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A B S T R A C T   

In recent years, ‘black box’ studies in forensic science have emerged as the preferred way to provide information about the overall validity of forensic disciplines in 
practice. These studies provide aggregated error rates over many examiners and comparisons, but errors are not equally likely on all comparisons. Furthermore, 
inconclusive responses are common and vary across examiners and comparisons, but do not fit neatly into the error rate framework. This work introduces Item 
Response Theory (IRT) and variants for the forensic setting to account for these two issues. In the IRT framework, participant proficiency and item difficulty are 
estimated directly from the responses, which accounts for the different subsets of items that participants often answer. By incorporating a decision-tree framework 
into the model, inconclusive responses are treated as a distinct cognitive process, which allows inter-examiner differences to be estimated directly. The IRT-based 
model achieves superior predictive performance over standard logistic regression techniques, produces item effects that are consistent with common sense and prior 
work, and demonstrates that most of the variability among fingerprint examiner decisions occurs at the latent print evaluation stage and as a result of differing 
tendencies to make inconclusive decisions.   

1. Introduction 

In pattern evidence disciplines, final source decisions are often left to 
individual forensic examiners, who may have different internal thresh
olds for making decisions due to their training, experience, or visual 
acuity [1–3]. ‘Black Box’ error rate studies have emerged as one 
approach for quantifying the overall performance of these disciplines 
[4], but the resulting error rates, aggregated over many participants and 
items, ignore the systematic variability present. Errors are not equally 
likely across comparisons or examiners and have been concentrated 
among a subset of participants in forensic black box studies in finger
prints [5], palm prints [6], bullets and cartridge cases [7], and hand
writing [8]. 

Furthermore, since the goal of these studies is to provide an estimate 
of casework error rates, it is important to include items that range from 
straightforward comparisons to very difficult comparisons that exam
iners may rarely encounter in casework. Since many items must be 
included to provide a fairly representative sample of casework tasks, 
participants are often given a random subset of items to analyze. For 
example, [5] included an item pool of 744 comparisons, which would be 
time and cost prohibitive for every participant to analyze. Instead, each 
participant was shown a subset of roughly 100 items. If different par
ticipants see different items, it is problematic to directly compare their 
individual error rates, since they may have seen items of varying 

difficulty. 
Item Response Theory (IRT), a class of statistical models used 

extensively in educational testing, is an alternative approach for 
analyzing such data [9,10]. In the IRT framework, participant profi
ciency and item difficulty are assumed to be latent,1 or unobserved, 
variables that govern the responses. Latent variables cannot be 
measured directly, but are inferred through observed variables using a 
mathematical model. For example, participant proficiency is a latent 
variable that is estimated using participant score on a given exam. Since 
both participant proficiency and item difficulty are estimated simulta
neously from the data, participants who answer easier questions incor
rectly are penalized more than participants who answer more difficult 
questions incorrectly. 

Recently, the treatment of ‘inconclusive’ decisions has received 
much attention in forensic science, since such responses do not fit neatly 
into the error rate framework but are common in research studies and in 
casework [1,11–14]. Individual variability in inconclusive decisions has 
been demonstrated repeatedly in pattern evidence disciplines: latent 
prints [5,6], handwriting [8], and firearms [7,15] provide a few exam
ples. IRT models are quite flexible and can be adapted for many different 
settings, including instances in which multiple internal decisions must 
be made. In this work, we use Item Response Trees [16,17] for the 
forensic science setting, which combine features of a decision tree with 
features from IRT, and provide robust individual propensities to make 

1 This usage differs from the usage of ‘latent’ in forensic science, or an impression that has been transferred to another surface. Both senses of the word are used in 
this paper, with the forensic concept including the word ‘print’ for clarity. 
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inconclusive and no value decisions, in addition to traditional profi
ciency estimates. 

IRT has recently shown promise in the fingerprint domain: [18] 
applied IRT models to annual proficiency test data and demonstrated the 
benefit of including harder items through simulation. [19] used an 
IRTree approach to develop an ‘answer key’ for inconclusive responses 
and measure variability in inconclusive tendencies, but did not distin
guish between correct conclusive responses and errors. [20] used a 
latent variable model and found variability in the strength of evidence 
for different pairs of prints across two different studies, but did not 
model behavior at the individual examiner level. [2] posited that vari
ability among examiners can be seen as the effect of implicit decision 
thresholds, which differ substantially across individuals, a phenomenon 
that has also been hypothesized in Ref. [1]. However, that approach 
used the observed frequencies of each decision to quantify these 
thresholds, which does not account for different participants responding 
to different subsets of questions. Furthermore, the frequency of incon
clusive decisions may also depend on the quality of the latent print 
image, which has been observed in prior work but has yet to be formally 
incorporated as a predictor into a statistical model for forensic 
decision-making. In this paper, we present an IRTree model as one 
possible solution for combining information from multiple studies into a 
single model that distinguishes inconclusive from conclusive responses, 
and correct from incorrect responses. Using results from multiple studies 
in the latent fingerprint domain [5,21,22], we quantify the internal 
tendencies to make no value, inconclusive, and correct decisions, while 
accounting for the quality of the latent print (as calculated by the 
LQMetric software [23]). We confirm the findings from prior research 
using this model, present improvements and additional insights that can 
be gained from the IRT-based approach, and discuss how these types of 
models could be implemented in forensic science in the future. 

In Section 2, we introduce the particular IRT and tree model that we 
apply to the [5] data in more detail. Section 3 presents the results from 
this analysis and provides comparisons to similar prior work Finally, 
Section 4 discusses implications of the results and future work in this 
area. 

2. Methods 

2.1. Item Response Theory 

In order to fully specify the model, we first introduce the Item 
Response Matrix as a data representation scheme for results from error 
rate studies. For a study with I participants and J items, we represent the 
responses as an I × J matrix, Y. If responses are scored as correct/ 
incorrect, a 1 represents a correct response, a 0 represents an incorrect 
response, and a missing entry means that the participant was not 
assigned that item. Below is an example of such a matrix: 

Y =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 − … 1
0 − 1 … 0
1 1 − … −

⋮ ⋮ ⋮ ⋱ ⋮
0 0 − … 1

⎤

⎥
⎥
⎥
⎥
⎦
.

To obtain the participant scores, we can sum each row. To obtain the 
item scores, we can sum each column. In general, we expect high pro
ficiency participants to have relatively high scores and high difficulty 
items to have relatively low item scores. In the IRT framework, instead 
of using the raw participant and item scores to assess proficiency and 
difficulty, we model the probability of a correct response for each entry 
in the matrix (e.g. Yij = 1). This approach assumes that participant 
proficiency is a latent variable, which is not directly observed but gov
erns the observed responses. Similarly, item difficulty is also a latent 
variable that is estimated from the responses. 

The Rasch Model [9,24] is a relatively simple, yet powerful, IRT 
model, and serves as the basis for the model presented in Section 2.2. 

The probability of a correct response is modeled as the logistic function 
of the difference between the participant proficiency, denoted θi(i = 1, 
…, I), and the item difficulty, denoted bj(j = 1, …, J): 

P(Yij = 1) =
1

1 + exp(− (θi − bj))
. (1) 

To identify the model, we use the convention of constraining the 
mean of the participant parameters (μθ) to be zero. This allows for an 
intuitive interpretation of both participant and item parameters relative 
to the “average participant”. If θi > 0, participant i is of “above average” 
proficiency and if θi < 0, participant i is of “below average” proficiency. 
If bj = 0, the model expects an average participant to make a correct 
decision 50% of the time. Similarly, if bj < 0 item j is an “easier” item and 
the average participant is more likely to answer item j correctly. If bj >

0 then item j is a more “difficult” item and the average participant is 
more likely to answer item j incorrectly. Other common conventions for 
identifying the model include setting a particular bj or the mean of the bjs 
to be zero. 

The item characteristic curve (ICC) describes the relationship be
tween proficiency and performance on a particular item (see Fig. 1 for 
examples). For item parameters estimated under a Rasch model, all ICCs 
are standard logistic curves with different locations on the latent diffi
culty/proficiency scale. 

In cases where participants answer different subsets of items, it is 
possible for high proficiency participants to have lower raw scores than 
lower proficiency participants. While somewhat non-intuitive, this 
phenomenon is actually a benefit of using the IRT-based approach: a 
participant who sees only very easy items and makes a couple of errors is 
penalized more than a participant who sees very difficult items and 
makes more errors. 

The two-parameter logistic model (often referred to as the 2 PL) and 
three-parameter logistic model (3 PL) are additional popular IRT models 
[25]. They are both similar to the Rasch model in that the probability of 
a correct response depends on participant proficiency and item diffi
culty, but additional item parameters are also included. IRT models for 
outcomes with more than two categories are known as polytomous 
response models. Polytomous response data arises often in surveys 
where responses are collected with a Likert scale (i.e. strongly agree to 
strongly disagree) or when certain responses can be scored as partial 
credit. We omit a full discussion of these models here, but further 
reading may be found in Refs. [10,26]. We do not use the 2 PL and 3 PL 
models in this paper, since the number of responses per item is insuffi
cient for estimating double (or triple) the number of item parameters. 
Although source decisions could be represented as a three-level ordinal 
scale (i.e. Exclusion < Inconclusive < Identification) we use an alter
native approach which allows inconclusive responses to be governed by 
separate latent variables. 

Fig. 1. Item Characteristic Curves (ICC) for 3 items of varying difficulty for the 
Rasch model. Examiners with higher proficiency (θ) have a higher probability 
of answering each question correctly than lower proficiency examiners. 
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2.2. Item Response Trees (IRTrees) 

Item Response Trees (IRTrees, [16]) use decision trees to describe 
hypothesized cognitive processes, where each node corresponds to a 
possible sub-decision and the leaves represent observed outcomes. The 
IRTree formulation can represent a wide variety of response formats and 
response processes, easily adapted for binary responses, 
one-dimensional scales, bipolar scales, and Likert responses [17]. 
IRTrees have been used in general applications such as differentiating 
types of intelligence [27], response styles in multiple-choice items [28], 
and modeling answer change behavior [29]. In the forensic science 
setting, IRTrees have shown to be useful for representing sequential 
decision-making processes when an answer key does not exist [19]. 

Item Response Trees can be estimated using frequentist or Bayesian 
implementations. For the [5] data, we chose a Bayesian implementation 
due to the large variability in number of responses per item at different 
nodes in the tree. A Bayesian approach also provides a natural hierar
chical structure for incorporating additional information about the 
participants and the items, as well as the uncertainty for all estimated 
parameters. 

Fig. 2 shows the IRTree model formulation for the [5] study. For each 
participant × item pair, the first sub-decision (denoted Y∗

1) is whether 
the latent print was deemed to be No Value or not. Since participants 
were asked to make this decision before seeing the reference print, we 
believe it represents a distinct cognitive process from the remainder of 
the comparison task. The second sub-decision (Y∗

2) is whether the 
comparison was deemed to be Inconclusive or not. This outcome occurred 
when participants found the latent print to be suitable for comparison, 
but the comparison did not result in an Identification2 or Exclusion de
cision. It is impossible to tell from the data alone whether inconclusive 
decisions arise from a different cognitive process than conclusive de
cisions, but separating inconclusive responses into a sub-decision allows 
for the quantification of individual participant and item tendencies to 
make an inconclusive decision. The study also recorded reasons for 
inconclusive decisions, which could provide further information, but we 
combine all responses into a single inconclusive response since the 
reasons given were often not repeated in follow-up study [21]. Finally, 
the third sub-decision (Y∗

3) represents whether the participant made a 
correct conclusive decision (making an identification on a same-source 
pair or an exclusion on a different-source pair) or an error (an exclu
sion on a same-source pair or an identification on a different-source 
pair). Since the no value and inconclusive decisions are modeled 
explicitly as distinct outcomes, we do not have to score them as correct 
or incorrect, avoiding the issues raised in, e.g., Refs. [11–14]. For the 
complete probabilities of observing a response in each category, see 
Appendix B. 

πkij = P(Ykij ∗ = 1) (2)  

log
(

πkij

1 − πkij

)

= θki − bkj (3)  

The participant and item tendencies estimated at node Y∗
3 (θ3i and b3j) 

are the same proficiency and difficulty estimates as introduced in 2.1. 
The participant tendency estimated at node Y∗

1, θ1i, is participant i’s 
tendency to make ‘no value’ decisions: participants with θ1i > 0 are more 
likely to make ‘no value’ decisions than average and participants with 
θ1i < 0 are less likely to make ‘no value’ decisions than average, after 
accounting for the items that each participant saw. At node Y∗

2, θ2i, is 
participant i’s tendency to rate items as inconclusive, conditional on a 
‘has value’ decision at node Y∗

1. Again, positive estimates indicate that 

participant i is more likely to be inconclusive, while negative estimates 
indicate that participant i is less likely to be inconclusive. On the item 
side, negative b1j’s indicate items that are more likely to be rated as ‘no 
value’ by the average examiner, and positive b1j’s indicate items that are 
more likely to be rated as ‘has value’ by the average examiner. Similarly, 
negative b2j’s indicate items that are more likely to be rated as incon
clusive by the average examiner, and positive b2j’s indicate items that 
are more likely to be rated as conclusive by the average examiner. 

The tree structure in 2 is one of many possible decision tree struc
tures. [19] provides a few other tree structures that (a) incorporate the 
reason for inconclusive decisions, and (b) do not distinguish between 
correct conclusive decisions and erroneous conclusive decisions. The 
tree structure presented here allows us to assess how No Value and 
Inconclusive tendencies are related to participant proficiency and item 
difficulty. It’s also important to note that the current model does not 
explicitly distinguish between false positive and false negative errors. 
Since only six false positive errors were observed in the study, separating 
those decisions into a separate branch of the tree would not lead to 
meaningful estimates. Instead, we incorporate ground truth of the item 
into an explanatory model for the item tendencies. 

In addition to the structure of the tree defined above, we can also 
incorporate additional explanatory information about the latent/refer
ence print pairs into the item estimates. For example, since false nega
tive errors are far more likely than false positive errors, we might expect 
the item tendencies at node Y∗

3 (b3i) to vary depending on whether the 
item is a same-source or different-source pair. We might also expect that 
item tendencies for no value (Y∗

1) and inconclusive (Y∗
2) decisions to be 

related to the image quality of the latent print. Equation (4) shows the 
linear model used to incorporate these two variables, where k indexes 
the node in the IRTree (k = 1, 2, 3) and j indexes the item (j = 1, …, J). 
An interaction term between Mated and LQM is included, which allows 
the relationship between item tendency and LQM to vary depending on 
whether the pair is same-source or not. Since an ε term is included for 
each item estimate, we also allow for the possibility that other factors 
impact the item tendencies that are not captured by the two included 
variables. Items with especially large ε values might indicate latent/ 
reference print pairs that should be further investigated. 

bkj = βk0 + βk1 × Matedj + βk2 × LQMj + βk3 × Matedj × LQMj + εkj (4) 

Positive βk,m estimates increase the item tendency towards the right 
branch at each node of the IRTree. For example, if the same source items 
are indeed more likely to be incorrect at node Y∗

3, we would expect a 
positive β31 estimate. If high-LQM items are more likely to be rated as 
‘has value’, we would expect a positive β12 estimate. We might also 
expect examiners to require higher quality latent prints to make 
conclusive decisions on same-source prints compared to different-source 
prints. This would manifest as a positive β23 estimate. 

Because we implement a Bayesian approach to estimation, prior 
distributions must be assigned to all parameters in order to obtain 
posterior estimates. In general, we choose weakly informative prior 
distributions, which result in a more efficient sampling procedure 
without the need to make strong assumptions. For all prior distribution 
formulations and details on model fitting, see Appendix B. 

3. Results 

3.1. Overall prediction accuracy 

The first metric we use to evaluate the performance of the model is 
simple prediction accuracy: how often does the model predict the cor
rect outcome for each participant × item pair? Table 1 shows the 
misclassification rates for the IRTree model on no value decisions, 
identification decisions on mated pairs, exclusion decisions for non-mated 
pairs, and inconclusive decisions. As a reference point, the logistic 
regression models in Ref. [2] that incorporated both participant and 

2 In the [5] study, a same-source conclusion was recorded as an Individuali
zation, but we use Identification here to be consistent with current reporting 
recommendations [30]. 
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item rates are shown in the first column. The primary differences be
tween the logistic models and the IRTree model are (1) the logistic 
models use observed decision rates as predictors, while the IRTree 
model uses latent variables, and (2) the logistic models for IDs and Ex
clusions are fit using subsets of the data, while the IRTree is fit to the full 
data but conditions on prior decisions. For example, the logistic 
regression model for No Value decisions from Ref. [2] uses the same 
outcome and data as node Y1 from the IRTree model, the only difference 
is that the predictors are empirical rates instead of latent variables. The 
other two logistic regression models used for comparison (labeled ‘ID’ 
and ‘Exclusion’ in 1) each take a subset of the data (ground truth 
matches and non-matches, respectively), while the IRTree model pre
dicts correct responses conditional on a conclusive decision. 

In all categories for which a comparison is available, the IRTree 
model achieves an improvement over the separate logistic models, 
ranging from 3.5 to 10%. For example, the logistic models using 
empirical outcome rates as predictors have a 15% misclassification rate 
on exclusion decisions among all non-mated pairs, while the IRTree 

model achieves only a 4% misclassification rate. Since the logistic 
models used the observed rates for each decision, this improvement 
demonstrates the benefits of (1) a latent variable approach, which ac
counts for the different item sets shown to each participant, and (2) 
employing a single model to more efficiently share information, rather 
than different models for each possible outcome. 

3.2. Posterior predictive check 

When fitting Bayesian models, posterior predictive checks should be 
done in order to ensure that the resulting estimates are consistent with 
the observed data [31,32]. In our case, a primary quantity of interest is 
the response distribution for each examiner. Fig. 3 shows 95% posterior 
prediction intervals for the number of responses in each category for 
each participant across the entire study compared to the actual number 
of responses that were observed, over 1000 MCMC samples. The diag
onal line represents a perfect prediction. 169 (100%) of the intervals for 
No Value and Inconclusive responses contain the observed frequency, 
168 (99.4%) of the intervals for Correct contain the observed frequency, 
and 127 (75.1%) of the intervals for Errors contain the observed fre
quency. Since most posterior intervals overlap with the diagonal line in 
all four panels, the model is generally able to predict the overall fre
quencies for each participant and is consistent with the observed data, 
lending credibility to the fit of the model. However, we should note that 
the model performance for Errors is noticeably weaker than for the other 
outcomes, suggesting that errors may not be fully explained by examiner 
proficiency and item difficulty. 

3.3. Out-of-sample retest performance 

The [21] study, which asked participants to re-examine a subset of 
comparisons that they had already completed, provides a unique 

Fig. 2. Example IRTree model tree structure for the [5] data (left) and probability formulations for each node k. For alternative model structures, see Ref. [19].  

Table 1 
Misclassification rates for the original error rate study using the logistic models 
from Ref. [2]; which use empirical outcome rates for each examiner (E%) and 
item (L%) as predictors, and the IRTree model presented in Fig. 2. The IRTree 
model achieves an improvement over the logistic models for each outcome, 
demonstrating the predictive benefits of a latent variable approach.  

Outcome Logistic Models IRTree Model 

P(Outcome |E%, L%) P(Outcome |θ, b) 

No Value 14% 10.6% 
Identification (Mated) 18% 8.3% 
Exclusion (Non-mated) 15% 4% 
Inconclusive – 20.1%  

Fig. 3. Posterior predictions for the number of ‘no value’, ‘inconclusive’, ‘correct’ and ‘error’ responses for each participant based on the IRTree model in 2. The 
diagonal line represents a perfect prediction. Since most intervals intersect the diagonal line, model performance is strong at the participant level. 
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opportunity for model validation. Using the model estimated from the 
original study, we can see whether it is able to predict new observations 
for the same examiner × item pair on the retest. This is an example of 
evaluating the ‘out-of-sample’ predictive performance: the retest data 
was not used to estimate the model and therefore provides a more 
realistic setting for evaluating how well the model will predict new 
observations. If the model is not able to predict responses on the retest, it 
may suggest overfitting to the original data. 

Table 2 shows the overall accuracy of the IRTree model and the lo
gistic models on the out-of-sample retest data, illustrating the robustness 
of the IRTree model compared to the logistic models. Both models 
clearly perform worse on the retest data than they do on the original 
data, but that is to be somewhat expected since only 73.5% of decisions 
(No Value, Inconclusive, Correct, or Error) were repeated by partici
pants. The IRTree model substantially outperforms the logistic models 
based on observed decision rates, particularly on how often it correctly 
predicts ID decisions on mated pairs. Because the logistic models are 
based on the empirical decision rates of each examiner, they are more 
sensitive to differing item sets than the IRTree model. In the original 
study, participants were assigned item subsets consisting of 50–75% 
same-source pairs. On the retest, some examiners were assigned only 
same-source pairs, and the logistic model will substantially under- 
predict how many IDs are made on the retest. Since the predictors in 
the logistic models are based on observed decision rates, it is harder to 
separate examiner tendencies from item tendencies. The latent variable 
based approach of the IRTree model is more robust to differing base 
rates and small changes in internal decision-making across time, making 
it more useful for predicting decisions on new data. 

Fig. 4 shows the out-of-sample posterior prediction intervals for the 
retest data for each examiner on each category of responses, with the 
diagonal reference line representing perfect prediction. In general, the 
posterior predictions are worse than for the original data, but since most 
intervals overlap with the reference line, the model is performing 
reasonably well. 82 (75.9%) of the No Value intervals contain the 
observed frequency; 91 (84.2%) of the Inconclusive intervals contain the 
observed frequency; 93 (86.1%) of the intervals for Correct contain the 
observed frequency, and 94 (87%) of the intervals for Error contain the 
observed frequency. Of particular interest are the intervals that don’t 
overlap with the reference line: these represent participants that may 
have changed their decision-making thresholds between the initial study 
and the retest. 

3.4. Correlation between latent parameters 

For participants, we estimate a positive correlation between θ1 and θ2 
(σ̂1,2 = 0.36, [0.22, 0.495]). Therefore, participants who are more likely 
to make ‘no value’ decisions are also mildly more likely to make 
‘inconclusive’ decisions, and vice versa. A negative correlation between 
θ3 and both θ2 (σ̂2,3 = − 0.24, [− 0.40, − 0.05]) and θ1 (σ̂1,3 = − 0.25, 
[− 0.43, − 0.04]) was estimated, meaning that participants who are more 
likely to make correct conclusive decisions are slightly less likely to 
make inconclusive and no value decisions. Distributions of the θ point 
estimates, sample correlations, and a scatterplot matrix can be found in 
Appendix C. 

On the item side, we estimate the relationship between parameters to 

have the same direction but stronger magnitude. Items that are likely to 
be rated as ‘no value’ are more likely to be rated as inconclusive (σ̂1,2 =

0.71, [0.64, 0.77]) but tend to be less likely to be correct if a conclusive 
decision is reached (σ̂1,3 = − .74, [− 0.81, − 0.65]). Items that tend to be 
rated as inconclusive also tend to be less likely to be correct if a 
conclusive decision is reached (σ̂2,3 = − .81, [− 0.86, − 0.74]). 

The sample correlations, distributions of the b point estimates, and a 
scatterplot matrix are shown in Fig. 5. There are a few notable trends. 
First, when separating items by ground truth, the sample correlations of 
the point estimates become even more pronounced. Second, since the 
false positive rate was so low, we would expect the same-source items to 
be more difficult than the different source items, and indeed we see that 
all positive b3 items are same-source items. Finally, we can see the 
relationship between LQ Metric and ground truth on the item estimates: 
there are more same-source items than different-source items, the same- 
source items have proportionally more low quality latent prints, and 
there are more same-source items with negative b1 and b2 estimates. 
These relationships are discussed more formally in Section 3.6. 

While these relationships should not be surprising, they do lend 
credibility to the parameter estimates. These results also provide some 
quantification of the relative predictive weight of participant versus 
item tendencies. The correlations between participant parameters are 
weaker in magnitude, suggesting that while there is some relationship 
between tendencies at different points in the tree, there is also a high 
amount of variability. On the other hand, the relationships on the item 
side are estimated to be relatively strong. 

3.5. Examiner differences 

Since we estimate an examiner tendency, θ, for each examiner at 
each node in the decision tree, we are able to quantify the impact of 
internal decision thresholds. Fig. 6 shows how the probability of making 
a decision (No Value, Inconclusive, or Correct) changes as θk increases. 
Each panel corresponds to a decision, and each line corresponds to a 
hypothetical item based on the percentiles of b estimates (10th, 25th, 
50th, 75th, and 90th) for that decision. For an item where θ1 = 0, we can 
see that the probability of making a no value decision ranges from near 
zero for the 90th, 75th, and 50th percentile of items, near 0.3 for the 
25th percentile of items, and near 1 for the 10th percentile of items. 

Note that each panel covers different x-axis ranges to ensure that the 
full range of possible θ values are shown. The ranges for θ1 and θ2 are 
larger than for θ3. Similarly, the b values also cover different ranges 
according to the decision that they correspond to, although we display 
only the percentile for simplicity. 

The difference between examiners is most noticeable when making 
No Value and Inconclusive decisions, since that is where we observe the 
greatest differences in probability for a given item. This means that an 
examiner at the lower end of the θ spectrum is likely to make a different 
decision than an examiner at the upper end of the θ spectrum for the 
same item. On the other hand, there is little variation in the third de
cision. For any given item, examiners are likely to agree regardless of 
where they lie on the θ spectrum. In practical terms, this means that 
examiners are largely likely to agree on identification/exclusion de
cisions, but much more likely to disagree for no value or inconclusive 
decisions. 

For all decisions, the differences between examiners are most pro
nounced when b is near zero. When b is near zero, an average examiner 
is equally likely to make either decision (e.g. ‘no value’ versus ‘has 
value’ or ‘inconclusive’ versus ‘conclusive’). As b gets further from zero, 
the differences between examiners becomes more negligible, meaning 
most examiners will agree on latent prints that are very clearly “no 
value” or “inconclusive”. 

Table 2 
Misclassification rates for decisions on the retest data using the logistic models 
from Ref. [2] and the IRTree model.   

Logistic Models IRTree Model 

P(Outcome |E%, L%) P(Outcome |θ, b) 

VID 35.7% 18.5% 
ID (Mated) 75.4% 14% 
Excl (Non-mated) 28.2% 6.4% 
Inconclusive – 27.8%  
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Fig. 4. Predictions for the number of ‘no value’, ‘inconclusive’, ‘correct’ and ‘error’ responses for each participant on a retest [21], using the posterior estimates from 
the original model. While performance is not as strong as the original study, most intervals overlap with the diagonal lines, suggesting reasonable out-of-sample 
performance by the IRTree model. 

Fig. 5. Scatterplots and sample correlations of b1, b2, and b3 point estimates; along with ground truth and LQ Metric for each item. Note that the correlations here are 
the sample correlations of the point estimates, and are larger in magnitude than the population estimates reported. 
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3.6. Effects of image quality and ground truth 

Since image quality (LQM values) and ground truth (mated or non- 
mated) were incorporated into the models as predictors for the item 
tendencies (as in Equation (4)), we can draw conclusions about how 
LQM and ground truth impact the probability of a No Value, Inconclu
sive, and Correct decision. The posterior estimates and 95% posterior 
intervals for each β coefficient at each branch in the IRTree are shown in 
Table 3. Most estimates are measurably different than zero, suggesting 
that both ground truth and LQM impact item tendencies at each node in 
the IRTree. However, an interaction term was included (βk3) which 
makes it difficult to draw conclusions based on the coefficients alone. 

To provide a more intuitive interpretation of the coefficients, we can 
examine the marginal effects plot. For all possible combinations of LQM 
and Ground Truth, we compute the predicted bk based on the linear 
model in Equation (4) and estimates from Table 3 (these predictions on 
the item tendency scale are shown in Appendix D). We then compute P 
(No Value), P(Inconclusive), and P(Correct) based on Equation (2), 
assuming a hypothetical average examiner (θk = 0). The uncertainty 
intervals for the predicted probabilities are based on the coefficient in
tervals from Table 3. Fig. 7 shows the marginal effect of each predictor 
(Ground Truth and Latent Quality) on the probability of making a No 
Value, Inconclusive, or Correct decision. The right-most panel (P(Cor
rect)) corresponds to the probability of making a correct conclusive 
decision at Node Y∗

3, given that neither a no value or inconclusive was 
reached. False positive errors are very rare, and so the probability of a 
correct decision for Non-Mates is high for all values of Latent Quality. 

The probability of a correct decision for Mated pairs is low for low values 
of Latent Quality, but rapidly increases as the quality of the print in
creases, reaching a predicted 75% chance of being correct for a latent 
print with a Latent Quality of 50. The uncertainty intervals are quite 
broad; suggesting there is additional variability in item difficulty that is 
not explained by ground truth and latent print quality. 

The middle panel (P(Inconclusive)) corresponds to the probability of 
making an inconclusive decision (if the latent print was deemed to be of 
value). As Latent Quality increases, the probability of observing an 
inconclusive decision decreases for both Mates and Non-Mates. We 
might expect fewer inconclusives on low-quality non-mated pairs 
compared to mated pairs, since the amount of information needed to 
make an exclusion is generally less than an identification (e.g., it is 
possible to exclude based on overall pattern instead of minutiae). Indeed 
it does appear that non-mated pairs are generally less likely to be 
inconclusive than mated pairs. However, the uncertainty intervals are 
broad enough that we cannot confirm a significant difference except for 
extremely low LQM values. We do observe a negative β2,1 (− 4.73 
[− 5.80,-3.71]), suggesting that mated pairs are generally more likely to 
be inconclusive than non-mated pairs. We also observe a positive β2,3 
(4.14 [2.22, 6.11]), suggesting that the relationship between LQ Metric 
and inconclusive tendency is different for mated versus non-mated pairs. 

The left-most panel shows the marginal effect of Latent Quality and 
Ground Truth on the probability of coming to a ‘No Value’ decision. 
Since this decision occurs before the participant sees the reference print, 
Ground Truth should not impact the decision. However, the coefficients 
at this node for both Ground Truth and LQ Metric are significantly 
different than zero, and the marginal effect plot displays a very low P(No 
Value) for all LQM values in non-mated pairs. This could be due to 
proportionally more mated pairs with very low LQM values (see Fig. 5). 
Additionally, as latent print quality increases, P(No Value) tends to 
decrease at a faster rate than P(Inconclusive). For example, a latent print 
in a mated pair with latent quality of 25 results in a P(No Value) of about 
12.5%, while the same latent print on average has over a 90% chance of 
being rated as inconclusive. This suggests that, on average, examiners 
may proceed with a comparison on low-quality prints for which an 
inconclusive decision is ultimately likely. 

It is important to note that the coefficients presented here are based 
on the average impact on item tendencies across all item pairs and 
examiner decisions, and should not be interpreted as a deterministic 
relationship. That is, taking a latent print from a non-mated pair with a 
certain LQM and instead pairing it with a reference print taken from the 
same source as the latent will not necessarily increase the probability of 

Fig. 6. Decision probabilities at each node of the IRTree for all values of θ and the 10th, 25th, 50th, 75th, and 90th percentile of items.  

Table 3 
Estimates and 95% posterior intervals for the coefficients in Equation (4).  

Node Coefficient Estimate Interval 

Y∗
1 β0 2.62 [1.23,4.04] 

Y∗
1 β1 − 5.89 [-7.49,-4.33] 

Y∗
1 β2 12.29 [9.27,15.46] 

Y∗
1 β3 9.47 [5.83,13.18] 

Y∗
2 β0 − 0.47 [-1.36,0.41] 

Y∗
2 β1 − 4.73 [-5.80,-3.71] 

Y∗
2 β2 6.55 [4.95,8.2] 

Y∗
2 β3 4.14 [2.22,6.11] 

Y∗
3 β0 − 7.13 [-9.35,-5.11] 

Y∗
3 β1 11.09 [8.84,13.54] 

Y∗
3 β2 − 5.35 [-9.59,-1.33] 

Y∗
3 β3 − 4.87 [-9.19,-0.53]  
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an inconclusive or decrease the probability of a correct response. These 
trends instead capture the average relationship between LQM and 
ground truth on item tendencies in this particular study. There was 
substantial variability in item tendencies even after accounting for these 
two predictors (see Appendix D). This variability could be due to addi
tional characteristics of the latent prints (e.g. whether or not a delta was 
observed or certain minutiae configurations), image quality aspects that 
are not captured in the LQM, or simply inherent randomness in finger
print comparisons. Since only LQ Metric and ground truth are available, 
we cannot know if there are other features that may explain the addi
tional variability. 

4. Discussion 

In this paper, an IRT-based analysis was performed on the FBI “Black 
Box” latent print study. This statistical approach combined information 
from multiple studies on error rates [5], repeatability [21], and latent 
print quality [22] into a single model. Many of the same conclusions are 
drawn as prior work (e.g. Refs. [2,19], but the framework presented here 
estimates participant tendencies that account for the different subsets of 
items that each participant was shown. The latent variable approach 
presented here results in quantities that are directly comparable to one 
another and more robust to variation in item sets than the usual 
percent-observed approach. 

[4] put forth forensic ‘black box’ studies as the gold standard to 
establish foundational validity for feature comparison methods, and 
black box studies have since been performed in a variety of forensic 
disciplines. However, such studies are difficult to design and expensive 
to run, since they require providing a large number of examiners with a 
substantial number of test items that are representative of those in 
casework. Furthermore, the results of these studies often emphasize only 
a few quantities (e.g., the overall false positive or false negative rate), 
which has been criticized for ignoring the variability present across 
examiners and items [33,34]. 

By incorporating analytical methods from psychometrics and 
educational testing, it is possible to extract much more information out 
of a black box study in addition to aggregated error rates. Using Item 
Response Theory, it is possible to obtain performance metrics specific to 
each comparison and participant in the study. Importantly, since these 
metrics are estimated with a latent variable approach, they account for 
different participants analyzing different subsets of comparisons. 

A tree-based analysis provides a fuller picture of the range of de
cisions that may be expected for a given examiner or item and is 
particularly useful for this type of data where clear “correct” and 
“incorrect” responses do not exist (for example, on low quality images 

for which a no value or inconclusive is likely). ‘Inconclusive’ or ‘No 
Value’ decisions are not equally likely on every latent print comparison, 
and the methods presented here provide a rigorous way to quantify 
those tendencies. We have also demonstrated how this method can be 
used to explicitly quantify different internal decision-making thresholds 
among examiners through their latent variable estimates for ‘Inconclu
sive’ and ‘No Value’ decisions. In traditional proficiency tests, where the 
ground truth is known and image quality is high, tree-based analyses 
may not be necessary if ‘no value’ and ‘inconclusive’ decisions are not 
expected. 

Tree-based approaches also provide a better sense of the variability 
across participants and comparisons. Combining decisions into a single 
model allows for more efficient borrowing of information and the 
explicit estimation of covariance among item and participant ten
dencies, demonstrating a clear relationship between ‘no value’, ‘incon
clusive’, and ‘correct’ decisions, particularly at the item level. 

In this paper, one decision tree structure is presented using a logistic 
probability model, fit within a Bayesian framework using one set of prior 
distributions. The model fit and posterior prediction checks in Section 3 
lend credibility to these choices; but alternative choices are also 
possible. For example, logistic functions represent a small subset of 
possible probability mapping functions, and there are a number of 
parametric and nonparametric alternatives. Other functions, tree 
structures, or prior distributions could perform as well or better and lead 
to different interpretations. 

These models require a large amount of data relative to most forensic 
datasets. The [5] study included 169 participants and an item bank of 
744 latent/reference fingerprint pairs. Each participant was assigned 
roughly 100 items, resulting in 20–25 observations per item. The 
IRT-based analysis presented here produced estimates that were 
distinguishable from one another, but the associated uncertainty may be 
too large for some settings. Additional observations per item would lead 
to more precise estimates but would require either a smaller number of 
items (which may introduce additional sampling error) or a larger 
number of participants (which may be time or cost prohibitive). 

Future work also includes exploring the possibility of implementing 
this method on training materials. In such a setting, personalized 
training and feedback could be provided, and no value and inconclusive 
decisions could be calibrated to be consistent with practicing latent print 
examiners. With a sufficiently large item bank, trainees could participate 
at multiple time points to demonstrate improved performance and more 
calibrated decisions. 

IRT-based approaches show significant promise for annual profi
ciency tests and future large-scale error rate studies across forensic 
disciplines. While we have applied this method to latent fingerprint 

Fig. 7. Marginal effects of item covariates (Latent Quality and Ground Truth) on sub-decision probabilities for a hypothetical average examiner (with 95% posterior 
prediction intervals). 
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analysis, it can be easily adapted for other feature comparison domains 
such as palmar prints, firearms, handwriting, or shoeprints. Measuring 
and understanding variability in forensic decisions is the first step to
wards minimizing said variability, and IRT provides a set of well- 
developed statistical methods, theory, and tools to do so. 
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APPENDIX A. Software Acknowledgments 

All analyses were done using R [35] and RStudio [36]. Data work was performed with the tidyverse packages [37], plots were made with ggplot 
[38], ggally [39], and patchwork packages [40], and all models were fit with the rstan package [41]. 

APPENDIX B. Bayesian Model Formulation 

The probabilities for each outcome are computed as a product of Rasch models, conditional on the previous nodes in the tree: 

P(Yij = No ​ Value) = logit− 1(θi1 − bj1)

P(Yij = Inconclusive) = [1 − logit− 1(θi1 − bj1)] × logit− 1(θi2 − bj2)

P(Yij = Correct) = [1 − logit− 1(θi1 − bj1)] × [1 − logit− 1(θi2 − bj2)] × logit− 1(θi3 − bj3)

P(Yij = Error) = [1 − logit− 1(θi1 − bj1)] × [1 − logit− 1(θi2 − bj2)] × [1 − logit− 1(θi3 − bj3)].

We fit this model under the Bayesian framework with Stan in R [35,41], using the following prior distributions, 

θi ∼
iidMVN5(0, σθLθL′

θσθ)

bj ∼
iidMVN5(βX j, σbLbL′

bσb)

Lθ ∼ LKJ(4)
Lb ∼ LKJ(4)

σkθ ∼
iidHalf − Cauchy(0, 2.5)k = 1, 2, 3

σkb ∼
iidHalf − Cauchy(0, 2.5)k = 1,…, 5

β0k, β1k, β2k ∼
iidN(0, 5)k = 1, 2, 3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5) 

Here X j is the column vector (1,Xj)
′, β = (β1, …, β4) is the 3 × 4 matrix whose kth row is (β0k, β1k, β2k, β3k), and σb is a 3 × 3 diagonal matrix with σ1b, 

σ2b, σ3b as the diagonal entries; σθ in the previous line is defined similarly. Multivariate normal distributions for θi and bj were chosen to estimate 
covariance between latent variables explicitly. The Stan modeling language does not rely on conjugacy, so the Cholesky factorizations (Lθ and Lb) are 
modeled instead of the covariance matrices for computational efficiency. The recommended priors [42] for L and σ were used: an LKJ prior [43]; LKJ 
= last initials of authors) with shape parameter 4, which results in correlation matrices that mildly concentrate around the identity matrix (LKJ(1) 
results in uniformly sampled correlation matrices), and half-Cauchy priors on σkb and σkθ to weakly inform the correlations. N(0, 5) priors were 
assigned to the linear regression coefficients (βk). 

The complete Stan code for fitting the model is below. 
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. (continued). 

APPENDIX C. θ Estimates 

Figure 8 shows the distribution of the θk point estimates on the diagonal panels, pairs scatterplots of the θk point estimates on the lower panels, and 
sample correlations on the upper panels. Note that the correlations in the figure are the sample correlations of the point estimates, and are larger in 
magnitude than the population estimates reported in Section 3.4. 
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Fig. 8. Scatterplots and sample correlations of θ1, θ2, and θ3 point estimates.  

APPENDIX D. Predicted and Actual b based on LQ Metric and Ground Truth 

Figure 9 shows the predicted bk estimates based on Equation (4) and Table 3, along with the actual bk point estimates.

Fig. 9. Predicted and actual b estimates based on LQ Metric and Ground Truth (as in Equation (4))  
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