusion of anydata points not present in the original dataset, training set, or test set. Thesepointsweredifferent from thoseencounteredby the

estimatormodelsduring their trainingandevaluationprocesses. Forbetter illustration, the simulation resultsderived fromtheplot inFigureS6are

tabulated in Table S4 and compared with the MLL and DLL models. The results revealed that the DLL model gave a better fit to the simulation

results compared with the MLL model, demonstrating predominantly errors below 10%. By contrast, the MLL model exhibits that over 37% of

the validation points have errors exceeding 10%. To further evaluate the DLLmodel, one set of input parameters selected in the previous section

from26 pertaining to the ‘Squeezing’ regimewas utilized to predict droplet length, asmarked in Figure 3D. This figure illustrates a 2Dplot gener-

atedby theDLLmodel, illustrating the variation ofQr andCa for constant contact angles of qc = 30� and qd = 90�. The color bar denotes droplet
length, with white areas indicating a regime other than the ’Squeezing’ regime. The plot in Figure S7A illustrates the MLL model performance,

showingagood agreement between the actual andpredicted values for both the training and test sets. FigureS7B similarly presents results com-

parable to those in Figure 3Dbut using theMLLmodel. Basedon the overall evaluation of themodels used for droplet length estimation, theDLL
model was the best model for droplet length prediction for the ‘Squeezing’ regime in this study.

Two-dimensional maps for input parameters

After the best models were achieved, the estimation of the regime and droplet length could be carried out using each set of the four input

parameters, provided they were defined within a valid range as specified in this study. Consequently, the validity of the estimation, with the

mentioned accuracy of the models, depended on input parameters that were not beyond the range established by the original dataset prep-

aration input values (Table 2). The final regime and droplet length were estimated by the models considering all four input parameters and

their correlations. In this context, correlations were understood as the statistical assessment of the degree and direction of linear relationships

between the primary input parameters and the output variable, elucidating the impact of these parameters on the overall outcome. To es-

timate an output, whether it is droplet length or regime, the four specified input parameters were utilized, rendering the nature of these di-

mensions as 4D. The inherent complexity of this 4D space poses challenges for visualizing relationships between the different parameters. To

gain insights into the interconnections of these input parameters, the concept of 2D maps was employed. In this approach, to visualize the
iScience 27, 109326, April 19, 2024 7
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collaboration of four parameter sets, two parameters are held constant while the rest are varied in a 2D plot. The color in the resulting 2D

space indicates the output of the model. Given the four input parameters, a minimumof six 2Dmaps is required to comprehensively illustrate

all relationships between them. For a better understanding of the effects of each input parameter on the final output, correlations of the main

input parameters on the output were calculated. According to the correlations of the input parameters on the regime estimation, the param-

eters that hadmore effect on the final decision of the droplet regime production wereQr andCa, with correlations of 0.481 and 0.323, respec-

tively, against almost zero correlations for qc and qd (Figure S8). Based on the calculated correlations, the 2D map that containsQr and Ca is

the best indicator for regime map representation in this study. Figure 4A shows a complete set of six 2D maps for a set of arbitrary input pa-

rameters (Qr = 0:5, Ca = 0:0003, qc = 30�, and qd = 80�) in the ‘Squeezing’ regime predicted by the DLR model, marked in the plots with

‘+’ sign. The resulting 2D maps illustrate the impact of varying one pair of inputs as a variable, while holding the other constant. As seen,

despite the DLR predicting the ’Squeezing’ regime, two of the 2D maps exhibit mispredictions. The underlying reason is that the overall

map of the four parameters constitutes a 4D spacemap inherently, and as a result, certain 2D plots, such as the ones here, may not accurately

represent the complete map but rather only a projected plot. Therefore, a 4D map would be the best representative for such a case, and as

discussed before, the Qr– Ca map can be regarded as the best illustration representing the regime map. The 2D maps resulted from other

arbitrary set of parameters corresponding to the other regimes are illustrated in Figures S9–S11, where the same explanations seem to be

relevant. The same approach was considered for finding correlations with droplet length for input parameters. Likewise, the results showed

that the parametersQr and Ca, with the associated correlations of 0.974 and �0.292, could be the best parameter pairs to illustrate droplet

length (Figure S12), supporting the representation of the Qr– Ca map as the best indicator for the droplet length map among others. For

droplet length estimation, Figure 4B shows a complete set of 2D maps for a set of input parameters in the ‘Squeezing’ regime for the values

given in Figure 4A. The 2Dmaps for the droplet length of three other points from the validation points specified in the regression verification

section (sec. 3.3) are illustrated in Figures S13–S15, showing the effect of changing each pair of input parameters on the estimated droplet

length. The estimated value for droplet length is represented by the color bar. Regions with no droplet length information in the maps indi-

cate areas where the combination of input parameter pairs is inferred to result in a ‘‘non-squeezing’’ regime, characterized by either the

absence of droplet generation in the system or the lack of a uniform sequence of droplets, as mentioned in section 3.3. As a consequence,

for each set of the four input parameters within the valid range determined by this study, a complete set of twelve 2Dmaps can be created to

depict the estimated regime and droplet length. These maps illustrate the estimated regime and droplet length, along with the variations in

outputs that can be estimated by adjusting each pair of input parameters.

Graphical user interface (GUI)

Leveraging the impact of four input parameters on two-phase flow characteristics for droplet generation, a GUI was created using theDLR and

DLL models for regime and droplet length estimation (Figure 5). This interface facilitates the prediction of new outcomes when adjustments

are made to these parameters. The created GUI encompasses two sets of 2D maps of input parameters for both droplet length and regime

estimation. The left side of theGUI application illustrates the schematic of themicrochannel geometry, and the right side provides instructions

for the developed GUI. This includes details regarding the valid parameter range, the geometrical parameters utilized in the study, and the

hydraulic diameter of the designed CP microchannel. Video S1 demonstrates the functionality of the developed GUI as operated by a user.

When the ‘‘Calculate’’ button is clicked, theGUI will generate six sets of 2Dmaps pertaining to the estimation of droplet length. Additionally, it

will provide the estimated regime and droplet length for the input values entered. The user can choose to switch between sets of 2D maps

related to regime by clicking ‘‘Regime 2D maps’’ or return to droplet length-related 2D maps by clicking ‘‘Length 2D maps.’’ Users can also

observe the impact of input parameters on the eventual regime or droplet length by adjusting the input parameters based on the generated

2D maps at each stage, enabling them to attain the desired output regime and droplet length.

In conclusion, droplet generation in the T-junction microchannel was simulated using COMSOL Multiphysics software, a finite element

analysis-based tool, whose results were encoded with input parameters. The LiveLink functionality was utilized for image analysis to identify

the droplet regimes and calculate droplet length for a particular regime. ML and DL algorithms were applied to the collected datasets ex-

tracted from the simulations to enable prediction of droplet regime and droplet length. A validation was also made by comparison of the

simulation against the experimental data for a case, from the literature, and a mesh independence test was examined as well. The estimation

process involved the creation of a dataset through simulations and image calculations. Excellent performance in regime estimation was

demonstrated by the chosen ANN classification model (DLR model), achieving an accuracy of 0.986. The DLL model as an ANN model for

regression purposes, with an R2 score of 0.985, was successful in estimating the droplet length for existing droplets. Comprehensive inves-

tigations weremade to include the generation of 2Dmaps illustrating the relationships between input parameters in determining outputs. All

attempts resulted in the development of a GUI to facilitate rapid estimation of simulation results based on the input parameters designed for

the T-junction droplet generator. The ongoing study advances comprehension and accelerates insights into the droplet generation process,

providing valuable AI estimation tools for designing and optimizing droplet-based microfluidic devices, which can be fine-tuned for specific

applications in industries, clinics, and experimental laboratories.

Limitations of the study

This study is particularly relevant for advanced experiments like single-cell analysis, where fluid properties significantly influence droplet for-

mation within the system. Further investigation into viscosity, interfacial tension, and wettability is necessary for specific applications involving

fluids other than oil and water studied in this context.
8 iScience 27, 109326, April 19, 2024



Figure 4. 2D maps’ representation of the estimation of the droplet regime and length for a single set of input parameters

Six sets of 2D maps form the DLR and the DLL results for (A) regime and (B) droplet length estimation for input parameters ofQr = 0:5, Ca = 0:0003, qc = 30�,
and qd = 80� selected from26 and marked with ‘+’ sign. See also Figures S8–S15.

ll
OPEN ACCESS

iScience
Article
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:
iScience 27, 109326, April 19, 2024 9



Figure 5. The graphical user interface (GUI) crafted for the estimation of droplet length and regime within the framework of the proposed T-junction

droplet generation model

The DLLmodule is utilized for the calculation of droplet length, and the DLRmodule used is for determining the regime. 2Dmaps illustrating each combination of

input parameters are shown in both modules.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

COMSOL Multiphysics COMSOL, Inc. 100 District Avenue Burlington, MA 01803, USA N/A

MATLAB Software MathWorks, 3 Apple Hill Drive, Natick, MA 01760, USA N/A

scikit-learn Python library N/A

TensorFlow Python framework N/A

Tkinter Python toolkit N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Savas Tasoglu

(stasoglu@ku.edu.tr).
Materials availability

This study did not use any new materials.
Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.
� This paper does not report the original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

T-junction droplet simulations were employed using COMSOL Multiphysics software, where initial settings governed oil-water interaction.

Utilizing Livelink MATLAB, phase-defined droplet images were generated and stored for various parameters. Subsequent FEA generated

images underwent binary image analysis to enhance parameter measurement during droplet formation. Key parameters extracted from bi-

nary images were Regime and Droplet Length, crucial for the research objectives. Each image scenario yielded two numerical outputs, result-

ing in a dataset comprising 8020 data points. Machine ML and DL techniques were then employed using scikit-learn library and TensorFlow

framework in Python to train models for droplet regime classification and droplet length regression. These trained models were applied to

estimate key outputs for the T-junction droplet generation setup. The GUI was developed using Tkinter toolkit in Python to estimate droplet

length and regime within the proposed T-junction droplet generation model.
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