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b-cell ER stress plays an important role in b-cell dysfunction and death during the
pathogenesis of diabetes. Proinsulin misfolding is regarded as one of the primary
initiating factors of ER stress and unfolded protein response (UPR) activation in b-cells.
Here, we found that the ER stress sensor inositol-requiring enzyme 1a (IRE1a) was
activated in the Akita mice, a mouse model of mutant insulin gene-induced diabetes of
youth (MIDY), a monogenic diabetes. Normalization of IRE1a RNase hyperactivity by
pharmacological inhibitors significantly ameliorated the hyperglycemic conditions and
increased serum insulin levels in Akita mice. These benefits were accompanied by a
concomitant protection of functional b-cell mass, as shown by the suppression of b-cell
apoptosis, increase in mature insulin production and reduction of proinsulin level. At the
molecular level, we observed that the expression of genes associated with b-cell identity
and function was significantly up-regulated and ER stress and its associated inflammation
and oxidative stress were suppressed in islets from Akita mice treated with IRE1a RNase
inhibitors. This study provides the evidence of the in vivo efficacy of IRE1a RNase
inhibitors in Akita mice, pointing to the possibility of targeting IRE1a RNase as a
therapeutic direction for the treatment of diabetes.

Keywords: Beta cell failure, beta cell protection, ER stress, Ire1alpha, Ire1alpha inhibition, unfolded protein
response, monogenic diabetes, proinsulin misfolding
HIGHLIGHTS

• Proinsulin misfolding in the endoplasmic reticulum (ER) plays an important role in beta cell
dysfunction and death and the pathogenesis of mutant INS-gene-induced diabetes of youth
(MIDY).

• ER stress activates unfolded protein response (UPR) including IRE1a pathway.
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• It is unknown whether inhibition of IRE1a RNase activity can
protect beta cells and improve diabetic conditions in MIDY
animals.

• Pharmacological inhibition of IRE1a RNase lowers blood
glucose levels and increases serum insulin levels in diabetic
animals.

• IRE1a inhibition protects beta cell function and survival.
• IRE1a inhibition suppresses ER stress-associated inflammation

and oxidative stress.
• Targeting IRE1a RNase may provide a potential effective

therapeutic for the treatment of diabetes.
INTRODUCTION

Endoplasmic reticulum (ER) stress is a condition in which
unfolded or misfolded proteins accumulate in the ER. Upon
ER stress, the unfolded protein response (UPR) is activated to
initially serve as an adaptive means to resolve ER stress, but
eventually becomes maladaptive when activated chronically,
leading to cellular dysfunction and death (1). The UPR is
transduced by three core pathways – inositol requiring enzyme 1-
a (IRE1-a), activating transcription factor 6 (ATF6), and PKR-like
ER kinase (PERK) (1). IRE-1a, the most evolutionarily conserved
among theUPR sensors, is an ER transmembrane proteinwith dual
serine/threonine kinase and RNase domains. Binding of misfolded
proteins to IRE1a luminal domain leads to its aggregation, thereby
eliciting the sequential activation of its kinase and RNase domains
(2–5). IRE1a hyperactivation has been observed to contribute to
pathological manifestation and progression (6–9) in multiple
diseases, and overexpression of IRE1a alone is sufficient to cause
cell death (10, 11). As ER stress in multiple cell types including b-
cells contributes to diabetes pathogenesis, targeting IRE1a or ER
stress has been proposed as a potential therapeutic option for
diabetes (5, 12). Several kinase inhibitors were recently reported
to protect b cells by inhibiting IRE1a kinase activity (11, 13, 14);
however, subsequent studies revealed that thesemolecules likely act
onother cellular targets toaccomplish their biological activities (15–
22). Therefore, it remains unclear whether IRE1a inhibition is
protective in b cells under ER stress.

On the other hand, IRE1a plays an important role in
maintaining ER homeostasis under both physiological settings
and the early adaptive phase of ER stress (6, 23–28). The IRE1a/
XBP1 axis is crucial for ER expansion in secretory cells such as
plasma cells (29) and prevents ER membrane permeabilization
and ER stress-induced cell death under pathological conditions
(24). In b-cells, IRE1a also critically regulates postprandial
insulin biosynthesis, proinsulin folding, and insulin secretion
(23, 28, 30, 31), As a corollary, IRE1a knockout b-cells exhibited
functional impairments (31, 32). Together, these findings
support an important physiological role of IRE1a and raise the
question as to whether inhibiting IRE1a represents a viable
approach in countering ER stress-related pathological diseases.

b-cell dysfunction and death is an important aspect in the
pathogenesis of all forms of diabetes (33–37). In b-cells,
proinsulin is misfolding-prone even under normal physiologic
Frontiers in Endocrinology | www.frontiersin.org 2
condition (35, 38–40) and proinsulin misfolding is regarded
as one of the primary initiating factors of ER stress in b-cells
(41–43). The autosomal-dominant diabetes known as Mutant
INS-gene-induced Diabetes of Youth (MIDY) (33, 37) manifests
proinsulin misfolding and progressive b-cell dysfunction and
death (33–37), and therefore is an ideal model to study the effect
of IRE1a in b-cell function and survival and in diabetes control.
In this study, we report, for the first time, the effect of IRE1a
RNase inhibitors on the diabetic conditions and b-cells in Akita
mouse (44–46), an animal model of MIDY. We showed that
IRE1a RNase is activated in Akita islets and that treating Akita
mice with IRE1a RNase inhibitors significantly lowers blood
glucose levels and increases serum insulin levels. These effects are
accompanied by functional b-cell preservation. Finally, ER stress
and associated oxidative stress and inflammation in b-cells are
suppressed. Collectively, these studies serve as a foundation for
targeting IRE1a as a therapeutic means in the treatment
of diabetes.
MATERIAL AND METHODS

Animal Studies
C57BL/6J wild-type (WT)mice andAkitamicewere obtained from
Jackson laboratory (BarHarbor,ME).ThegenotypingofAkitamice
was confirmedusing tetra-primerARMS-PCRapproach (46).Mice
were housed on a 12 h light (6:00 a.m. to 6:00 p.m.)−12 h dark (6:00
p.m. to 6:00 a.m.) cycle at an ambient temperature of 22°C and fed
normal chow diet and water ad libitum. All procedures involving
animals were performed in accordance with the protocol approved
by the Institutional Animal Care and Use Committee of the
University of Oklahoma Health Science Center. All experiments
were performed with age-matched female mice.

Akita mice at 5-6 weeks of age were randomly grouped for the
injection i.p. with either vehicle (n = 9 mice), STF (10 mg/kg
body weight; 2 mg/ml in 10% DMSO in saline buffer; n = 9 mice)
or 4m8C (10 mg/kg of body weight) once daily. These doses were
chosen based on previously reported efficacy shown on mice via
IP injection (47, 48). Compounds were dosed approximately 3−4
h before the initiation of the dark cycle (2−3 p.m.). Blood glucose
levels were measured using the OneTouch Ultra2 glucometer
after fasting for 6 h. Body weights were measured weekly. At the
end of treatment, mice were fasted for 4 h and euthanized, and
pancreata were removed and weighted. A tail end portion of the
pancreata was saved for insulin and proinsulin content measure
while the remaining pancreata were formalin fixed and
paraffin-embedded.
Glucose Tolerance Test and Insulin
Tolerance Test
Intraperitoneal glucose tolerance test (ipGTT) and intraperitoneal
insulin tolerance test (ipITT)were performed after 16-h and4-hour
fasting, respectively. Blood glucose levelsweremeasured at 0, 15, 30,
60, and 120minutes after intraperitoneal administration of glucose
(1.5 g/kg body weight) for ipGTT or insulin (0.75 IU/kg body
weight) for ipITT.
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Islet Isolation Procedure
Islets were isolated using the standard collagenase digestion
method. Briefly, the common bile duct was cannulated and
distended with Collagenase P (0.5 mg/ml, Sigma-Aldrich, USA)
in 1x Hank’s balanced salt solution. Pancreata were removed and
incubated inwater bath at 37C for 25m. Islets were separated using
Histopaque-1077 (Sigma-Aldrich, USA) and cultured overnight at
37°C in RPMI1640 media containing 10% FBS.

Islet Western Blotting for
Proinsulin Misfolding
Islets isolated from 6-week Akita or WT B/6J mice were treated
with STF 20 mM or DMSO vehicle (0.1%) for 3 h. Proteins were
extracted with RIPA buffer (10 mM Tris pH 7.4, 150 mM NaCl,
0.1% SDS, 1% NP40, 2 mM EDTA) plus protease inhibitor/
phosphatase inhibitor cocktail (Sigma-Aldrich) and centrifuged
at 4°C for 10 min at 10,000 g. Total protein concentration in the
cell lysate was determined by BCA. Samples of ~ 20 mg protein
prepared in Laemmli sample buffer without (non-reducing) or
with (reducing) 5% b-mercaptoethanol were resolved on 4-12%
Bis-Tris NuPAGE gels (Invitrogen) at 100 V for 60 min. The
nonreducing gels were incubated in 25 mM dithiothreitol (DTT)
solution for 10 min at room temperature before being transferred
to PVDFmembranes for 25 min at 4°C at 40 V. Membranes were
probed with anti-proinsulin antibody (CCI-17, NOVUS) and
HRP-conjugated secondary antibodies (1:3000; Santa Cruz
Biotechnology, CA, USA).

RNA Isolation and RT-PCR
Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer’s protocol. 2 mg of
total RNA was reverse transcribed using Superscript kit
(Invitrogen). Real-time PCR was performed with a CFX96 Real-
Time PCR detection system (Bio-Rad, CA) using SYBR Select
Master Mix (Applied Biosystems, CA). Relative mRNA levels
were normalized against Cyclophilin A. Primers used are shown
inTable S1. Regular RT-PCRwas performed and the products was
resolved by agarose gel electrophoresis. The unspliced and spliced
XBP1 mRNA levels were quantified using ImageJ software
(National Institutes of Health, Bethesda, MD).

Glucose-Stimulated Insulin or
Proinsulin Secretion
20 primary islets isolated from Akita mice treated with STF or
vehicle were seeded in 96-well plates overnight and then
incubated in fresh KRBH buffer (115 mM NaCl, 5 mM KCl, 24
mM NaHCO3, 2.5 mM CaCl2, 1 mMMgCl2, 10 mM HEPES, 2%
w/v BSA, pH 7.4) containing 2.5 mM glucose for 1 h. Islets were
incubated for an additional hour in KRBH buffer containing 2.5
or 16.7 mM glucose. Secreted insulin and proinsulin levels were
measured with insulin ELISA kits (ALPCO, Salem, NH) and Rat/
Mouse Proinsulin kit (Mercodia), respectively and normalized to
total protein of cell lysates.

Insulin and Proinsulin Content Measurements
Pancreatic tissues or islets were incubated and homogenized in
1.5% HCl in 70% EtOH overnight at -20C, and the solution
Frontiers in Endocrinology | www.frontiersin.org 3
neutralized with equal volume of 1M Tris pH 7.5. Insulin and
proinsulin were measured by ELISA kits as outlined above and
normalized to weights of pancreas for pancreatic tissues or to
protein levels for islets.

Immunofluorescent Staining and Islet
Mass Measurement
Pancreata were fixed in formalin and paraffin-embedded. 6-8 slide
sections on average from each mouse for all mice were sectioned
with the separation at 150 mm increments. Images covering the
entire tissue sample were captured in each section. The entire
pancreas tissue, glucagon+, and insulin+ areas in each image were
measured using ImageJ software. Relative b-cell area = sum of all
islet b-cell areas/sum of the total pancreatic area, and normalized
against the b-cell area of WT B/6J mice (set as 1). All images were
taken with an Olympus FV1000 confocal microscope and
quantified with Image-J histogram software.

Antibodies used for staining: GP anti-insulin antibody (A0564,
1:500;Dako),mouse anti-glucagonantibody (G2654, 1:500; Sigma),
mouse anti-caspase 3 (cat# 9446, 1:500, CST), rabbit anti-Ki67
(Ab15580, 1:250, Abcam), mouse anti-proinsulin (GS-9A8, 1:100,
DSHB), Anti-4-Hydroxynonenal [HNEJ-2] (ab48506, Abcam),
DAPI (0.5 mg/mL), and Alexa Fluor 488-, 555-, and 647-
conjugated secondary antibodies (Jackson ImmunoResearch).

TUNEL Staining
TUNEL staining was performed together with antibodies as above
in pancreatic sections with In Situ Cell Death Detection Kit-
Fluorescein (Roche) according to the manufacturer’s instructions.

Transmission Electron Microscopy (TEM)
Isolatedmouse isletswerefixedwith0.1Msodiumphosphate buffer
(pH 7.2) containing 2% glutaraldehyde and 2% paraformaldehyde
for 1 h, then exposed to 2% osmium tetroxide, stained with 2%
uranyl acetate, dehydrated with ethanol, and embedded in Epon
(TAAB). Ultra-thin sections were stained with uranyl acetate and
lead citrate, and images were recorded with a Hitachi H-7600
transmission electron microscope (Hitachi).

Statistical Analysis
Data were analyzed using the unpaired two-tailed Student’s t-test
or one-way ANOVA for multiple comparisons. All values are
reported as mean ± SEM and p<0.05 was considered
statistically significant.
RESULTS

Up-Regulation of IRE1a RNase Activity in
Pancreatic Islets in Akita Mice
The C96Ymissense mutation in the Ins2 gene in Akita mice causes
mutant proinsulin protein misfolding that is responsible for ER
stress (35). Previously, the ER stress response markers PERK and
ATF6 have been reported to be up-regulated in in vitro b-cell lines
carrying the Ins2Akita/+ mutation or in islets freshly isolated from
Akita mice (44, 49, 50). Consistent with this, we observed that the
mRNA levels of the PERK pathway genesATF4 andCHOP and the
October 2021 | Volume 12 | Article 749879
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ATF6 target gene Bip were up-regulated in islets freshly isolated
from Akita mice (herein terms Akita islets) over the age of 3 weeks
(Figures S1A–C).However, how IRE-1a responds to thismutation
in b-cells in vivo is unclear. Earlier studies using in vitro b-cell lines
yielded controversial results, with one report showing an activation
of the IRE-1a-XBP1 pathway in Ins2Akita/+ b-cell lines (51) and
another report showing a down-regulation of IRE-1a activity in
stable b-cell lines expressing Ins2Akita/+ mutation (52). To
investigate the in vivo IRE-1a activity in Akita islets, we first
examined the splicing of Xbp1 mRNA, a direct target of IRE-1a
RNase. We observed a gradual increase in Xbp1mRNA splicing in
Akita islets from age of 2 weeks onwards compared to compared to
the age-matched WT mice (Figures 1A, A’), as assessed by the
electrophoretic separation of RT-PCR products. Similarly,
quantitative RT-PCR also showed that spliced Xbp1 (Xbp1-s)
mRNA levels significantly increased in the Akita islets over a
period of 12 weeks while total Xbp1 (Xbp1-t) mRNA levels
increased only slightly during the same period (Figures 1B, C).
Second, we investigated the transcription of several XBP1 target
Frontiers in Endocrinology | www.frontiersin.org 4
genes EDEM1 and P58, and observed a marked upregulation in
their mRNA levels inAkita islets overWT islets (Figures 1D, E), as
assessed by qRT-PCR. Third, as IRE-1a hyperactivation is
associated with activation of IRE1-dependent decay of
mRNA (RIDD) in which IRE1 cleaves mRNAs, we analyzed the
mRNA levels of Blos1 and Col6a1, two typical RIDD targets, by
qRT-PCR. We observed that Blos1 and Col6a1 mRNA levels
decreased progressively in the Akita islets from 3-week old
onwards (Figures 1F, G). Together, our results demonstrate that
IRE1a activity was already elevated at around 2 weeks of age, prior
to the development of hyperglycemia in Akita mice, and continued
to elevate until the Akita mice developed overt diabetes.

Treatment of IRE1a RNase Inhibitor STF
Ameliorates Diabetes in Akita Mice
The results presented above in conjunction with previous
observations that the overexpression of IRE-1a led to cell
death in transfected cells (10, 53, 54) suggest that inhibiting
IRE-1a may protect b-cells from Akita mutation-induced
A B

D E

F G

C

FIGURE 1 | IRE1a RNase activity up-regulation in islets of Akita mice. (A, A’). XBP1 mRNA levels were analyzed in islets isolated from Akita mice or age-matched
C57B/6 mice at the indicated ages by RT-PCR, and the products were resolved by agarose gel electrophoresis. The full length (unspliced, XBP1-u) and spliced
(XBP1-s) forms of XBP1 mRNA were indicated (A) and quantified (A’). Cyclophilin A mRNA was used as an internal control. The data shown are representative of 3
independent experiments. (B–G) mRNA levels for indicated genes were analyzed in islets isolated from Akita mice or age-matched C57B/6 mice by qRT-PCR. The
results are expressed as the fold change over mRNA levels in respective age-matched controls (represented by the dashed line) and are representative of 3
independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001. Bars indicate SEM.
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dysfunction and death and ameliorate the diabetic condition in
Akita mice. We therefore investigated the effect of
pharmacological inhibition of IRE-1a activity on b-cell and
diabetic conditions in Akita mice. We treated Akita mice with a
specific IRE-1a RNase inhibitor STF-083010 (STF, 10 mg/Kg of
BW via IP injection, a dose previously shown to significantly
inhibits IRE-1a RNase activity in vivo) (47, 55) for 6 weeks and
detected a gradual and significant dampening of blood glucose
levels over the treatment period (Figure 2A). In contrast, the
vehicle-treated Akita mice continued to develop increasing
hyperglycemia throughout the treatment period to reach up to
400mg/dL (Figure 2A). Furthermore, STF treatment significantly
improved glucose tolerance and decreased AUC (area under the
curve) in Akita mice compared to vehicle group (p<0.05;
Figures 2B, C). On the other hand, the STF- and vehicle-treated
Akita mice displayed comparable body weight (Figure 2D) and
insulin sensitivity (Figures 2E, F), suggesting that STF lowers
Frontiers in Endocrinology | www.frontiersin.org 5
blood glucose levels not by altering insulin sensitivity. Finally,
serum insulin levels in the STF-treated Akita mice were markedly
increased compared to that of vehicle group; in particular, at
30 min after glucose injection (vehicle 0.2± 0.1 ng/ml vs. STF 1.5±
0.3 ng/ml; p<0.001) (Figure 2G). Together, these results indicate
that STF treatment significantly alleviates the diabetic conditions
in Akita mice.

STF Treatment Attenuates IRE1-a Activity
in Islets of Akita Mice
To investigate whether the STF amelioration of diabetic conditions
in Akita mice is due to the inhibition of IRE1a activity in islets, we
first examined the status of IRE1a-mediated Xbp1mRNA splicing
in islets from STF-treated Akita mice. As shown in Figure 3A, the
level ofXBP1-smRNAwas significantly reduced in islets from STF
group relative to vehicle group, as assessed by RT-PCR followed by
electrophoretic separation. This result was corroborated by qRT-
A B

D E F

G

C

FIGURE 2 | STF ameliorates diabetic conditions of Akita mice. (A) Fasting blood glucose levels were measured in Akita mice treated with vehicle (n = 8) or STF
(n = 7) at indicated time points. (B, C) Glucose tolerance test. Blood glucose levels (B) measured at indicated time points after intraperitoneal injection of glucose
(1.5g/kg body weight) following 6-h fasting and the AUC (area under the curve, C) at the end of 5-week treatment. (D) Body weight of mice. (E, F) Insulin tolerance
test. Blood glucose levels (E) measured at indicated time points after intraperitoneal injection of insulin (0.75 IU/kg body weight) following 4-h fasting and the AUC a
day before euthanization (F). (G) In vivo glucose-stimulated insulin secretion. Serum insulin levels measured at indicated time points after intraperitoneal injection of
glucose (1.5g/kg body weight) following 6-h fasting as in (C) *P < 0.05, **P < 0.01, and ***P < 0.001. Bars indicate SEM.
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PCR using Xbp1 splicing-specific primers (Figure 3B), whereas
XBP1-t mRNA levels were only moderately affected (Figure 3C).
We further detected that the mRNA levels of XBP1 target genes
EDEM1, P58, and Bip were highly suppressed in islets from STF-
treated mice (Figures 3D–F). Moreover, the transcript levels of
generic RIDD targets of IRE1-a—Col61a and Blos1— were
suppressed in the Akita islets; however, their levels were
significantly reversed in islets from STF-treated mice
(Figures 3G, H). In addition, under ER stress, insulin 1 and
insulin 2 mRNAs are known to be cleaved directly by IRE1-a
RNase activity as b-cell-specific RIDD targets (10, 56). Both insulin
1 and insulin 2 mRNAs were expectedly down-regulated in Akita
islets (Figures 3I, J).However, STF treatment significantly reversed
their expression in the Akita islets (Figures 3I, J). Together, our
results reveal that STF treatment suppresses Akita mutation-
induced IRE-1a activation in Akita islets. Notably, STF at the
dose of 10 mg/kg BW reversed hyperactivated IRE1a activity to
normal level but did not completely abolish IRE-1a activity
(Figures 3A, B). Interestingly, although STF is known to inhibit
IRE-1a activity only, our results revealed that STF also suppressed
the Akita mutation-induced increase in ATF4 and CHOP mRNA
levels, key components of thePERKpathway (Figures S2A,B). The
effect of STF on PERK pathway could be due to cross-talks among
thebranchesofUPRunder invivo conditionsaspreviously reported
(57, 58).
Frontiers in Endocrinology | www.frontiersin.org 6
STF Promotes b-cell Viability in Akita Mice
As diabetes progression in Akita mice is associated with gradual
b-cell loss and IRE-1a is activated before the onset of diabetes in
Akita mice, we investigated whether the STF improvement of
diabetic conditions is associated with the protection of islet b-
cells in the Akita mice. In pancreatic sections, Akita islets not
only exhibited reduced b-cell mass but also significantly
decreased insulin staining intensity in existing b-cells
(Figures 4A, B, D, E), indicative of b-cell loss and
dysfunction. In contrast, the STF-treated Akita mice possessed
approximately twice the b-cell mass and significantly higher
insulin staining intensity compared to that in vehicle-treated
mice (Figures 4B–E). On the other hand, the a cell numbers,
marked by glucagon immunostaining, remained comparable
between STF and vehicle groups (Figures 4A–C). Consistent
with these results, total pancreatic insulin content as quantified
by ELISA was markedly higher in STF-treated Akita mice than
their vehicle-treated counterparts (Figure 4F). To determine
whether the increase in b-cell mass by STF could be attributed
to an inhibition of islet cell apoptosis, we assessed apoptosis
using TUNEL staining, a marker for apoptosis. An increase in
TUNEL + insulin+ cells was observed in the vehicle-treated Akita
mice relative to WT mice (Figures 4G–J). However, TUNEL
staining was considerably reduced in STF-treated Akita to a level
comparable to that of WT (Figures 4G–J). Treatment with STF
A B

D E F

G IH J

C

FIGURE 3 | STF inhibits IRE1a RNase activity. (A) XBP1 mRNA levels were analyzed in islets isolated from Akita mice treated with STF or vehicle as in by RT-PCR
and the products were resolved by agarose gel electrophoresis. The full length (unspliced, XBP1-u) and spliced (XBP1-s) forms of XBP1 mRNA were indicated and
quantified by ImageJ program. Cyclophilin A mRNA was used as an internal control. (B–J) mRNA levels for indicated genes were analyzed in islets isolated from
Akita mice treated with STF or vehicle by qRT-PCR. The results are expressed as fold change and are representative of 3 independent experiments. *P < 0.05,
**P < 0.01, and ***P < 0.001 compared to Akita-vehicle group. Bars indicate SEM.
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also significantly reduced the number of CASP+ (a critical
protein in the execution of apoptosis) in insulin+ cells of Akita
islets compared to that in vehicle-treated islets (Figures S3A–D).
In contrast, STF treatment appeared not to affect b-cell
proliferation as the frequency of Ki67+ insulin+ cells remained
comparable between the STF- and vehicle-treated mice (Figure S4).
Lastly, the expression of apoptotic effector genes BAX and Bak1,
pro-apoptotic inducer gene p53, and negative cell-cycle regulator
p21 were significantly suppressed in the islets of STF-treated Akita
Frontiers in Endocrinology | www.frontiersin.org 7
mice (Figures S5A–D). In sum, these results indicate that inhibition
of increased IRE1-a activity by STF suppresses b-cell apoptosis in
Akita mice which in turn leads to a preservation of b cell mass.

STF Improves b-Cell Function in
Akita Mice
We interrogated whether STF also improves b-cell function.
Indeed, our observations that STF heightened insulin production
in b-cells (Figures 4C–F) and increased serum insulin levels
A

B

D E F

G

I

H

J

C

FIGURE 4 | STF preserves b-cell mass and viability and suppresses b-cell apoptosis in Akita mice. (A-C) Immunofluorescence staining of pancreatic sections.
Pancreases were sectioned and slides were stained with anti-insulin antibody (green, b-cell marker), anti-glucagon antibody (red, a-cell marker), and DAPI (blue).
Slides were imaged with an Olympus FV1000 confocal microscope. (D) Quantification of insulin+ b-cell area after normalized to that for C57B/6 mice. (E) Insulin
staining intensity. The average insulin staining intensity was quantified using ImageJ and normalized with that for C57B/6 mice designated as 1. (F) Insulin content
measurement by ELISA as detailed in Methods and Materials. (G–I) TUNEL staining in pancreatic sections. Pancreatic sections were stained with anti-insulin
antibody (green, b-cell marker), TUNEL (red, cell death), and DAPI (blue). Slides were imaged with an Olympus FV1000 confocal microscope. (J) Quantification of
percentage of TUNEL+ insulin+ b-cells/insulin+ cells. At least 50 islets were counted for each group. Data are the mean± SEM. **P < 0.01 and ***P < 0.001.
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(Figure 2G) suggest an improvement in Akita b-cell function. To
further interrogate this, we assessed the glucose-stimulated insulin
secretion in islets and found that insulin secretion was significantly
higher under both basal (2.5 mM glucose concentration) and
stimulated (16.7 mM glucose concentration) conditions in islets
isolated from STF-treated Akita mice compared to vehicle-treated
group (Figure 5A). Next, as high glucose and the ensuing ER stress
in b-cells down-regulate the expression of b-cell-specific
transcription factors (23, 59–62), which are essential for the
maintenance of normal b-cell function (63–65), and there is
evidence indicating b-cell dedifferentiation in Akita mice (66), we
investigated the effect of STF treatment on their expression levels in
Akitab-cells.As expected, themRNAlevelsof severalb-cell-specific
transcription factors (Pdx1, MafA, NeurD1, and Nkx6.1) were
significantly down-regulated in Akita islets compared to WT
islets (Figures 5B–E). Notably, their reduced expression was
markedly reversed in islets of Akita mice treated with STF
(Figures 5B–E).

Akita mutant proinsulin tends not only to misfold but also
forms heterogeneous complex with WT proinsulin, thus
entrapping WT proinsulin in the ER (34, 35, 67) and limiting
bioactive insulin production and secretion, thus leading to ER
stress and b-cell dysfunction and death (44, 68). The disturbed
ER environment in turn further exacerbates proinsulin
misfolding (69). We therefore investigated whether the
increased insulin production (Figures 2G, 4C–F, 5A) seen
with STF treatment is associated with reduced proinsulin
levels. As expected, proinsulin content was dramatically and
significantly increased in the Akita mouse pancreas relative to
WT pancreas, but was reversed to normal level in the STF-
treated Akita pancreas (Figure 5F). Of note, this effect of STF on
proinsulin is opposite to that seen for insulin (Figure 4F). While
the STF suppression of proinsulin level in Akita islets can be
interpreted as an outcome of STF-improved ER environment
which permits more proinsulin conversion to mature insulin; it is
also possible that this effect is mediated through increased
proinsulin release from b cells or through modulation of
proinsulin misfolding. To address whether STF increases
proinsulin secretion, we analyzed proinsulin levels in Akita
islets from Akita mice treated with STF or vehicle. We found
that proinsulin content (cell lysate) and secretion (supernatant)
were both attenuated in STF group, under either basal (2.5 mM)
or high (16.7 mM) glucose concentration (Figures 5G, H). To
address whether STF affects proinsulin misfolding, we examined
proinsulin folding status in Akita islets under nonreducing
condition. Consistent with previous reports (42), a significant
port of the proinsulin in nonreduced lysates of Akita islets was
detected as high molecular weight oligomers relative to WT islets
(Figure 5I). STF treatment of Akita islets showed no apparent
effect on proinsulin oligomers (Figure 5I).

Finally, as mature insulin is formed from proinsulin processed in
the Golgi complex and stored in secretory granules for release, we
examined the effect of STF on insulin secretory granules and
ultrastructure of islet b-cells using transmission electron
microscopy. Our results showed that whereas there was marked
reduction in the number of dark electron dense-core granules
Frontiers in Endocrinology | www.frontiersin.org 8
(mature insulin granules) and increase in the number of light or
“gray” electron dense-core granules (immature insulin granules) in
Akita b-cells compared to WT b-cells (Figures 5J–L), b-cells in the
STF-treated Akita mice exhibited a marked increase in dense-core
insulin granules and (Figure 5L), similar to those seen in the WT
islets (Figure 5J). Together, these results demonstrate that STF
normalizationof IRE-1aactivity facilitates insulingranule formation.

STF Suppresses ER Stress-Related
Inflammation and Oxidative Stress in
Akita Islets
ER stress has been shown to cause and potentiate inflammation
and oxidative stress that cooperatively contribute to ER stress-
mediated cell death (70). We therefore investigated whether STF
treatment affects these processes in the Akita islets. We found
that mRNA levels of the ER stress-associated pro-inflammatory
cytokine genes IL-1b, IL6, and TNF were increased in the Akita
islets compared to WT islets (Figures 6A–C). We also detected
increased transcript levels of MCP1 and CD68 (Figures 6D, E),
markers that are highly expressed in tissue monocytes and
macrophages, respectively. Strikingly, STF corrected the mRNA
levels of these genes to normal levels in the Akita islets
(Figures 6A–E).

Next, we assessed the effect of STF on oxidative stress in Akita
islets. We observed an obvious nuclear accumulation of the lipid
peroxidation product 4-hydroxynonenal (4-HNE), a marker of
oxidative stress, in the Akita islets compared to WT islets
(Figures 6F, G). In addition, the mRNA levels of several
antioxidant genes, including those encoding the mitochondrial
uncoupling protein 2 (UCP2), glutathione peroxidase 1 (Gpx1),
superoxide dismutase 1 (Sod1), catalase (CAT), and heme
oxygenase 1 (Hmox1), were up-regulated in the Akita islets
relative to WT islets (Figures 6I–M), reflecting a compensatory
mechanism of anti-oxidation through the antioxidant gene up-
regulation (71, 72). Notably, the nuclear accumulation of 4-HNE
and up-regulation of antioxidant genes were abolished in the islets
of Akita mice treated with STF (Figures 6G, H).

Ire1-a RNase Inhibitor 4m8C Ameliorates
Diabetic Conditions in Akita Mice
To ascertain that STF improves diabetic conditions of Akita mice
via inhibition of IRE1a, we utilized another structurally distinct
IRE1a RNase inhibitor 4m8C (73) for the efficacy studies.
Treatment with 4m8C improved fasting blood glucose levels in
Akita mice while vehicle-treated Akita mice showed a progressive
rise in blood glucose level (Figure 7A). 4m8C treatment also
significantly improved glucose tolerance in Akita mice
(Figures 7B, C), with no apparent difference in body weight
(Figure S6) or insulin tolerance (Figure 7D), compared to
vehicle-treated Akita mice. Moreover, there was a marked
increase in serum insulin levels and pancreatic insulin content in
Akita group treated with 4m8C (Figures 7E, S7). 4m8C treatment
also significantly preserved the b-cell area and restored insulin
staining intensity in b-cells (Figures 7F–J). Furthermore, 4m8C
treatment significantly alleviated the Akita mutation-induced
increase in XBP1 splicing (Figures S8A, B). 4m8C also attenuated
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the heightenedmRNA levels of the XBP1-s target genes Grp94, Bip
and P58 in Akita islets (Figures S8C–E) and significantly reversed
the repressed levelsofRIDDtargetmRNAsBlos1,Col6a1, and INS1
in Akita islets (Figures S8F–H). Lastly, 4m8C attenuated the
Frontiers in Endocrinology | www.frontiersin.org 9
increased levels of the PERK pathway genes ATF4 and CHOP in
Akita islets (Figures S8I, J). Together, we conclude that both STF
and 4m8C are able to correct the diabetic conditions of Akita mice
likely through the inhibition of Ire1a RNase activity.
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FIGURE 5 | STF improves Akita islet b-cell function. (A) Glucose-stimulated insulin secretion of 20 islets isolated from Akita mice treated with STF or vehicle and
incubated with 2.5 mM and 16.7 mM glucose. Secreted insulin was measured by ELISA. The data was presented as fold change and normalized with total protein
concentration, with the amount of insulin secreted in response to 2.5 mM glucose from vehicle-treated group set to 1.0. (B–E) mRNA levels for indicated genes were
analyzed in islets isolated from Akita mice treated with STF or vehicle by qRT-PCR. The results are expressed as fold change and are representative of 3
independent experiments. (F) Proinsulin content measurement by ELISA as detailed in Methods and Materials. (G, H) Proinsulin content and secretion measurement.
20 islets isolated from Akita mice treated with STF or vehicle were incubated with 2.5 mM and 16.7 mM glucose. Secreted proinsulin was measured by ELISA.
Proinsulin content measurement by ELISA as detailed in Methods and Materials. The data was presented as fold change and normalized with total protein
concentration, with the amount of proinsulin in response to 2.5 mM glucose from vehicle-treated group set to 1.0. (I) Proinsulin misfolding detection by Western
blotting under nonreducing condition. Islets were treated with compounds at indicated concentrations for 16 hours. The data is representative of 3 independent
experiments. (J–L) Ultrastructure of b-cells in islets isolated from Akita treated with STF as in by transmission electron microscopy. Images at the top panel and the
bottom panel were taken at 3,000x and 10,000x, respectively. Arrows point to dark mature insulin granules. *P < 0.05, **P < 0.01, and ***P < 0.001.
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DISCUSSION

In this study, we observed that IRE-1a activity was progressively
up-regulated in the islets of Akita mice in an age-dependent
Frontiers in Endocrinology | www.frontiersin.org 10
fashion and that the increased IRE1a activity predates the onset
of diabetes in Akita mice. Importantly, we showed that two IRE-
1a RNase inhibitors STF and 4m8c markedly ameliorated
the diabetic conditions and protected b-cell viability and
function in Akita mice, thus revealing IRE-1a as an important
target in b-cell protection and diabetes therapy.

In further pursuit of how the inhibition of Ire1a RNase
activity protects against b-cell dysfunction and loss in Akita
mice, we examined the effect of STF on ER stress/UPR. We
discovered that not only was Ire1a RNase activity reduced, as
expected, but also the insulin misfolding-induced activation of
PERK pathway was suppressed, which likely reflects the cross
talk among different UPR pathways (74, 75). Additionally, the
up-regulated levels of inflammation and oxidative stress in Akita
islet cells were suppressed by the treatment of Ire1a inhibitor.
Therefore, our data reveal the amelioration of ER stress and
downstream inflammation and oxidative stress as the underlying
mechanisms of the protection of b-cell dysfunction and demise
in Akita mice by inhibiting Ire1a activity.

Previous studies have reported that imatinib and similar tyrosine
kinase inhibitors exhibit b cell protection by inhibiting IRE1a kinase
activity, either directly or through an intermediary factor, leading to
the attenuation of IRE1aRNase activity (11, 13, 14). However, given
the promiscuous nature of kinase inhibitors which generally target
multiple kinases, it is possible that IRE1amight not be the sole kinase
target or even the cellular target of imatinib and related tyrosine
kinase inhibitors for their biological activities. Indeed, for example,
KIRA6, a smallmoleculepublishedas an IRE1akinase inhibitor (11),
was found to potently inhibit the activity of over 60 kinases by >70%
attenuation among 220 kinases tested (15, 16). In addition to target
kinases, KIRA6 was also discovered to bind a large number of
nonkinase nucleotide-binding proteins by photoaffinity labeling
approach (17). Similarly, imatinib has also been reported to serve
as a partial agonist of peroxisome proliferator-activated receptor
gamma (PPARg) (18, 19) and a modulator of autophagy (20–22),
both ofwhichprotectb cell function and viability (76–79). Therefore,
the effect of KIRA6, imatinib, or related tyrosine kinase inhibitors on
b cell protection is mostly likely the outcome of acting on multiple
factors in addition to (if any) IRE1a inhibition.Moreover, IRE1a also
directly activates signaling pathways such as JNK/ASK1-MAPK
pathways, which regulates cell death and fate (80, 81),
independently of its RNase domain. Therefore, even if the above
kinase inhibitors do engage IRE1a for their effects, it is still unknown
whether the inhibition of IRE1a RNase function is critical in
ameliorating the diabetic condition. Our current work provides
clear evidence that inhibiting IRE1a RNase activity alone with two
different IRE1a RNase inhibitors STF and 4m8c is sufficient to
significantly improve the diabetic condition and b cell function and
health in Akita mice. While we cannot rule out the possibility that
these compoundsmight have other targets that are responsible for or
contributing to the improvement of diabetes, we consider such a
possibility unlikely as these two different compounds would have
most likely engaged in different unknown targets if not the known
target IRE1a. In addition, these compounds have been shown to
provide benefits in other disease models as IRE1a RNase inhibitors
(47, 48).
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FIGURE 6 | STF attenuates the ER stress-associated inflammation and
oxidative stress. (A–E) mRNA levels for indicated genes involving inflammation
were analyzed in islets isolated from Akita mice treated with STF or vehicle (as
in) by qRT-PCR. The results are expressed as the fold-increase over mRNA
levels and are representative of 3 independent experiments. (F–H)
Immunofluorescent staining in pancreatic sections. Pancreatic sections were
stained with anti-insulin antibody (green, b-cell marker), 4-HNE (red, oxidative
stress), and DAPI (blue). Slides were imaged with an Olympus FV1000
confocal microscope. (I–M) mRNA levels for indicated anti-oxidant genes
were analyzed in islets isolated from Akita mice treated with STF or vehicle by
qRT-PCR. The results are expressed as fold change and are representative of
3 independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001
compared to Akita-vehicle group. Bars indicate SEM.
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IRE1a has been documented to serve an important modulatory
role in multiple physiological contexts including b cell function,
growth and survival, which poses a question as to whether IRE1a
inhibition would actually improve b cell function and survival and
diabetic conditions under ER stress-related situations. Our results
provided insights to this question by showing that pharmacological
inhibition of IRE1a markedly ameliorates diabetic condition and
improves b cell mass and function in the Akita diabetes mice. Of
note, unlike a genetic knockout, pharmacological inhibition of
Frontiers in Endocrinology | www.frontiersin.org 11
IRE1a of appropriate dose does not totally abolish the IRE1a
function but instead reverses the hyperactivated IRE1a back to
basal level as shown by our data. In turn, the IREa hyperactivation-
induced diabetic conditions inAkitamice are correctedwithout the
unwanted side effects that are associated with IREa knockout. Our
findings therefore highlight the notion that the normalization (not
elimination) of IRE1a activity as the key to an effective therapeutic
use of pharmacological inhibitors on proteins with physiologically
important but pathologically heightened activity.
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FIGURE 7 | 4m8C ameliorates diabetic conditions of Akita mice and inhibits IRE1a RNase activity. (A) Fasting blood glucose levels were measured in Akita mice treated with
vehicle (n = 7) or 4m8C (n = 6) at indicated time points. (B, C)Glucose tolerance test. Blood glucose levels (B)measured at indicated time points after intraperitoneal injection of
glucose (1.5g/kg body weight) following 6-h fasting and the AUC (area under the curve,C). (D) Insulin tolerance test. Blood glucose levels measured at indicated time points after
intraperitoneal injection of insulin (0.75 IU/kg body weight) following 4-h fasting. (E) In vivo glucose-stimulated insulin secretion. Serum insulin levels measured at indicated time
points after intraperitoneal injection of glucose (1.5g/kg body weight) following 6-h fasting. (F–H) Immunofluorescence staining of pancreatic sections. Pancreases were sectioned
and slides were stained with anti-insulin antibody (green, b-cell marker), anti-glucagon antibody (red, a-cell marker), and DAPI (blue). Slides were imaged with an Olympus FV1000
confocal microscope. (I)Quantification of insulin+ b-cell area. Total area of all islets per section was calculated from a total of six sections for each of three mice using insulin+ cells
to demarcate islet b-cells and normalized with that for C57B/6 mice designated as 1. (J) Insulin staining intensity. The average insulin staining intensity was quantified using ImageJ
and normalized with that for C57B/6 mice designated as 1. *P < 0.05, **P < 0.01, and ***P < 0.001. Bars indicate SEM.
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CONCLUSIONS

In summary, our studies showed that IRE1a RNase inhibitors STF
and 4m8c preserves b-cells and prevents the development of
diabetes in insulin protein misfolding-causing Akita mice.
This protection is associated with significant increase in the
number of b-cells through the attenuation of apoptosis and the
preservation of b-cell function including basal and glucose-
stimulated insulin secretion. IRE1a inhibitors achieved these
effects through the suppression of ER stress-induced excessive
activation of UPR. These findings may offer an effective
therapeutic strategy for MIDY patients. In addition, as ER stress
and insulin misfolding are well established in their roles in b cell
dysfunction and demise in type 2 diabetes, IRE1a inhibition may
well be considered for the treatment of type 2 disease.
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