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Abstract

The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the
emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop
an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical
trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live
attenuated vaccine with the hemagglutinin (HA) and neuraminidase (NA) genes of an H5N1 virus A/VN/1203/2004 (clade 1)
was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and
ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca) that
contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05) (clade 2.3), and the backbone of the cold-
adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca). AH/AAca was attenuated in chickens, mice, and monkeys, and it
induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques
immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the
homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2). These results
demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic
H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double
immunization with live attenuated H5N1 vaccines in human trials.
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Introduction

In 1996, a highly pathogenic H5N1 avian influenza virus was

detected in geese in China [1]. A year later, a reassortant H5N1

virus caused disease outbreaks in poultry in Hong Kong [2] and

was transmitted to humans, infecting 18 people, six of whom died

[3,4]. Beginning in late 2003, outbreaks of H5N1 influenza A virus

infection appeared among poultry, and wild birds in numerous

countries in Asia and subsequently were reported in Europe and

Africa (Office International des Epizooties [OIE]; http://www.oie.

int). Despite substantial efforts to control the infection in poultry,

H5N1 viruses have continued to evolve and spread, producing

human infections in 14 countries, with 236 of the 372 confirmed

cases proving fatal (World Health Organization [WHO]; http://

www.who.int). The emergence of H5N1 viruses resistant to

adamantanes and oseltamivir [5,6,7] has raised serious concerns

over the ability of current antiviral agents to prevent global

influenza outbreaks. Thus, the development of an effective vaccine

has assumed the highest priority in preparedness for an H5N1

influenza pandemic.

H5N1 inactivated vaccines can induce functional and cross-

reactive antibodies that protect ferrets or nonhuman primates

from H5N1 infection [8], and have been shown to be safe and

tolerable in human trials [9,10,11]. With the addition of adjuvants,

such vaccines induce antibody titers that are known to provide

protection against seasonal influenza in humans [11], however, the

antibody level considered to be protective was based on findings in

humans who had likely been exposed to the seasonal human virus

and thus were ‘‘preimmunized’’. Because the vast majority of

humans have not been exposed to highly pathogenic H5N1

viruses, it is still unknown whether the level of antibody known to

be protective against seasonal human influenza virus infection

would also be effective against H5N1 viruses. Additionally, while

humoral immunity is effectively induced by the inactivated
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vaccines, the cellular immune response is not [12]. This deficit has

raised concern because of indications that the cellular immune

response may play a significant role in protection against H5N1

infection [12].

The cold-adapted (ca) influenza virus A/Ann Arbor/6/60 (AA)

(H2N2) has been developed as a live attenuated vaccine seed virus

that exhibits cold-adaptation, temperature-sensitive (ts), and atten-

uation (att) phenotypes which are specified by mutations in the

internal genes. Reassortant H1N1 and H3N2 human influenza A

viruses with the six internal gene segments of the AAca virus have

been repeatedly demonstrated to bear these phenotypes and

extensive evaluation in humans has proven them to be attenuated

and safe as live virus vaccines (reviewed in [13–15]). In previous

studies, live attenuated H5N1 vaccines generated by reverse genetics

and comprising internal genes of the AAca virus and the HA and NA

genes derived from earlier H5N1 influenza viruses were proved to be

safe in mice and ferrets, and to protect these animals from death

against different H5N1 viruses challenges [16,17]. In this study, we

produced three live attenuated, ca H5N1 viruses, using reverse

genetics, that contain the HA and NA genes of H5N1 viruses isolated

at different times and from different species in China. After in vitro

and in vivo analyses, one of the cold-adapted virus that contains the

HA and NA genes from a recent H5N1 virus, A/Anhui/2/2005

(AH/05) (clade 2.3), was selected for immunogenicity and efficacy

testing in mice and nonhuman primates.

Results

Generation and characterization of H5N1 cold-adapted
reassortant viruses

We constructed three H5N1 reassortant virus by reverse

genetics [18,19,20], using the published sequences of the low

pathogenic A/Ann Arbor/6/60 ca virus (AAca) [21] to generate

all of the genes encoding the internal proteins. The HA and NA

genes were from the highly pathogenic H5N1 influenza viruses,

including A/goose/Guangdong/1/1996 (GS/GD/96) (clade 0),

A/chicken/Shanxi/2/2006(CK/SX/06), a virus isolated from

chickens in northern Chine in 2006, and A/Anhui/2/2005 (AH/

05) (clade 2.3), which was isolated from a human in China (WHO;

http://www.who.int). The multiple basic amino acids at the HA

cleavage site, a major virulence motif for H5N1 influenza viruses,

were replaced with those found at the HA cleavage site of a

nonpathogenic avian influenza virus, as previously described

[16,22]. The cold-adapted (ca) and temperature-sensitive (ts)

phenotypes of the resultant viruses GSGD/AAca, CKSX/AAca,

and AH/AAca, attributable to the internal genes of AAca, were

also confirmed as described previously (data not shown). The ca

reassortant viruses did not cause disease or death in chickens upon

intranasal or intravenous administration, while all of the three

wild-type H5N1 viruses are lethal to chickens (Table 1).

Replication and immunogenicity of the reassortant
viruses in mice

We evaluated the replication of GSGD/AAca, CKSX/AAca,

and AH/AAca, in mammals, using the BALB/c mouse. Groups of

6-week-old female BALB/c mice were inoculated intranasally with

106 EID50 (dose required to infect 50% of eggs) of the reassortant

Table 1. Attenuation phenotype of the recombinant AH/AAca virus in chickens.

Virus Observations after intranasal inoculationa Observations after intravenous inoculationb

Virus shedding on day 3
(log10 EID50)

Virus shedding on day 5
(log10 EID50) No.SC./total

No.sick
deaths/totalc No.sick/deaths/total No.SC/total IVPI

Oropharyngeal Cloacal Oropharyngeal Cloacal

GSGD/AAca , , , , 0/6 0/0/6 0/0/10 2/10 0

GS/GD/96 3.260.3 2.460.8 2.460.3 2.860.6 NA 0/6/6 1/9/10 1/1 2.1

CKSX/AAca , , , , 0/6 0/0/6 0/0/10 3/10 0

CK/SX/06 3.260.6 2.160.4 2.5 3.0 NA 0/6/6 0/10/10 NA 2.8

AH/AAca , , , , 0/6 0/0/6 0/0/10 2/10 0

AH/05 2.460.6 1.760.6 1.460.1 1.860.1 NA 0/6/6 0/10/10 NA 2.5

aSix-week-old specific-pathogen free chickens were inoculated i.n. with 106 EID50 of virus in a 0.1-ml volume. Swabs were collected from the birds on day 3 and day 5
postinoculation and titrated in eggs. ,, virus not detected. data are means6standard deviations. No. sick/deaths/total; numbers of chickens that were sick and died, as
well as the total number of chickens during the observation period. Birds that showed disease signs, such as depression and ruffled feathers, but recovered at the end
of the observation were counted as sick animals. SC/total, number of chickens that seroconverted out of the total number of chickens at the end of the 2-week
observation period. NA, all birds died by the end of the observation period and thus could not be studied for sera conversion.

bSix-week-old white Leghorn chickens housed in high-efficiency particulate air-filtered isolators were inoculated i.v. with 0.2 ml of a 1:10 dilution of bacterium-free
allantoic fluid containing virus for intravenous pathogenicity index (IVPI) testing, based on recommendations of the Office International Des Epizooties.

cOnly animals that showed disease signs but recovered by the end of the observation period were identified as sick birds.
doi:10.1371/journal.ppat.1000409.t001

Author Summary

H5N1 influenza viruses have caused human infections with
more than 60% fatality in 14 countries and may yet be the
source of the next pandemic. Therefore, the development
of effective vaccines against these viruses is the highest
priority for H5N1 pandemic preparedness. A high dosage
or adjuvants improve the immunogenicity of H5N1
inactivated vaccines; however, limited production capacity
for conventional inactivated influenza virus vaccines could
severely hinder the ability to control the spread of H5N1
influenza through vaccination. Here, we generated and
tested the efficacy of a cold-adapted, live attenuated H5N1
vaccine in mice and nonhuman primates. We found that
the vaccine provided complete protection in these animals
against homologous and heterologous H5N1 virus chal-
lenge. Since live vaccines require less processing than
inactivated vaccines and do not require adjuvants, our
study represents a major advance in vaccine development
for H5N1 pandemic influenza.

Live Vaccine for H5N1 Influenza
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viruses or their wild-type H5N1 viruses. Three mice in each group

were killed on day 3 postinoculation (p.i.) and their organs were

collected for virus titration. As previously reported [1], the

replication of the wild-type GS/GD/96 virus was not detected

in any organs on day 3 p.i.; however, the ca virus GSGD/AAca

was detected in the nasal turbinate of the inoculated mice at this

timepoint (Table 2). The wild-type CK/SX/06 virus replicated in

the nasal turbinate and lung, while the replication of the

reassortant ca virus CKSX/AAca was not detected in any organs

(Table 2). The wild-type AH/05 replicated systemically with high

virus titers in all of the organs examined. The replication of AH/

AAca, by contrast, was restricted to the respiratory system. Even in

lung, the AH/AAca titer was significantly lower than that for AH/

05 (Table 2). The reassortant viruses, as well as the wild-type GS/

GD/96 and CK/SX/06 viruses did not kill any mice at the

highest inoculation dose, whereas the AH/05 virus killed mice at a

very low dosage (MLD50 = 1.5 log10EID50) (Table 2).

We then evaluated the immunogenicity of the three reassortant

ca H5N1 viruses in mice. Four weeks after the first intranasal

immunization of GSGD/AAca, hemagglutinin inhibition (HI)

antibody against the homologous virus GS/GD/96 was not

detected, but the neutralization (NT) antibody titers was 320. After

the second vaccination, the HI and NT antibodies increased

sharply to titers of 80 and 1067, respectively (Table 3). HI and NT

antibodies in the CKSX/AAca-inoculated mice were not detected

even after the second vaccination (Table 3). However, both HA

and NT antibodies were detected in mice after one vaccination of

the AH/AAca virus, and the mean titers increased sharply after the

second vaccination (Table 3). These results indicate that the AH/

AAca virus induced a better immune response than the other two

ca reassortant viruses. Therefore, we selected the AH/AAca virus

for further vaccine efficacy investigations in mice and monkeys.

Protective efficacy of the AH/AAca vaccine in mice
We first evaluated the protective efficacy of the AH/AAca

vaccine in mice. By 4 weeks after the first intranasal immunization

of 106 EID50 of AH/AAca, the mean6s.d. titers of HI and NT

antibodies against the homologous AH/05 virus had increased

significantly over the pretest values (P,0.01) (Figure 1A and 1B).

They also rose sharply after the second vaccination (P,0.01 [HI],

P,0.05 [NT]) (Figure 1A and 1B). Antibodies to the heterologous

A/bar-headed goose/Qinghai/3/05 (BHG/05) (clade 2.2) virus

were either undetectable (HI) or increased (NT) after the first

vaccination, rising to 80623 (HI, P,0.01) and 5336184 (NT,

P,0.05) after the second immunization (Figure 1A and 1B).

Four weeks after vaccination, we challenged the mice

intranasally with a lethal dose (102 LD50) of two different H5N1

viruses, AH/05 and BHG/05, whose genetic and antigenic

properties are different from those of the AH/05 virus. Three

mice were killed on day 3 postchallenge, and their organs were

collected for virus titration; the remaining seven mice in each

group were observed for 2 weeks. As shown in Figure 1C–1E, mice

were completely protected from homologous AH/05 virus

challenge in both the single- and two-vaccination groups. Virus

was not detected in any of the organs tested, and the mice

remained healthy over the 2 weeks of observation (no weight loss).

By contrast, the virus replicated systemically and was detected in

all of the test organs in unvaccinated mice, with death occurring

between 6 and 10 days postchallenge. In mice challenged with

BHG/05, virus was detected at low titers (,2 log10 EID50 g21) in

the nasal turbinates of animals that had received a single dose of

vaccine, but was undetectable in the organs from mice that were

vaccinated twice (Figure 1F). All of the vaccinated mice remained

healthy during the 2-week observation period, whereas the virus

replicated systemically and killed all of the mice within 10 days

postchallenge in the unvaccinated group (Figure 1G and 1H).

Humoral and cellular immune responses to the AH/AAca
vaccine in rhesus macaque

To assess the immunogenicity of the AH/AAca reassortant virus

in a rhesus macaque (Macaca mulatta) model, we inoculated 2- to 3-

year-old female animals (n = 8, Vaccinated 1–8, V1–V8) intrana-

Table 2. Replication of the H5N1 ca reassortants and the wild-type H5N1 viruses in mice.

Virus Mean virus titer (log10 EID50/ml6SD) on day 3 post inoculation in:a
MLD50 (log10EID50)

Turbinate Lung Spleen Kidney Brain

GSGD/AAca 3.160.6 , , , , .7.5

GS/GD/96 , , , , , .8.0

CKSX/AAca , , , , , .7.8

CK/SX/06 1.860.6 4.460.8 , , , .6.5

AH/AAca 3.860.1 3.760.5b , , , .7.2

AH/05 4.760.9 6.561.2 2.760.8 2.060.5 2.661.0 1.5

aSix-week-old BALB/c mice (3 per group), inoculated intranasally with 106 EID50 of the indicated virus in a 50-ml volume, were killed on day 3 postinoculation and their
organs were collected for virus titration in eggs. ,, no virus was isolated from that sample.

bP value was,0.01 compared with the titers in the corresponding organs of the AH/05-inoculated mice.
doi:10.1371/journal.ppat.1000409.t002

Table 3. Antibody response induced by the H5N1 ca
reassortant viruses in mice.

Virus Mean antibody titers in mice

Pretest Dose 1 Dose 2

HI NT HI NT HI NT

GSGD/AAca ,5 ,10 ,5 320 80 1067

CKSX/AAca ,5 ,10 ,5 ,10 ,5 ,10

AH/AAca ,5 ,10 26.7 533 480 1573

Group of five six-week-old BALB/c mice were inoculated with two dose, in a 4
week interval, of 106 EID50 of the indicated H5N1 ca reassortant virus. Four
weeks after dose 1 or dose 2, sera were collected for determining the HI and NT
antibodies using the homologous wild type H5N1virus.
doi:10.1371/journal.ppat.1000409.t003

Live Vaccine for H5N1 Influenza
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sally with 107 EID50 of the AH/AAca virus in a 1-ml volume,

twice, at a 4-week interval. A control group (n = 8, Control 1–8,

C1–C8) received the same volume of phosphate-buffered saline

(PBS). Serum was collected from each animal at 4 weeks after the

first vaccination (week postvaccination dose, wpd1) and at 2 weeks

after the second vaccination (wpd2). Peripheral blood mononu-

clear cells (PBMCs) of the monkeys were isolated at different times

for detection of a T-cell immune response using an H5-HA specific

IFN-c ELISPOT assay. Intranasal inoculation of the AH/AAca

virus was not associated with any adverse events (not shown).

As shown in Figure 2A, each of the vaccinated macaques had a

detectable antibody response by ELISA (enzyme-linked immuno-

sorbent assay) at 2 weeks after the first inoculation, with the titer

ranging from 120–780 (median, 760), and the titers increased

sharply at 4 weeks after the first inoculation, with titers ranging

from 1520 to 12780 (median, 7640). HI and NT antibodies were

not detectable from the animals at 2 weeks after the first

inoculation (data not shown). Five of these animals developed

HI antibodies to the AH/05 virus (titers, range of 10–80, median,

40), and all had NT antibodies to this virus (range of titers, 40–

640, median 240) (Figure 2B and 2D) at 4 weeks after the first

inoculation. Antibody levels in the vaccinated animals increased

significantly after the second vaccination (Figure 2). Eight animals

had detectable HI antibody to AH/05 (range of titers, 40–640;

median, 160) at 2 weeks after the second vaccination, while NT

and ELISA antibody titers reached 320–2560 and 25,118–

199,526, respectively, at this interval (Figure 2A, 2B, and 2D).

Overall, the HI and NT antibody titers against the heterologous

virus BHG/05 (Figure 2C and 2E) were 2- to 4-fold lower than

those against the AH/05 virus. T cell responses to the HA protein

were not detected at 4 weeks after the first immunization.

However, the HA-specific T cell responses could be detected at 2

weeks after the second immunization in all vaccinated macaques

(Figure 3). Interestingly, 11 of the 13 T cell HA-specific peptides

identified in samples from eight macaques represented CD4+ T

cells (Table 4), suggesting this T cell subset may have played a role

in the generation of antibodies against H5N1 epitopes. The HI

and NT antibodies and the T cell response of the control animals

at all time points before challenge are the same as the pretested

values.

Protective efficacy of AH/AAca in monkeys against
homologous and heterologous H5N1 virus challenge

Three weeks after the second vaccination, animals in each

group were challenged with an intratracheal inoculation of 106

EID50 of AH/05 virus (n = 4) or BHG/05 virus (n = 4) in a 3-ml

volume. Three days later, two animals from each group were

euthanized, and different parts of the respiratory system were

collected for virus titration and histologic and immunohistochem-

ical studies. The remaining animals were observed and euthanized

on day 15 postchallenge.

The control animals showed disease symptoms after challenge.

All eight control animals became anorexic on day 1 postchallenge,

and completely lost their appetites for two days. Four were

euthanized on day 3 postchallenge, while the remaining four

Figure 1. Vaccine efficacy of the AH/AAca virus in mice. (A) HI and (B) NT antibody responses to homologous (AH/05) and heterologous (BHG/
05) viruses after intranasal vaccination with 106 EID50 of AH/AAca in a 50-ml volume. Serum samples were collected on day 0 prevaccination (blue), 4
weeks after the first (orange) and 4 weeks after the second vaccination (pink). Asterisks indicate a statistically significant difference from antibody
titers measured at the preceding time point: **, P,0.01, *, P,0.05. (C–H) Protective efficacy against challenge with the AH/05 (C–E) or BHG/05 virus
(F–H). Weight changes (D and G) and survival rates (E and H) are shown only for the groups that were immunized once. The data in panels A–C and F
are reported as means6s.d.; the dashed blue lines in these panels indicate the lower limit of detection. p.c., postchallenge.
doi:10.1371/journal.ppat.1000409.g001

Live Vaccine for H5N1 Influenza
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animals gradually recovered on days 4 and 5 postchallenge. Four

control animals challenged with AH/05 and three challenged with

BHG/05 developed fever within the first 2 days postchallenge

(Figure 4A and 4B). By contrast, the vaccinated animals remained

healthy during the 15 days of observation post-challenge with

either the AH/05 or BHG/05 virus. The appetites and body

temperatures of the vaccinated animals were unchanged during

this period (Figure 4A and 4B).

In the vaccinated animals, the HI and NT antibody titers

measured at 2 weeks postchallenge were approximately the same

as those recorded at 2 weeks after the second vaccination

(Figure 2B–2E). HA-specific T cell responses increased on week

1 after challenge, and the peak response was detected at 2 weeks

postchallenge (Figure 3). While in the control animals, although

the titers of antibodies measured by ELISA reached 400–800, the

HI and NT antibody, and the HA-specific T cell responses were

not detected at 2 weeks after challenge (data not shown).

Lung tissue from four vaccinated macaques euthanized on day 3

postchallenge with either BHG/05 or AH/05 lacked macroscopic

lesions, had only mild-to-moderate bronchopneumonia with

prominent peribronchiolar lymph follicles apparent on micro-

scopic observation, and were free of detectable viral antigen

(Figure 5A, 5B, 5E, 5F, and 5I). A spectrum of macroscopic

lesions—including congestion, exudation, and consolidation—

were observed in the lung lobes of two unvaccinated control

animals challenged with the BHG/05 virus (C3 and C4) and one

challenged with the AH/05 virus (C1). Only prominent swelling of

the lymph nodes and tonsil were seen in another control animal

(C2) challenged with the AH/05 virus. Moderate-to-severe

bronchopneumonia with prominent viral antigen expression was

a characteristic finding in the nonvaccinated animals (Figure 5C,

5D, 5G, 5H, and 5I; also Table 5).

Virus was not isolated from any of the organs tested in the four

vaccinated animals challenged with either the AH/05 or BHG/05

virus (Figure 6A and 6B), but was found at high titers in the

trachea, bronchus, lung, lymph nodes, and tonsil of the four

unvaccinated animals on day 3 postchallenge (Figure 6A and 6B).

Among the eight macaques euthanized on day 15 postchallenge,

virus was isolated from tonsil of the two control animals challenged

with AH/05 virus (C5 and C6) at titers of 5.3 and 5.7 log10EID50/

g, respectively (Figure 6C), but not from either of the two

vaccinated animals. Virus was recovered at a low titer from the

nasal swab of a single macaque (C8) on day 4 postchallenge and of

another (C6) on day 6 postchallenge (Figure 6D).

Figure 2. Antibody responses of nonhuman primates. (A) H5N1-
specific antibody levels assessed by ELISA. Hemagglutination-inhibition
(HI) antibody to AH/05 (B) and BHG/05 (C) with chicken erythrocytes,
and microneutralization (NT) antibody to the AH/05 (D) and BHG/05 (E)
viruses. The HI antibody titers with horse erythrocytes were 4- to 8-fold
higher than those with chicken erythrocytes (data not shown). Titers are
reported for individual vaccinated animals. Blue dashed lines indicate
the lower limit of detection. Wpd1/2, week postvaccination dose 1 or 2;
wpc, week postchallenge. The P values indicate the antibody titers with
a significant increase from the preceding time point. In the control
animals, the HI and NT antibodies at all time points are the same as the
pretested values, only the ELISA antibody titers, ranged 400–800, were
detected at two weeks postchallenge (data not shown).
doi:10.1371/journal.ppat.1000409.g002

Figure 3. T cell responses against HA antigens in rhesus
macaques and its relationship to the neutralizing antibody. T
cell responses in the PBMC samples were measured by overlapping
peptides and ex-vivo IFN-c ELISPOT assay. Data shown are the mean
numbers 6s.d. of spot-forming cells (SFC) per 106 PBMCs to HA peptide
pools in the vaccinated animals at different time points after
vaccination and challenge. Neutralizing antibody in the serum samples
was measured by the microneutralization method using AH/05 virus
isolate, data shown are mean titers 6s.d. The T cell response and the
neutralizing antibody were not detected in the control monkeys at all
time points tested (data not shown).
doi:10.1371/journal.ppat.1000409.g003

Live Vaccine for H5N1 Influenza
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Discussion

We generated a reassortant H5N1 cold-adapted virus, AH/

AAca, using reverse genetics in Vero cells, and evaluated its

immunogenecity and efficacy as a live attenuated vaccine. The

virus retained both the ca and ts phenotypes of the AAca virus, and

was attenuated in chickens, mice and monkeys. After a single

immunizing dose, the vaccine induced strong HI and NT antibody

responses to H5 influenza virus in mice and protected them from

homologous and heterologous H5N1 virus challenges. Most

importantly, after two immunizations, the vaccine induced both

humoral and T cell immune response in nonhuman primates and

completely protected these animals from challenge with either

homologous or heterologous H5N1 virus. Our results warrant

human testing of the AH/AAca virus as a candidate live

attenuated pandemic vaccine for use against H5N1 influenza

virus.

The H5N1 viruses are divided into ten distinct phylogenetic

clades (0–9) based on their HA genes. Those associated with

human infection are all from either clade 1, representing viruses

isolated mainly from patients in Thailand and Vietnam, or clade 2,

in which the viruses have been further divided into different

subclades [23]. The clade 2.1 viruses are circulating only in

Indonesia, while the clade 2.2 and 2.3 viruses continue to infect

poultry and humans in multiple countries, posing severe threats to

public health [23]. The H5N1 pandemic vaccines evaluated to

date are all based on clade 1 [9–11,17] or calde 0 viruses [16,17],

and their efficacy against clade 2 viruses is quite limited [17]. The

AH/AAca vaccine we described provides complete protection

against challenge with viruses from both clades 2.2 and 2.3;

moreover, the monkey antisera induced by AH/AAca cross

reacted well with clade 1 virus as in an HI test (data not shown).

The H5N1 viruses, AH/05 and BHG/05, replicate in multiple

organs in mice after intranasal inoculation (Table 2), however, our

preliminary studies indicate that these viruses could not replicate

in monkeys after intranasal inoculation, but they replicate

Table 4. T cell peptides and their corresponding T cell subsets against H5 HA in monkeys vaccinated with AH/AAca.

HA peptidea T cell response to the peptide

Peptide sequence
Amino acid
position SFC/million PBMCb

No. animals
responding T cell subsetc

VKSDQICIGYHANNSTEQV 14–32 375 1/8 CD4+

MEKNVTVTHAQDILEKTH 45–53 500 1/8 CD4+

NPMCDEFINVPEWSYIV 79–96 200 1/8 CD4+

LCYPGNFNDYEELKHLL 105–121 250–332 2/8 CD4+

NDYEELKHLLSRINHFEK 111–129 267 1/8 CD8+

PKSSWSDHEASSGVSSA 134–150 186 1/8 CD8+

SFFRNVVWLIKKNNTY 158–173 349–476 2/8 CD4+

NDAAEQTKLYQNPTTYI 198–204 50–66 3/8 CD4+

KLYQNPTTYISVGTSTL 214–221 625 1/8 CD4+

VPKIATRSKVNGQSGRM 226–242 143–169 3/8 CD4+

ILKPNDAINFESNGNFIA 248–265 375 1/8 CD4+

GWQGMVDGWYGYHHSNEQ 358–375 175 1/8 CD4+

LKREEISGVKLESIGTY 513–529 188 1/8 CD4+

aSequences were based on the HA gene of A/Anhui/1/05 virus.
bThe numbers of IFN-c–positive T lymphocytes in PBMC samples expressed as spot-forming cells (SFC)/million PBMCs were determined by HA overlapping peptides and

IFN–ELISPOT assay.
cT cell subset of the HA-specific T cells in PBMC samples was further determined by cell depletion using magnetic beads against CD8 and IFN-c ELISPOT assay.
doi:10.1371/journal.ppat.1000409.t004

Figure 4. Body temperature of nonhuman primates after
challenge with AH/05 virus. Change in body temperature in
nonhuman primates after challenge with AH/05 virus (A) or BHG/05
virus (B). Changes were calculated by subtracting the mean temper-
ature 3 days before challenge from the temperature recorded on the
indicated day.
doi:10.1371/journal.ppat.1000409.g004
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efficiently in the respiratory system and caused severe pneumonia

upon intratracheal inoculation, as has been seen with human

patients [24]. This is why we challenged the monkeys with

intratracheal inoculation instead of the intranasal inoculation.

Despite introduction of the challenge virus into the trachea, a

preferred site of replication for H5N1 viruses, the intranasal

immunization of the AH/AAca vaccine provided complete

protection to animals, further demonstrating the efficacy of this

live vaccine.

In a previous study, Suguitan et al [17] found differences in the

immunogenicity of three H5N1 live attenuated viruses. The

vaccine that contains the HA and NA genes from a clade 1 virus

(A/VN/1203/2004) was poorly immunogenic in mice, and was

not able to prevent the replication of the challenge viruses in lungs

and turbinates of mice (even two doses of the vaccine were not able

to prevent the replication of the challenge virus in ferrets). That

vaccine was also poorly immunogenic in humans (personal

communication from Dr. Subbarao). We also generated different

H5N1 live attenuated viruses with the surface genes derived from

different viruses that had been isolated in China. We found that

these reassortants possessed diverse replicative abilities and

induced varied antibody responses in mice; only the AH/AAca

vaccine proved highly immunogenic in both mice and monkeys.

These results suggest that the immunogenicity of H5N1 live

attenuated vaccine largely depends on the HA and NA genes,

emphasizing the need for careful selection of donor viruses when

preparing vaccines for a likely H5N1 influenza pandemic.

Although the precise responses that must be induced to protect

against H5N1 infection in humans are unknown, animal studies

indicate a central role for the cellular immune response [12].

Thus, in the face of a pandemic, a vaccine that elicits cellular

immunity could be valuable in reducing the severity of disease and

mortality, if not in providing complete protection from infection

[25]. Moreover, a vaccine that induces a cellular immune response

Figure 5. Vaccine efficacy in nonhuman primates assessed on the basis of lung lesions. Eight macaques were euthanized on day 3
postchallenge with AH/05 virus (A–D) or BHG/05 virus (E–H). Vaccinated animals (A,B,E,F) had less extensive bronchopneumonia (i.e., smaller foci of
consolidation) than did unvaccinated animals (C,D,G,H). The vaccinated animals also showed prominent peribronchial lymph follicles (a, e; arrows),
and their consolidated lung areas lacked viral antigen-positive cells (B,F). By contrast, the unvaccinated animals had lung lesions of moderate size
with a wide consolidated area (C,G; outlined by yellow dashes), smaller and less abundant peribronchial lymph follicles (C,G; arrows), and pneumonic
lesions containing many antigen-positive cells (D,H; brown pigment). (I) Schematic diagrams indicating distribution of pathologic lesions in the lungs
of animals vaccinated and challenged with AH/05 (V1 and V2); nonvaccinated and challenged with AH/05 (C1 and C2); vaccinated and challenged
with BHG/05 (V3 and V4); and nonvaccinated and challenged with BHG/05 (C3 and C4). In vaccinated animals, scant-to-moderate bronchopneumonia
was present in each lobe, but viral antigens were not detected in the lesions (V1, V2, V3, and V4; purple). By contrast, more severe
bronchopneumonia was observed in nonvaccinated macaque lungs (C1, C2, C3, and C4). Moreover, viral antigens were prominent in the pneumonic
lesions in the most affected lung lobes (C1, C2, C3, and C4; red). One lung lobe was entirely affected by pneumonia after infection with the BHG/05
virus (C3). Purple, bronchopneumonia without viral antigen; red, bronchopneumonia with viral antigen.
doi:10.1371/journal.ppat.1000409.g005
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could increase the likelihood of generating broadly cross-reactive

responses that may be effective against multiple virus strains. Ruat

et al [8] reported that inoculation of two doses of inactivated

vaccine (containing 30 mg of HA) with adjuvants in monkeys could

induce functional antibody and protect the animals from a

homologous H5N1 virus challenge, but that vaccine did not

induce any detecable cellular immune response. In the present

study, the HI antibody titers induced by two doses of the AH/

AAca vaccine in monkeys were higher than those achieved with

two doses of the inactivated vaccine in the study of Ruat et al [8].

Two doses of AH/AAca vaccine also induced strong T cell

responses, which may play an important role in the sterile

protection of monkeys after H5N1 influenza virus challenge.

Whether cold-adapted, live attenuated H5N1 vaccines would be

sufficiently immunogenic to merit their widespread use during a

pandemic remains unclear, the use of live influenza H5N1

vaccines before a pandemic would be difficult to justify, as this

strategy would introduce a new HA gene into human populations.

Nonetheless, considering the efficacy shown by our vaccine in

nonhuman primates, we suggest that it has strong potential as an

effective H5N1 virus countermeasure, warranting further evalu-

ation in humans.

Materials and Methods

Viruses
The H5N1 virus AH/05 was isolated from the tracheal

secretion of a patient with lethal outcome from Anhui province

in China in 2005 [26,27], the BHG/05 virus and the GS/GD/96

viruses were isolated from a bar-headed goose and a goose,

respectively, as described previously [1,28], and the CK/SX/06

virus was isolated from a chicken in northern China in 2006. Virus

stocks were propagated in specific-pathogen free chicken embryos

or MDCK cells. The PB2, PB1, PA, NP, M and NS genes of the

AAca virus were synthesized (Jinsite Biotechnology, www.jinsite.

com.cn) and inserted into the viral RNA-mRNA bidirectional

expression plasmid pBD as described previously [29]. The HA and

NA genes of the AH/05 virus were amplified by RT-PCR and

inserted into pBD; the region that encodes basic amino acids at the

HA cleavage site of the plasmid was modifed to encode the amino

acid sequence corresponding to the sequence in the avirulent virus

HA as described previously [16,22]. AH/AAca virus was

generated by reverse genetics [18,19,20]. Virus stock was

propagated in specific pathogen-free chicken eggs.

Phenotypic analysis of the ca reassortant viruses
The ca and ts phenotype and the replication of AH/AAca in

chickens were tested as previously described [30].

Detection of antibodies
Serum antibody against H5N1 influenza virus was detected by

IgG ELISA essentially as described by DiNapoli et al [31] using

400 ng of AH/AAca virus, which was grown in eggs and purified

by ultracentrifugation though a 30% sucrose cushion, to coat the

96-well Immulon 1B plates (Dynex Technologies, Inc., www.

dynextechnologies.com). The pretest ELISA values (range 20–80)

are the background; which have been subtracted from the

experimental values of the monkeys. Sera were treated with

Vibrio cholerae (Denka-Seiken, www.denka-seiken.co.jp) receptor-

destroying enzyme before being tested for the presence of HI

antibody with 0.5% (V/V) chicken erythrocytes. The antigens

used were homologous wild-type H5N1 virus or BHG/05 virus.

The NT antibody titers were tested in MDCK cells with heat-

inactivated sera collected from mice or animals. HI and NT

antibody titers were transformed into log10 titers for the

calculation of mean6s.d. values.

IFN-c ELISPOT assay
The frequencies of PBMC-derived T lymphocytes that released

IFN-c upon restimulation with H5 HA-derived peptide pools were

determined by an ELISPOT assay, using a Mabtech kit according

to the manufacturer’s instructions. Briefly, thawed PBMC samples,

isolated by Lymphoprep density gradient centrifugation (Axis-

Shield, www.axis-shield.com), were incubated without peptides at

37uC in 5% CO2 for 4 h. After washing, they were incubated for

20 h at a concentration of 20 mg/ml with peptides (18-mer

overlapped by 10 amino acids; Sigma, www.sigmaaldrich.com)

generated from a human H5N1 isolate (A/Anhui/01/05). PHA

mitogen was used as a positive control. Cells (200,000 per well)

were added to each well of the ELISPOT plates (Millipore, www.

millipore.com), which had been coated with antiprimate IFN-c
antibody (Mabtech clone G2.4), and incubated at 4uC overnight.

The wells were next washed six times with PBS to remove cells and

Table 5. Pathological lesions and antigen distribution in tissues of nonhuman primates infected with H5N1 viruses.

Challenge
virus Animal

Vaccination
with AH/AAca Tra Bro(R) Bro(L) Right lungs Left lungs Tonsil TBLN

Upper Middle Lower Upper Middle Lower

AH/05 V1 + 2/2b 2/2 2/2 +/2 2/2 ++/2 +/2 2/2 +/2 2/2 2/2

V2 + 2/2 2/2 2/2 +/2 +/2 +/2 +/2 2/2 ++/2 2/2 2/2

C1 2 2/2 2/2 2/2 ++/+ +/+ ++/++ +/2 +/2 ++/++ 2/2 2/2

C2 2 2/2 2/2 2/2 ++/+ 2/2 +/2 +/2 2/2 ++/2 2/2 2/2

BHG/05 V3 + 2/2 2/2 2/2 +/2 2/2 2/2 +/2 2/2 +/2 2/2 2/2

V4 + 2/2 2/2 2/2 +/2 +/2 +/2 2/2 +/2 2/2 2/2 2/2

C3 2 2/2 2/2 2/2 +/+ +++/++ ++/++ +/2 +/2 +/+ 2/2 2/2

C4 2 2/2 2/2 2/2 ++/++ ++/++ ++/++ +/2 +/+ ++/++ +/+ 2/2

Animals were vaccinated twice (4-week interval) with AH/AAca and challenged with AH/05 or BHG/05 virus. Tissues for pathological examination were collected 3 days
after viral challenge. Tra, trachea; Bro, Bronchus; TBLN, tracheobronchial lymph node.
bPathological lesions/viral antigens. 2, no pathological change/antigen. +, limited pathological change/antigen. ++, moderate pathological change/antigen. +++, severe

pathological change/abundant antigen.
doi:10.1371/journal.ppat.1000409.t005
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Figure 6. Viral replication in nonhuman primates. Virus titers were determined in embryonated eggs injected with tissue homogenates on day
3 (A,B) and day 15 (C) postchallenge with AH/05 virus or BHG/05 virus. Virus was not detected in tissues harvested day 15 postchallenge from animals
challenged with the BHG/05 virus (data not shown). Titers are reported for tissues from individual animals, as log10 EID50/g tissue. The dashed blue
lines indicate the lower limit of detection. (D) Nasal swabs were collected from all living animals on days 2, 4, and 6 postchallenge for virus isolation in
eggs.
doi:10.1371/journal.ppat.1000409.g006
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were then treated with a biotinylated antiprimate IFN-c
monoclonal antibody (Mabtech clone 7-B6-1) in PBS containing

0.5% BSA for 2 h at room temperature. After another three

washes with PBS, an avidin-alkaline phosphatase complex was

added, followed by incubation for 1 h at room temperature. The

wells were then washed, incubated with BCIP substrate (BioRad,

www.bio-rad.com) for 15 min at room temperature, rinsed with

distilled water to halt spot development, dried and read with an

automated ELISPOT reader (AID, www.elispot.com). The

number of spot-forming cells (SFCs) from each well was

determined for each animal after subtraction of counts from cells

cultured without peptide. A response was considered positive if

SFCs exceeded 20 per 106 PBMCs. The average response for

negative peptides and mock controls was 3 SFC/million PBMC.

The H5 HA response of each animal was taken the sum of the

IFN-c positive responses from all HA pools after subtraction of

background counts.

To confirm the presence of peptide induced IFN- c responses

and their relationship to CD4+ or CD8+ T lymphocytes, we tested

individual peptides from the first ELISPOT using a two-

dimensional matrix system in a second ELISPOT assay, using

thawed PBMC samples depleted of CD8+ T lymphocytes. Cell

depletion was carried out with nonhuman primate CD8+-specific

microbeads according to the manufacturer’s instructions (Miltenyi

Biotec, www.miltenyibiotec.com). CD8+ lymphocytes in the

PBMC samples were removed by labeling the cells with specific

microbeads in buffer containing PBS pH7.2, 0.5% BSA and

2 mM EDTA and then applying a magnetic field. Undepleted

PBMCs were used as positive controls.

Mouse study
Six-week-old female specific-pathogen-free BALB/c mice were

used in this study. The wild-type and reassortant viruses were both

tested for their replicative capacity, and the dose required to kill

50% of the mice (MLD50) was determined as described previously

[1]. For the immunogenicity study, groups of 5 mice were

anesthetized with CO2 before they were inoculated intranasally

once or twice (4 weeks apart) with 106 EID50 of the GSGD/AAca,

CKSX/AAca or AH/AAca virus. Sera were collected at 4 weeks

after the first vaccination or second vaccination for the HI and NT

antibody detection using the homologous wild-type H5N1 virus as

antigen. For the vaccine study, 80 6-week-old female specific-

pathogen-free BALB/c mice were anesthetized with CO2 before

they were inoculated intranasally once or twice (4 weeks apart)

with 106 EID50 of the AH/AAca in a 50 ml volume or with PBS as

control. Serum samples were collected from six mice in each group

at 4 weeks after the first and second immunizations and were

examined for HI and NT antibody using the homologous AH/05

virus and heterologous BHG/05 virus as antigens. Four weeks

after vaccination, the mice were challenged with 100 MLD50 of

the AH/05 (103.5EID50) or BHG/05 (103.6EID50) virus intrana-

sally; three mice from each group were killed on day 3

postchallenge, and their organs collected for virus titration. The

remaining seven mice were observed for 15 days for body weight

change and death.

Macaque study
Sixteen female rhesus macaques (Macaca mulatta) 2 or 3 years of

age were divided into two groups of eight animals each; one group

(V1–V8) was inoculated intranasally twice (4 weeks apart) with 107

EID50 of the AH/AAca virus in a 1-ml volume, while the other

(C1–C8) received the same volume of PBS as a control. Serum

samples were collected from each animal at 2 and 4 weeks after the

first immunization and 2 weeks after the second immunization.

Three weeks after the second immunization, the animals in each

group were challenged by intratracheal inoculation of 106 EID50

of AH/05 virus (n = 4) or BHG/05 (n = 4) virus in a 3 ml volume.

Three days later, two animals from each subgroup were

euthanized, and different parts of their respiratory system were

collected for virus titration and histologic and immunohistochem-

ical examinations; the remaining animals were observed and

euthanized on day 15 postchallenge. Nasal swabs were collected

from all of the animals on days 2, 4 and 6 postchallenge for virus

isolation in eggs.

Pathologic examination
Tissues fixed in 10% phosphate-buffered formalin were

dehydrated, embedded in paraffin, cut into 5-mm thick sections,

and stained with standard hematoxylin-and-eosin. Immunohisto-

chemistry was performed with antibodies to an H5 virus (A/

Vietnam/1203/04) using the Dako Envision system (Dako, www.

dako.com).

Animal facility
Studies with highly pathogenic H5N1 avian influenza viruses

inoculated into mice and macaques were conducted in a

biosecurity level 3+ laboratory approved by the Chinese Ministry

of Agriculture. All animal studies were approved by the Review

Board of Harbin Veterinary Research Institute, Chinese Academy

of Agricultural Sciences.

Statistical analysis
Virus titers in mice, antibody titers of mice and monkeys were

compared with a two-sided t-test.
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