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SUMMARY

Various global land use/land cover (LULC) products have been developed to drive
land-relevant climate and hydrological models for environmental assessments.
However, systematic studies remain scarce that assess the uncertainties of using
these products. By using a total of 16 commonly used global LULC products, we
find a logarithm law of upscaling with the spatial resolution. The law reveals
spatial details of urban features will be majorly distorted when using LULC prod-
ucts with coarser resolutions. A tipping point of the law around the 30-m resolu-
tion was identified by additional analysis of the 1-m and 10-m local land use
dataset. Through the example of assessing crop production loss, we further
find that most of these products will yield a significant underestimation of crop
production losses, globally and locally. We conclude that the underestimated ur-
ban land rooted in most of these products would cause vital impacts on global
change analyses and modeling.

INTRODUCTION

For the last three decades, large-scale land cover changes have occurred to the Earth, driven by the force of

economic development and population growth.1 Land use/land cover (LULC) change, such as urban

encroachment, farmland reclamation, and deforestation, have significant consequences on ecological

and biogeochemical cycles,2,3 biodiversity,4 hydrological processes,5 and the carbon fluxes of terrestrial

ecosystems.6,7 Such impact will not abate as the urban population and urban land will continue until 2050.8

LULC products, usually created by remote sensing, provide rich and critical temporal information for recording

the important dimensions of global changes on earth surfaces. Producing time-series of land cover data can

satisfy the needs of modeling communities which want to understand and predict the processes of the Earth

systems.9 Most of these studies require the description of the properties of earth surfaces in terms of albedo,

roughness, evapotranspiration, surface fluxes, and carbon storage. These factors are difficult to acquire at the

global scale, but can be quantified or modeled by mainly using the information of land use types.10 Besides

the climate, hydrological and ecological modeling, LULCmaps are important for tackling various resourceman-

agement issues in terms of the conservation of farmlands, forests and biodiversity, and prevention of watershed

degradation and desertification. These maps thus provide valuable information for governments and organiza-

tions to formulate climate change mitigation and adaptation policies.11,12

Accurate and updated land cover information will assure the better performance of geographical analysis

and environmental modeling, and facilitate the understanding of geographical processes.13–15 However, it

is extremely difficult to obtain LULC maps at the global scale because the classification involves large data

volumes and labor-intensive jobs. In the 1980s, land cover maps, especially at the global scale, were only

produced at the spatial resolutions ranging from 1� to 0.5�, for addressing the needs of climate modeling

and carbon cycling studies, etc.16,17 Special treatment is required to deal with such coarse resolution

because of mixed land use types within a large pixel. A practical way to obtain global land cover with

such a large pixel size (e.g., 0.5 3 0.5 degree) is to represent the land use by using the dominant land

use type.18,19 For example, fractional land use types (e.g., crop, pasture, and urban) at a resolution of

0.5 3 0.5 degree were obtained as a common base for climate modeling.20 A later effort was to develop

the method that addresses land management explicitly as a component of land systems at a spatial reso-

lution of 5 arcminute (i.e., 9.25 3 9.25 km)14 Such resolution only represents the land cover by a mixture of

different land use types for each individual grid cell. However, many other applications, such as those

related to agriculture, resource management, environmental assessment and urban planning, have to
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rely on much finer resolutions, because of the heterogeneity of land use patterns.21,22 The demand also

comes from a new generation of process models which try to capture the dynamic of the Earth systems

more accurately.23

In the recent three decades, the growing demand for high-resolution land use information has resulted in

marvelous progress in producing various global LULC products. The endeavor has enabled global land

cover/use data available at various spatial resolutions, such as 1 km GlobCover (Global Land Cover),9,24,25

500 m MODIS (Moderate Resolution Imaging Spectroradiometer),26,27 300 m GlobCover,28 and 30 m

FROM-GLC (Finer Resolution Observation and Monitoring of Global Land Cover) and GlobeLand30

(30 m Global Land Cover) products.29,30 Higher spatial resolutions are usually at the cost of lower temporal

resolutions because of the difficulty in producing these products globally. For example, GlobeLand30 is

only available for the years 2000 and 2010 so far.30

Most of the applications may face the dilemma of choosing a LULC product with either finer spatial or finer

temporal resolutions. The selection of a product may be determined by many issues, such as model re-

quirements, data availability, and computation capability. In most situations, environmental assessments

and modeling require the inputs of updated and detailed land cover information. Accurate area of land

use types should be obtained as the primary input to the analysis and modeling practice. For example,

the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) mainly relies on the input of

detailed land use types to estimate the carbon storage.31 Studies have shown that spatial resolutions

coarser than 1 km for land cover data will attribute to significant biases in the identification of urban fea-

tures, and estimation of terrestrial carbon sequestration and its interannual variability.32 By using the

maps with resolution coarser than 5 km, the analytical results may contain at least 5% area estimation error

for most land use types.21 Instead, Chen et al.30 indicated that the most significant human activities should

be captured by the satellite data with a 30-m resolution.

The above analyses related to the use of these products were generally carried out at a regional scale, without a

systematic study at the global scale. Geographical scale effect is a major issue encountered in geographical an-

alyses and assessments.33 Although various studies havebeen carried out to assess the accuracies of LULCprod-

ucts through rigorous validations according to some international standards,28 the impact of spatial resolutions

on change-related analysis and modeling has not been well examined in a systematic way at the global scale.

Considering this, the objective of this paper is to assess the impact of product resolutions onmappingglobal ur-

ban land and related assessments (e.g., the estimation of crop production losses). We focus on the urban land

change which plays a vital role in altering various ecological and hydrological processes. In the application, the

immediateeffect of landuse change is the cropproduction losses because of urban encroachment on farmland.8

The cropproduction losses, either in thepast and the future, shouldbean important issuebecauseensuring food

security is of key importance to achieve the goal of Zero Hunger, which is one of 17 Sustainable Development

Goals (SDGs) proposed by the United Nations.34

To quantify the impacts of spatial resolution on the change-related analysis and assessments, we conduct-

ed the experiments in two ways. First, the Pearson correlation coefficient was adopted to examine the rela-

tionship between the spatial resolution and the global urban area. With the use of 16 sets of commonly

used LULC products, there is a large span of spatial resolutions, ranging from 30 m to 50 km respectively.

For the resolution below 30 m, the LULC products at the global scale are unavailable. We had to select ten

cities in the US which have 1-m land use data, plus 10-m data classified by Tsinghua University’s LULC

group, who is the author of the 30 m FROM-GLC product.29,35 As there are many other sources of uncer-

tainties, we then tried to spatially aggregated the same high-resolution maps by coarsening them (the

30-m GlobeLand30_ATS2010 product) to look at the pure relationships between the resolution and the ur-

ban area. Finally, we quantitatively estimated the crop production losses caused by historical and future

urban expansion. The analysis will help understand the scaling effects of LULC products on geographical

modeling and environmental assessments (e.g., crop production estimation).

RESULTS

The logarithm law of estimating global urban area

Overall relationship

Figure 1 illustrates the effect of spatial resolution on mapping the urban details of the Pearl River Delta,

China. It is apparent that a finer resolution product, like GHS-BUILT (38-m resolution), can map the urban
2 iScience 25, 105660, December 22, 2022



Figure 1. Layout of urban land in the Pearl River Delta, China, using different spatial resolution products

(A) GHS-BUILT, 38 m, 2014.

(B) MODIS/MCD12Q1, 500 m, 2010.

(C and D) GLCNMO_V1, 1 km, 2003; and (d) GAEZ-Dom, 10 km, 2010.
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land with much more spatial details, being close to the realistic patterns. As the spatial resolution de-

creases, the small patches of urban land disappear rapidly. We can only observe very a vague configuration

of the land use patterns, e.g., in GLCNMO_V1 data (Figure 1C). The layout of cities becomes much dis-

torted as small patches of urban land are almost wiped out in GAEZ-Dom of a 10-km resolution (Figure 1D).

With the use of a total of 16 global LULC products, we retrieved the global urban land to explore the scaling

effect on estimating urban land (Table 1 and Figure 2). Figure 3 shows there exists a quite strong linear rela-

tionship in a logarithm form between the data resolution and the amount of global urban land. The overall

Pearson correlation coefficient is as high as �0.831, with a significance level of 0.01. The value of R2 is 0.72,

indicating a good level of explanation. This analysis reveals that a coarser resolution will result in a severe

underestimation of global urban land for these commonly used products. In other words, we can obtain

more urban details by using a finer resolution product to capture global urban land. The underestimation

of global urban area is 63%, if the resolution decreases from 500 m (logðmÞ = 2:70) to 10 km (logðmÞ = 4).

The underestimation becomes as high as 83%, whereas dropping from 30m (logðmÞ = 1:48) to 10 km. If the

spatial resolution is 1 m (logðmÞ = 0), we may even infer that the global urban area would be 1.51 million

km2 (i.e., the slope value) for the year 2010, which is 24% higher than that estimated by using the 30-m LULC

product. The estimation of the global urban area at 1-m resolution has not been carried out before as the

job is much data demanding and labor intensive.

In contrast to Figure 3, Figure 4 shows the change in global urban area when aggregating the 30-m reso-

lution product to coarser its original resolution. Not surprisingly, the results obtained by this coarsening

approach still show strong linear relationship in a logarithm form between the data resolution and the

amount of global urban land. The R2 value is as high as 0.89, which is higher than the R2 value (0.72) ob-

tained from the use of the 16 LULC products. The improvement of the R2 value is due to the use of a single

dataset. In other words, the uncertainties brought by different products can be explained by the decrease

of the R2.

The underestimation of global urban area by aggregating the maps from 500 m (logðmÞ = 2:70) to 10 km

(logðmÞ = 4) is 64%, whereas the underestimation from 30 m (logðmÞ = 1:48) to 10 km is 68%. This result

has demonstrated that the strong linear relationship in a logarithm form between global urban area and
iScience 25, 105660, December 22, 2022 3



Table 1. A total of 16 global land cover datasets with the spatial resolutions ranging from 30 m to 50 km

Global land cover data Abbreviation Resolution Year Landtype name Data source

30 m Global Land Cover

data product

GlobeLand30_ATS2010 30 m 2010 Artificial surfaces http://www.geodoi.ac.cn/WebCn/

doi.aspx?Id=163

Global Human Settlement

Layer: Built-up

GHS-BUILT 38 m 2014 Built-up areas http://data.jrc.ec.europa.eu/

collection/ghsl

European Space Agency,

Climate Change Initiative

Climate Research Data

Package

ESA-CCI 300 m (1000) 2010 Urban areas http://maps.elie.ucl.ac.be/CCI/

viewer/download.php

Global Land Cover Map GlobCover 300 m (1000) 2009 Artificial surfaces and

associated areas

(urban areas >50%)

http://dup.esrin.esa.it/page_

globcover.php

MODIS Land CoverType

product

MODIS/MCD12Q1 500 m (1500) 2010 Urban and built-up land https://lpdaac.usgs.gov/dataset_

discovery/modis/modis_

products_table

Global Land Cover by

National Mapping

Organizations Version 3

GLCNMO_V3 500 m (1500) 2013 Urban https://globalmaps.github.io/

Spatial Distribution and

Density of Constructed

Impervious Surface Area

ISA 1 km (3000) 2010 Impervious surfaces https://www.ngdc.noaa.gov/eog/

dmsp/download_global_isa.html

Global Land Cover-SHARE GLC-SHARE 1 km (3000) 2014 Artificial surfaces http://www.glcn.org/databases/

lc_glcshare_en.jsp

Global Land Cover 2000

database

GLC2000 1 km (3000) 2000 Artificial surfaces and

associated areas

http://forobs.jrc.ec.europa.eu/

products/glc2000/glc2000.php

Global Land Cover by

National Mapping

Organizations Version 1

GLCNMO_V1 1 km (3000) 2003 Urban https://globalmaps.github.io/

Global Land System

classification data

GLS 9,250 m (50) 2010 Urban, peri-urban

and villages

http://www.environmentalgeography.nl/

site/data-models/data/global-land-

system-classification/

Global Agro-ecological

Zones-Dominant Land

Cover and Use

GAEZ-Dom 10 km (50 ) 2007 >50% Build-up land http://www.fao.org/geonetwork/srv/

en/metadata.show?id=38215

&currTab=simple

Food Insecurity, Poverty

and Environment Global

GIS Database

FGGD 10 km (50 ) 2007 >50% Artificial surfaces http://www.fao.org/geonetwork/

srv/en/metadata.show?

id=14071&currTab=simple

Global Historical Land-

Cover Change and Land-

Use Conversions-HH

ISAM-HH (Integrated

Science Assessment Model)

50 km (0.5�) 2005 Urban land https://www.atmos.illinois.edu/

�meiyapp2/datasets.htm

Global Historical Land-

Cover Change and

Land-Use Conversions-

HYDE (Historical Database

of the Global Environment)

ISAM-HYDE (Integrated

Science Assessment Model)

50 km (0.5�) 2010 Urban land https://www.atmos.illinois.edu/

�meiyapp2/datasets.htm

Global Historical Land-Cover

Change and Land-Use

Conversions-RF

ISAM-RF (Integrated

Science Assessment Model)

50 km (0.5�) 2007 Urban land https://www.atmos.illinois.edu/

�meiyapp2/datasets.htm

ll
OPEN ACCESS

4 iScience 25, 105660, December 22, 2022

iScience
Article

http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=163
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=163
http://data.jrc.ec.europa.eu/collection/ghsl
http://data.jrc.ec.europa.eu/collection/ghsl
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://dup.esrin.esa.it/page_globcover.php
http://dup.esrin.esa.it/page_globcover.php
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://globalmaps.github.io/
https://www.ngdc.noaa.gov/eog/dmsp/download_global_isa.html
https://www.ngdc.noaa.gov/eog/dmsp/download_global_isa.html
http://www.glcn.org/databases/lc_glcshare_en.jsp
http://www.glcn.org/databases/lc_glcshare_en.jsp
http://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php
http://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php
https://globalmaps.github.io/
http://www.environmentalgeography.nl/site/data-models/data/global-land-system-classification/
http://www.environmentalgeography.nl/site/data-models/data/global-land-system-classification/
http://www.environmentalgeography.nl/site/data-models/data/global-land-system-classification/
http://www.fao.org/geonetwork/srv/en/metadata.show?id=38215&amp;currTab=simple
http://www.fao.org/geonetwork/srv/en/metadata.show?id=38215&amp;currTab=simple
http://www.fao.org/geonetwork/srv/en/metadata.show?id=38215&amp;currTab=simple
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14071&amp;currTab=simple
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14071&amp;currTab=simple
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14071&amp;currTab=simple
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm


Figure 2. Visual inspection of GlobCover data (300-m resolution) and GLCNMO_v1 data (1-km resolution) for

urban land cover (red grids)

(A) GlobCover, 300m, 2009; (B) GLCNMO_V1, 1km, 2003; (C and D) are the stepwise zoom-in of (A) respectively.
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data resolution still exists under this aggregation approach. As a comparison, the actual underestimated

urban land area at 10-km product (i.e., GAEZ-Dom) across the globe reaches to 1,061,191 km2 (approxi-

mately 83.61% of the global urban land area at 38-m resolution) based on the 38-m product (GHS-BUILT).

Figure 5 shows the actual amount and proportion of underestimated urban land area at 10km resolution

compared to the 38 resolution by region.

The logarithm laws by regions

There is significant geographical heterogeneity across the world in terms of climate and ecosystem char-

acteristics. Therefore, we established the individual logarithm laws by 26 world regions which are defined

via referring to Stehfest et al.36 This yielded the individual relationship between the data resolution and the

urban land area, presenting the individual Pearson correlation coefficients for each region. Table 2 shows

that all these regions have a negative coefficient corresponding to the data resolution. This means that a

coarse resolution will unanimously cause the decrease in urban area. According to Table 2 and Figure 6, the

correlation coefficients of 17 geographical regions are at a significance level of 0.01. Their coefficient values

are very high, ranging from �0.656 in Japan to �0.861 in Canada. Almost all these regions are on the con-

tinents of Europe, Asia and North America. Most human activities exist in these regions, which also share a
Figure 3. The logarithm law depicting the relationship between the data resolution and the global urban area by

using a total of 16 LULC products

iScience 25, 105660, December 22, 2022 5



Figure 4. The logarithm law depicting the relationship between the data resolution and the global urban area by

aggregating the 30-m GlobeLand30_ATS2010 product
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large portion of the world population. There are six regions with a significance level of 0.05, including Cen-

tral Asia, Korea region, Western Africa, Indonesia region, Northern Africa, and the Rest of Southern Africa

(all of them are in the continents of Africa and Asia). Only the regions in the Rest of South America, Oceania

and Brazil have not shown a significant association between the data resolution and urban area, despite

their correlation coefficients are negative, implying a similar trend compared to other regions.

The above analysis reveals that the variant of the logarithm law corresponding to the spatial heterogeneity

of urban configuration across the globe. If the urban distribution is more clustered and contiguous (Figure

7A), there is less degree of underestimating urban area. In contrast, the urban area estimation is more sen-

sitive to the choice of the land-cover product resolutions if the urban land distribution in a region is more

discrete and dispersed (Figure 7B). This can be better understood by using an extreme scenario (e.g., all

non-urban land has been converted into urban land). In this situation, choosing different spatial resolutions

to map the urban land will cause no or very limited bias. The great area-estimation bias caused by coarse

spatial resolutions reflects the uneven distribution of global urban land, i.e., most of human activities

dispersed by occupying very small patches of land on the Earth’s surface.

Verification at 1-m and 10-m resolution using selected cities in the US

The 30-m resolution is themost commonly used and relatively high resolution for LULC products at a global

scale so far. It should be attractive to verify the logarithm law beyond this limit by using higher spatial res-

olutions (e.g., 1-m and 10-m resolution). As the global LULC products with such high resolution do not exist,
Figure 5. The underestimated urban land area in different regions across the world at 10-km product (GAEZ-

Dom) compared with 38-m product (GHS-BUILT)

6 iScience 25, 105660, December 22, 2022



Table 2. The Pearson correlation coefficients between data resolution and urban area in different world regions

Regions Central Europe Rest of South America Oceania Brazil Canada

Coefficients �0.777** �0.439 �0.409 �0.441 �0.861**

Regions China region Central America Russia region Western Europe Northern Africa

Coefficients �0.851** �0.748** �0.727** �0.764** �0.595*

Regions Eastern Africa Western Africa Indonesia region India Middle East

Coefficients �0.669** �0.54* �0.567* �0.734** �0.706**

Regions Japan Central Asia Korea region Mexico Rest of Southern Africa

Coefficients �0.656** �0.568* �0.611* �0.694** �0.591*

Regions Rest of South Asia Turkey Ukraine region The United States South Africa

Coefficients �0.677** �0.698** �0.684** �0.695** �0.733**

Regions Southeast Asia

Coefficients �0.738**

Significance levels: **p = 0.01; *p = 0.05.
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we have to select some cities in the US which have the land use map of 1-m resolution for the verification.

Table 3 lists the input data sources from EnviroAtlas (https://www.epa.gov/enviroatlas) for ten selected cit-

ies in the US. For the urban map of 10-m resolution for these cities, the data were prepared by Tsinghua

University’s LULC group, who is the author of the 30 m FROM-GLC product.29,35

At first, we estimated the urban areas of New York and Chicago to get some insights on the scaling effects

using the LULC data ranging from 1-m to 50-km resolutions. The 1-m resolution maps show that the imper-

vious areas in New York and Chicago account for 44 and 15% of the total land areas, respectively. Figures 8

and 9 show the estimated urban areas of New York and Chicago from these data. When the resolution is in

the range from 1 m to 1 km, the estimated urban areas increase as the resolution becomes finer, in line with

the overall relationship globally. The urban areas will reach a peak value, and then drop as the resolution

becomes finer. Specifically, the urban areas reach their maximum if the resolution is in the range of 10–40 m

for both these two cities. When the resolution is larger than 1 km, the urban areas of the two cities only have

some subtle changes without an obvious decreasing trend. It is because that New York and Chicago are

two megacities, having large amounts of contiguous urban parcels. In the practice of land classification

in remote sensing, as we know, the land type of a cell is assigned with the dominant land type within the

cell. Thus, urban land still prevails even if the resolution is 10 km in the extent of these two cities. This ex-

plains why the estimated urban areas of New York and Chicago have not decreased significantly between

the resolutions of 1 km and 10 km. In addition, the urban land accounts for 44% of the total land in New York.
Figure 6. The global map of the Pearson correlation coefficients between spatial resolution and urban area

estimation for 26 world regions
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Figure 7. Urban land with a more contiguous distribution (A) and with a more dispersed distribution (B)
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The percentage is near 60%, if we exclude the water body within New York’s administrative boundary.

Because of the high proportion of urban land, New York has a higher possibility to identify more urban cells

when the resolution becomes coarser, showing a different estimation trend regarding to the law.

Figures 10 and 11 show the urban land patterns of New York and Chicago by different resolutions, respec-

tively. For New York, the change of resolution from 38 m to 10 km (Figures 10D–9G) has not significantly

affected the area size of urban land. Chicago, which has a lower percentage of urban land, has a significant

decrease in urban area when the resolution decreases from 38 m to 10 km (Figures 11D–10G). By zooming

in the core areas of these two cities (Figures 10A–9C for New York and Figures 11A–10C for Chicago), we

found that the identified urban area decreases as the resolution increases from 30 m to 1 m. This is mainly

because the urban area, under the coarse resolution, would be merged into its background, namely, the

non-urban area. This indicates that other land use types surrounding by urban pixels are possible to be

merged into urban areas when aggregating the 1-m resolution product to coarser resolution data. For
Table 3. Input data sources of the ten selected cities with the 1-m resolution products from the EnviroAtlas

City Abbreviation Input data source Year

New York in New York NYNY Aerial photography 2011

LiDAR data 2010

Chicago in Illinois CIL Aerial photography 2010, 2012, 2013

LiDAR data 2006, 2007, 2008, 2010, 2013, 2014

Austin in Texas ATX Aerial photography 2010

LiDAR data 2007

Baltimore in Maryland BMD Aerial photography 2013

LiDAR data 2011, 2015

Memphis in Tennessee MTN Aerial photography 2012, 2013

LiDAR data 2009–2012

Milwaukee in Wisconsin MWI Aerial photography 2010

LiDAR data 2010, 2012

Philadelphia in Pennsylvania PhiPA Aerial photography 2013

LiDAR data 2006–2008, 2011–2015

Phoenix in Arizona PAZ Aerial photography 2010

Portland in Oregon POR Aerial photography 2011, 2012

LiDAR data 2007, 2010

Washington, District of Columbia WDC Aerial photography 2013, 2014

LiDAR data 2002–2016
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Figure 8. Urban area of New York in data sources of different resolutions
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instance, the forest pixels surrounding by urban area in Figure 10A has been identified to be forest rather

than ‘‘urban land’’ at a very fine scale. Despite a product with a finer resolution may not always identify a

larger urban area, a fine-scale product helps us better delineate the urban morphology, for its capability

of capturing much more land details.

We further selected more cities in the US to examine the relationship or the law, by including 1-m and 10-m

resolutions. A total of ten cities were selected, including Austin (ATX), Baltimore (BMD), Chicago (CIL),

Memphis (MTN), Milwaukee (MWI), New York (NYNY), Phoenix (PAZ), Philadelphia (PhiPA), Portland

(POR), and Washington (WDC). For each of these cities, we calculated the urban area by using the LULC

data ranging from 1 m to 50 km. To support the comparison, for each city, we treated the urban area

estimated from 1-m resolution as the standard value (i.e., 100), the urban areas estimated from other res-

olutions are then standardized, divided by the urban area at 1-m resolution and multiplied by 100. By this

standardization, we can compare their urban area distribution by using 180 sample points (18 datasets3 10

cities) (Figure 12), and generalize the aggregated urban area distribution by summing up the total area of

10 cities (Figure 13).

Both Figures 12 and 13 show that the largest value of urban area can be observed when using the land cover

product of a 38-m resolution, showing a tipping point for the logarithm law around this resolution. We thus

conclude that 30 m (or 38 m) in general may be the most suitable spatial scale, for it has the possibility to

capture the largest amount of urban area, without missing much information of urban land but with good

data availability. If our research focuses on the issues that need to deal with at a very fine scale (i.e., below

30m in this paper), it is necessary to rethink the definition of ‘‘urban land’’, because at this scale, more urban
Figure 9. Urban area of Chicago in data sources of different resolutions
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Figure 10. Urban land patterns of New York at different resolutions

(A) 1 m from EnviroAtlas;

(B) 10 m from Tsinghua University;

(C) 30 m from GlobeLand30_ATS2010;

(D) 38 m from GHS-BUILT;

(E) 300 m from ESA-CCI;

(F) 1 km from GLCNMO_V3;

(G) 10 km from GAEZ-Dom.
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details can be presented. For example, the green infrastructure within or surrounded by urban land

(e.g., buildings and roads) can be delineated and separated from urban land.
Impacts on crop production estimation by resolution

The input of accurate land use information is essential for most of the climate and hydrological modeling

and environmental assessments. We will examine how the spatial resolution of these LULC products will

affect the accurate estimation of crop production losses associated with urban expansion. Table 4 shows

that the global urban expansion in 2003–2013 was 187,494 km2 and 175,308 km2 respectively, by using

the GLCNMO and ESA-CCI LULC products (shown in Table 5). These estimations are much higher than

that of using the ISAM-HYDE product, by which we can only observe an increased urban area of

39,650 km2 globally. Note that, the spatial resolution of the GLCNMO product is close to the ESA-CCI’s,

but has changed from 1,000 m in 2003 to 500 m in 2013. The resolution increase may lead to more amounts

of estimated urban expansion. As a result, we can observe a slightly higher increase of urban area from the

GLCNMO product, compared with that from the ESA-CCI product.

As shown in Table 4, we observed the highest production loss (60.16 billion kg) using the GLCNMO prod-

uct, followed by the loss (51.86 billion kg) using the ESA-CCI product. These two products have similar

spatial resolutions, resulting in a similar level of crop production loss. Because the ISAM-HYDE’s spatial res-

olution is much coarser, we only observed amuch less amount of urban expansion and crop production loss

(5.21 billion kg). We can find that the yield from the ISAM-HYDE is significantly underestimated, which is

only a tenth of that from the ESA-CCI product.
10 iScience 25, 105660, December 22, 2022



Figure 11. Urban land patterns of Chicago at different resolutions

(A) 1 m from EnviroAtlas.

(B) 10 m from Tsinghua University.

(C) 30 m from GlobeLand30_ATS2010.

(D) 38 m from GHS-BUILT.

(E) 300 m from ESA-CCI.

(F) 1 km from GLCNMO_V3.

(G) 10 km from GAEZ-Dom.
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Based on the SPAM data, we obtained that in 2010, the global crop production of rice, wheat, maize, po-

tato, and vegetables were 702.98, 674.75, 853.15, 346.37, and 918.59 billion kg respectively. Encroached by

global urban expansion, vegetable faced the largest amounts of production loss, ranging from 28.79

billion kg (GLCNMO), 22.52 billion kg (ESA-CCI) to 1.53 billion kg (ISAM-HYDE) (corresponding data are

shown in Table 5). In contrast, potato had the smallest amounts of production loss, ranging from 3.48 to

0.50 billion kg. Specifically, the crop production losses varied among different world regions because of

the spatial heterogeneity. Figure 14 shows the rice production loss and cropland loss due to urban expan-

sion, whereas other crop production loss (e.g., wheat, maize, potato, and vegetable) because of urban
Figure 12. Standardized urban area distribution of ten US selected cities in different resolution products
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Figure 13. Total urban area of ten US selected cities in different resolution products
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expansion are shown in Figures S1–S4. China faced a very high level of production loss for all the crop types,

mainly because of its rapid urbanization in recent decades. Particularly, China was the only country having a

significant decline in vegetable production, accounting for 72.55% of the total loss in the world. This could

be a severe issue for sustainable urban development that needs to address the food security issue imme-

diately. Surprisingly, Indonesia and Southeast Asia, which are themain rice production regions in the world,

faced a high decline in the rice production. High loss in the potato production and wheat production also

took place in Western Europe. India had a high loss in the potato production, followed by rice production.

In terms of the US, it only faced a relatively high level of loss in the maize production, which may be ex-

plained by the fact that the general process of rapid urban expansion had ended in this country for a

long time.

We can observe similar impacts of spatial resolutions on crop production estimation for different crop

types and in different regions. For almost every crop type and every region, the ESA-CCI or GLCNMO

product helps us better capture the details of crop production loss, which are much higher compared to

the loss estimated by using the ISAM-HYDE product. The estimation bias is greater in main production

areas for some crop types, like the rice in China, the wheat in Western Europe and the potato in India.

The above analysis revealed thebiases in estimating historical cropproduction losses because of urban expan-

sion from various land cover products. A further step was to investigate the scaling effects on the modeling

process by using a land-use simulation model. The future LULC maps with 1-km resolution under four devel-

opment scenarios created by Li et al.37 were used to estimate the potential crop production losses because of

the future urban expansion (Figure 15). We assumed the crop production loss estimated at the 1-km resolution

as the ‘‘true’’ production loss, because this resolution is the highest so far for future global LULC.8 Figure 16

shows the relationship between the true loss rate of production caused by urban expansion and the identifi-

cation rate of the true production loss at different resolutions. In the X axis, the true loss rate of production is

estimated from the ratio of true loss to total production, which reflects the severity of the true loss. In the Y axis,

the identification rate of the true production loss is the ratio of the estimated production loss at a coarse res-

olution to the true loss, which reflects the degree or severity of the underestimation. Each color dot in the figure
Table 4. Urban encroachment and crop production loss by using different LULC products

LULC products

ESA-CCI (2003–2013)

(300-m resolution)

GLCNMO (2003–2013)

(1-km resolution)

ISAM-HYDE (2000–2010)

(50-km resolution)

Increased urban areas (km2) 187,494 175,308 39,650

Area increase rate (%) 36.44 50.46 12.25

Encroached cropland areas by urban

expansion (km2)

116,597 131,120 18,909

Global production loss (billion kg) 51.86 60.16 5.21
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Table 5. List of empirical data used for estimating crop production losses

Data Abbreviation Year Resolution Data source

Spatial Production Allocation Model SPAM 2010 10 km (50) https://www.mapspam.info/

European Space Agency, Climate Change

Initiative

ESA-CCI 2003

2013

300 m (1000) http://maps.elie.ucl.ac.be/CCI/viewer/

download.php

Global Land Cover by National Mapping

Organizations

GLCNMO_V1,

GLCNMO_V3

2003

2013

1 km (V1),

500 m (V3)

https://globalmaps.github.io/

Global Historical Land-Cover Change and

Land-Use Conversions-HYDE (Historical

Database of the Global Environment)

ISAM-HYDE 2000, 2010 50 km (0.5�) https://www.atmos.illinois.edu/�meiyapp2/

datasets.htm
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represents a crop type in a scenario. For example, rice has four color dots in each subgraph, corresponding to

the four scenarios in the future LULCmaps. The blue line in the upper part of the subgraphs indicates the case

where 100% (perfect identification) of the lost production/area is identified. The different colored circles on the

blue line represent where their corresponding points should be in the case of 100% perfect identification. It

means that the farther these points are from the blue line, the lower (poorer estimation) the lost produc-

tion/area identification rate. The linear regression equations in the three subgraphs demonstrate a significant
Figure 14. Rice production loss and cropland because of urban expansion for various geographical regions

(A) rice production loss.

(B) cropland loss. Note: ESA-CCI, 300 m, 2003–2013; GLCNMO, 1 km (2003)/500 m (2013), 2003–2013; ISAM-HYDE, 50 km,

2000–2010.
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Figure 15. Distortion of urban features in the land use simulation under the A1B Scenario in selected

metropolitan areas with various spatial resolutions (1-km, 10-km, 30-km and 50-km resolutions)
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correlation at different scales. The results show that the lower the true loss rate, the lower the identification rate

of production loss, which reflects those coarse resolutions tend to miss small-scale production loss cases.

Furthermore, using coarse-resolution products for production loss estimation can lead to greater underesti-

mation where the true loss rate is the same (the intercept becomes smaller as the resolution is coarser).
DISCUSSION AND CONCLUSION

Only occupying a small portion of the global land, the urban areas that are characterized with intensive hu-

man activities have created major disturbance to the ecosystems. Even a small percentage increase in the

urban areas can significantly alter climate, biogeochemistry, and hydrology at local, regional, and global

scales.8,38,39 Accurately obtaining the urban areas helps us better delineate the extent of human footprints

with details. The mapping is essential for building various geographical and climate models and imple-

menting environmental assessments.

Global LULC products have been widely used to provide the important inputs to climate, ecological and

hydrological models, and various assessment practices. However, ignoring the scaling issues of these

products may create the biases in the results of geographical modeling and analyses. By addressing this

issue, we selected a total of 16 commonly used global LULC products to investigate the uncertainties in

estimating the urban land area. Our study has demonstrated that the results of land-use modeling and

analysis are very sensitive to the resolutions of these products. We are the first to establish the relationship

between spatial resolution and urban area at the global scale. As global urban expansion mostly takes

place over farmland, we further examined the potential underestimation of crop production losses associ-

ated with urban expansion by using these products. Previous studies may use different LULC products for

environmental assessments, neglecting the potential impacts of spatial resolutions. This study provides the

evidence that the scaling effects cannot be ignored during estimating the impact of urban expansion on

crop production.

Our study reveals that spatial details of urban features will be severely distorted when coarsening spatial res-

olutions of land use maps. Therefore, it can conclude that 30 m (or 38 m) in general may be the most suitable

spatial scale for the study that treats the urban as the focus, for it has the possibility to capture the largest

amount of urban area, without missing much information of urban land but with good data availability. By
14 iScience 25, 105660, December 22, 2022



Figure 16. Rate of true production loss and true cropland loss because of urbanization

True loss rate of production and true loss rate of cropland area are estimated at 1-km product. Rates of true production

loss and cropland loss are calculated by losses at multiple resolution products and the 1-km product.
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using a total of 16 commonly used LULC products, we find a logarithm relationship between data resolution

and urban area globally. This law indicates that a coarser resolution will result in a less amount of urban land

worldwide. There is a severe underestimation of urban land based onmost of these products. Among 26world

regions,most of them clearly show negative correlation coefficients with a significance level of 0.05 or 0.01. It is

found that the spatial configuration and heterogeneity of urban land is a determinant in shaping the logarithm

law. If the urban land distribution in a region is more discrete and dispersed, the estimated urban area is more

sensitive to the choice of LULC resolutions. Our findings thus clear up the misconception that LULC can be

used for modeling and analysis without considering the scaling effects as granted.

The analysis further reveals a tipping point of global urban area around 30-m (or 38-m) resolution. For all

these commonly used products, there exists a logarithm law for estimating the urban land from different

spatial resolutions. However, we find that the urban land will become less with finer resolutions

(e.g., 1-m and 10-m resolutions), after reaching the maximum value. For example, the selected cities of

New York and Chicago show the decline in urban area for higher resolutions (either 1-m or 10-m), because

finer-scale urban details (e.g., trees and small parks) can be delineated. We conclude that, in general, the

30-m (38-m) LULC product should be the optimal or most suitable for the studies which need the accurate

input of urban land, considering its capability of capturing the urban details and also the data availability.

The products with a resolution finer than this resolution may be necessary when much more urban details

(e.g., green infrastructure) are required to discern.

In terms of estimating historical urban encroachment on crop production, the resolution impact on produc-

tion loss is similar for different crop types (e.g., rice) and in different world regions (e.g., China), namely, the

amount of production loss was greatly underestimated by using coarser resolution products like ISAM-

HYDE (50-km resolution). We find a coarser resolution will underestimate crop production losses more

for all crop types.
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Similar findings are also found in the estimation of production loss caused by future urban expansion. For a

certain true loss rate of crop production, a coarser resolution results in a lower identification rate with a

more serious underestimation. The presented study not only provides a scientific reference to the choice

of product resolution on mapping global urban land, but should be also important for governments and

organizations to estimate the accurate impacts of urban growth on food security.

The above analyses are based on the comparison of different products, whichmay be subject to some sour-

ces of uncertainties. For example, the definitions of urban land in multiple data sources range from imper-

vious surfaces, artificial surfaces to built-up areas. This inconsistency may lead to some uncertainties in our

analysis. Nevertheless, the regression analyses still show strong linearity in a logarithmic form by using

these products. Moreover, this relationship can be confirmed by coarsening a single dataset, the 30-m

GlobeLand30_ATS2010 product. This coarsening approach allows our comparison to avoid the uncer-

tainties introduced by different products. By using this single dataset, we still clearly find the logarithm

law depicting the relationship between the data resolution and the global urban area. The R2 value is as

high as 0.89, in comparison with 0.72 from the use of the 16 LULC products. The variances can allow users

to explain the degree of the uncertainties introduced by using different products.
Limitations of the study

This research has limitations in the following two aspects. First, in terms of data, the LULC products used in

this paper did not cover exactly the same period because of the difficulty of data collection, resulting in

some biases in the global urban landmapping and crop production estimation. More efforts to collect suit-

able datasets could be made in the future so as to make the comparison between different products more

accurate and validate the logarithm law to a broader extent. Second, we only considered the impact of the

product resolutions on the global urban land mapping, but it also has potential value to investigate the

resolution impact on other land use types, like forests and grasslands. For example, we can assess the un-

certainties in estimating global carbon storage loss using the Integrated Valuation of Ecosystem Services

and Tradeoffs (InVEST) model based on these LULC products. This analysis will help us quantitatively inves-

tigate the human and environmental factors on the distribution characteristics of the global urban land, and

better understand the impacts of historical or future land use dynamics on the Earth system by using avail-

able global LULC products and simulation models.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

30 m Global Land Cover data product Global Change Research Data Publishing &

Repository

http://www.geodoi.ac.cn/WebCn/doi.aspx?

Id=163

Global Human Settlement Layer: Built-up European Commission Joint Research Centre

Data Catalogue

http://data.jrc.ec.europa.eu/collection/ghsl

European Space Agency, Climate Change

Initiative Climate Research Data Package

European Space Agency Climate Change

Initiative Climate Research Data Package

http://maps.elie.ucl.ac.be/CCI/viewer/

download.php

Global Land Cover Map European Space Agency Due data http://dup.esrin.esa.it/page_globcover.php

MODIS Land CoverType product USGS https://lpdaac.usgs.gov/dataset_discovery/

modis/modis_products_table

Global Land Cover by National Mapping

Organizations Version 3

Global Map data archives https://globalmaps.github.io/

Spatial Distribution andDensity of Constructed

Impervious Surface Area

NOAA https://www.ngdc.noaa.gov/eog/dmsp/

download_global_isa.html

Global Land Cover-SHARE GLCN http://www.glcn.org/databases/

lc_glcshare_en.jsp

Global Land Cover 2000 database Forest Resources and Carbon Emissions http://forobs.jrc.ec.europa.eu/products/

glc2000/glc2000.php

Global Land Cover by National Mapping

Organizations Version 1

Global Map data archives https://globalmaps.github.io/

Global Land System classification data Institute for Environmental Studies, University

of Amsterdam

http://www.environmentalgeography.nl/site/

data-models/data/global-land-system-

classification/

Global Agro-ecological Zones-Dominant Land

Cover and Use

FAO http://www.fao.org/geonetwork/srv/en/

metadata.show?id=38215&currTab=simple

Food Insecurity, Poverty and Environment

Global GIS Database

FAO http://www.fao.org/geonetwork/srv/en/

metadata.show?id=14071&currTab=simple

Global Historical Land-Cover Change and

Land-Use Conversions-HH

Atul Jain’s ResearchGroup, University of Illinois

Urban Champaign

https://www.atmos.illinois.edu/�meiyapp2/

datasets.htm

Global Historical Land-Cover Change and

Land-Use Conversions-HYDE (Historical

Database of the Global Environment)

Atul Jain’s ResearchGroup, University of Illinois

Urban Champaign

https://www.atmos.illinois.edu/�meiyapp2/

datasets.htm

Global Historical Land-Cover Change and

Land-Use Conversions-RF

Atul Jain’s ResearchGroup, University of Illinois

Urban Champaign

https://www.atmos.illinois.edu/�meiyapp2/

datasets.htm

Software and algorithms

ArcGIS ESRI https://www.arcgis.com/index.html

QGIS Open-source software https://qgis.org/en/site/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Xia Li (lixia@geo.ecnu.edu.cn).
Materials availability

This study did not generate new materials.
iScience 25, 105660, December 22, 2022 19

mailto:lixia@geo.ecnu.edu.cn
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=163
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=163
http://data.jrc.ec.europa.eu/collection/ghsl
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://dup.esrin.esa.it/page_globcover.php
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://globalmaps.github.io/
https://www.ngdc.noaa.gov/eog/dmsp/download_global_isa.html
https://www.ngdc.noaa.gov/eog/dmsp/download_global_isa.html
http://www.glcn.org/databases/lc_glcshare_en.jsp
http://www.glcn.org/databases/lc_glcshare_en.jsp
http://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php
http://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php
https://globalmaps.github.io/
http://www.environmentalgeography.nl/site/data-models/data/global-land-system-classification/
http://www.environmentalgeography.nl/site/data-models/data/global-land-system-classification/
http://www.environmentalgeography.nl/site/data-models/data/global-land-system-classification/
http://www.fao.org/geonetwork/srv/en/metadata.show?id=38215&amp;currTab=simple
http://www.fao.org/geonetwork/srv/en/metadata.show?id=38215&amp;currTab=simple
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14071&amp;currTab=simple
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14071&amp;currTab=simple
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.atmos.illinois.edu/%7Emeiyapp2/datasets.htm
https://www.arcgis.com/index.html
https://qgis.org/en/site/


ll
OPEN ACCESS

iScience
Article
Data and code availability

The data used in this study are all available from public resources that have been appropriately cited within

the manuscript. Besides, any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.
METHOD DETAILS

Spatial resolution and urban area estimation

To quantify the impact of spatial resolution on mapping urban land, we collected a total of 16 global LULC

products which have spatial resolutions ranging from 30 m to 50 km (Table 1). These products are well-

documented and commonly used for a wide spectrum of applications, such as biodiversity loss and carbon

storage assessments, urban and regional planning, and climate and hydrological modeling.31,38–41 Ideally,

consistent comparison of the impacts using these products requires the data taken from almost the same

time (e.g., the same year). However, it is realistic to collect these data covering the globe at exact the same

year. Thus, we had to use the data taken within a short span of the time so that the land use change within

the period can be ignored. Then we retrieved the land use type of artificial or impervious surfaces from

these data products.

From Table 1, we can find that these global land cover datamay have a number of different names of the so-

called urban land (e.g. urban areas, artificial surfaces, built-up areas, or impervious surfaces). Liu et al.1

defined the urban areas as the pixels that are dominated by built elements (e.g., buildings, roads, and run-

ways). In producing a global urban land product, they retrieved the global urban land by fusing different

sets of global LULC data, such as the Global Human Settlement Layer,42 the Global Urban Footprint,43

the Global Urban Land44 and the Global Artificial Impervious Area.45 This suggests that mixed use of these

products could be acceptable in practice. In other words, these names are interchangeable or equivalent,

and not substantially different as these products have their merits.

To facilitate the comparison of the urban land in these products (listed in Table 1), we transformed themaps

into an equal-area projection (i.e., WGS_1984_Cylindrical_Equal_Area). The grid size of these maps was

converted into their corresponding scale (e.g., 0.5� to 50 km, 50 to 10 km, 3000 to 1 km, 1500 to 500 m, and

1000 to 300 m, respectively). By evaluating the data form, the auxiliary data used in production processes,

and the data performances, we further determined the equivalent resolution of each product for the later

analysis. For example, the equivalent resolution of a 10-km resolution data with an integer form is 10 km,

but the equivalent resolution of a 10-km resolution data with a float form (with the percentage of urban area

in a grid) is 1 km based on a visual inspection. The three datasets, ISAM-HH, ISAM-HYDE, and ISAM-RF, are

in the float form, showing the percentages of urban land for each grid. Therefore, we set their equivalent

resolution to 10 times higher than the original resolution, i.e., 5 km. Note that there are some special cases

where the GlobCover data are an integer type with a 300 m resolution, but the actual effect of urban land

cover in the data is only equivalent to 1 km based on the visual inspection of spatial details (Figure 2). In this

situation, its equivalent resolution is set to 1 km.

After the data processing, we then used the regression analysis to explore the relationship between the

spatial resolution and the amount of global urban area. The relationship can be expressed as the Pearson

correlation coefficient. We created the scatter plots with the total amount of global urban area retrieved

from these products, and estimated the correlation coefficients and the significance. Pearson coefficient

is a linear correlation measure between two variables, calculated using the following formula:

Rij =

PN
n = 1

ðsin � siÞ
�
sjn � sj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n = 1

ðsin � siÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n = 1

�
sjn � sj

�2s (Equation 1)

where si and sj represent the urban land area and spatial resolution, respectively. n denotes the data

source. s means the average. Rij is between �1 and +1. The value �1 shows a total negative linear corre-

lation, whereas the value +1 shows a total positive linear correlation. We used 2-tailed test as the signifi-

cance test in the analysis.
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Apparently, the above regression analysis will be subject to a series of uncertainties. Because these maps

are associated with various sources of uncertainties, the resolution cannot be just used to explain the rela-

tionship. To isolate the uncertainties from different products, we analyzed a single dataset of high-resolu-

tion based on an aggregation approach. This was carried out by resampling the GlobeLand30_ATS2010

from the original 30-m resolution to 100-m, 300-m, 500-m, 1-km, 5-km and 10-km resolution respectively,

and then established the pure relationship between the spatial resolution and the amount of global urban

area.
Spatial resolution and crop production estimation

The spatial resolution of land cover data will have significant impacts on the results of environmental as-

sessments. In this study, we quantified such impact by using crop production estimation as an example.

Given that urban expansion takes placemostly on farmlands,8 we examined the impact of spatial resolution

by quantifying the amounts of urban encroachment and the associated crop production losses. In this anal-

ysis, the crop production loss is assumed as the loss of crop production due to urban expansion encroach-

ing on cropland. The similar procedure can be applied to other environmental assessments which require

the input of land use dynamics.

Previous studies have indicated that coarse resolutions will wipe out small patches of urban areas, resulting

in the underestimation of urban expansion.37 We expect that a higher amount of urban expansion, and a

larger value of crop production losses could be observed by using a finer resolution product. By identifying

small patches, finer resolution can provide a more accurate estimation of urban expansion and crop pro-

duction losses.

Table 5 shows the empirical data used for estimating crop production losses. The world crop production

data in 2010, released in December 2018, were obtained from the SPAM (Spatial Production Allocation

Model) platform. This crop production data offers the production of each crop type in each grid as a

floating point, which can match the cropland pixels provided by LUCC products by using spatial overlay

analysis. We selected rice, wheat, maize, potato, and vegetable, which are the major crops in the world,

to estimate the production losses associated with urban encroachment. Three LULC products, ESA-CCI,

GLCNMO and ISAM-HYDE, were chosen for the comparison. Note that GLCNMO has two spatial resolu-

tions: 1) GLCNMO_V1, released in 2003, has a resolution of 1 km; and 2) GLCNMO_V3, released in 2013,

has a resolution of 500 m.

The ESA-CCI and GLCNMO land cover products have a higher resolution than the SPAM crop production

data. To estimate the urban-driven crop production losses, we assumed that all types of crops were evenly

distributed in each cell of the farmland. The estimation consisted of three steps: 1) retrieving the expanded

urban land from the year 2003 to 2013 by the overlay analysis; 2) identifying the proportion of farmland en-

croached by the urban expansion for each 50350 cell in the SPAM data; and 3) estimating the production

loss of each crop type within the cell.

The ISAM-HYDE product has a coarser resolution than the SPAM. We adjusted the resolution of SPAM to

that of the ISAM-HYDE by resampling the map from 50 to 0.5�, before calculating the crop production for

each resampled cell. In addition, each cell in the ISAM-HYDE product provides the ratio of different land

uses, and thus it is only possible to know the ratio changes from 2000 to 2010. To address this issue, we

assumed the new urban land was from different land uses proportionally. Therefore, the proportion of en-

croached cropland (ECP) by urban expansion in each ISAM-HYDE grid can be represented as follows:

ECP = DUP3
CPt� 1

1 � UPt� 1
(Equation 2)

where DUP represents the increased proportion of urban land (UP) from 2000 to 2010 (i.e., from time t� 1

to t), and CP represents the cropland proportion. After obtaining the ECP, we were able to calculate the

production loss for each crop type.

It is expected that spatial resolutions also have a significant effect on modeling processes. We quantified

such effect by using the Future Land use Simulation (FLUS) model which needs to input accurate land use

types. This analysis can show the scaling effects in the assessment of the future production loss (a key in-

dicator among the 17 Sustainable Development Goals, or SDGs).34 The simulation estimated the future
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crop production losses caused by the future urban expansion, providing useful information for policy-

makers to address the food security issue. The global 1-km dataset of future urban land use patterns in

2050, created by Li et al.37 was used to represent the outcomes of the future urban expansion. This dataset

was simulated by using the FLUS model (downloadable at https://www.geosimulation.cn/). The simulation

involved six land use types: cultivated land, forest land, grassland, water area, urban land, and unused land,

but we only selected the urban land type for this study. A detailed description of the data, and the model,

and four development scenarios can be found at Li et al.37 and Sohl et al.40

To investigate the crop production losses caused by the future urban expansion at different spatial reso-

lutions, we up-sampled the simulated 1-km resolution map to the resolutions of 10 km, 30 km and 50 km

respectively. In the up-sampling maps, we classified a 10 3 10 km cell as the urban if the cell has more

than half of its area (50 km2) as the urban. The same procedure was applied to 30 3 30 km and

50 3 50 km resolution maps respectively. Then the crop production losses estimated by the overlay of

the urban land maps of 10-km, 30-km and 50-km resolution was compared with that of 1-km resolution

respectively.

Figure 15 illustrates the simulated land use patterns of four typical metropolitan areas under the A1B Sce-

nario for the year 2050, including Beijing in China, New York and Los Angeles in the United States, and Rio

deJaneiro in Brazil. Despite we can observe a general (but vague) urban configuration and recognize the

core urban areas in the 10-km resolution map, most of the spatial details are missing, compared to those in

the 1-km resolution map. When it comes to the 30-km or 50-km resolution maps, the distortion is much

severer, as we are almost unable to identify the urban areas. All the details of land use patterns are almost

wiped out in such a coarse resolution.
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