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Abstract. The two major intermediate filament pro- 
teins in glandular epithelia are keratin polypeptides 8 
and 18 (K8/18). To evaluate the function and potential 
disease association of K18, we examined the effects of 
mutating a highly conserved arginine (arg89) of K18. 
Expression of K18 arg89~his/cys and its normal K8 
partner in cultured cells resulted in punctate staining as 
compared with the typical filaments obtained after ex- 
pression of wild-type K8/18. Generation of transgenic 
mice expressing human K18 arg89~cys resulted in 
marked disruption of liver and pancreas keratin fila- 
ment networks. The most prominent histologic abnor- 
malities were liver inflammation and necrosis that ap- 
peared at a young age in association with hepatocyte 
fragility and serum transaminase elevation. These ef- 

fects were caused by the mutation since transgenic mice 
expressing wild-type human K18 showed a normal phe- 
notype. A relative increase in the phosphorylation and 
glycosylation of detergent solubilized K8/18 was also 
noted in vitro and in transgenic animals that express 
mutant K18. Our results indicate that the highly con- 
served arg plays an important role in glandular keratin 
organization and tissue fragility as already described 
for epidermal keratins. Phosphorylation and glycosyla- 
tion alterations in the arg mutant keratins may account 
for some of the potential changes in the cellular func- 
tion of these proteins. Mice expressing mutant K18 pro- 
vide a novel animal model for human chronic hepatitis, 
and for studying the tissue specific function(s) of K8/18. 

C 
YTOPLASMIC intermediate filaments (IF) 1 are tissue 

and differentiation-state specific cytoskeletal pro- 
teins that have been well characterized in higher 

eukaryotes (reviewed by Steinert and Roop, 1988; Klym- 
kowsky et al., 1989; Skalli and Goldman, 1991; Fuchs and 
Weber, 1994). All IF proteins have three common struc- 
tural domains: a central a-helical "rod" domain of 310--350 
amino acids which is flanked by non-a-helical NH2-termi- 
nal "head" and COOH-terminal "tail" domains. Although 
the function(s) of IF proteins remain poorly understood, a 
role in maintaining cell integrity has emerged based on a 
number of human blistering skin diseases that are caused 
by point mutations in epidermal keratin IF proteins (re- 
viewed by Fuchs and Coulombe, 1992; Steinert and Bale, 
1993; Fuchs et al., 1994; McLean and Lane, 1995). An im- 
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1. Abbreviat ions used in this paper. ALS, amyotrophic lateral sclerosis; 
EBS, epidermolysis bullosa simplex; EHK, epidermolytic hyperkeratosis; 
EN, epidermal nevi; EPPK, epidermolytic palmoplantar keratoderma; 
GIcNAc, N-acetylglucosamine; IF, intermediate filaments; K, keratin; NF, 
neurofilament; SGOT, serum glutamic-oxaloacetic transaminase; SGPT, 
serum glutamic-pyruvic transaminase; WT, wild type. 

portant breakthrough in the identification of IF related 
human diseases came after expressing a truncated epidermal 
keratin in transgenic mouse keratinocytes, with subsequent 
development of a disease resembling human epidermolysis 
bullosa simplex (EBS) (Vassar et al., 1991; Coulombe et 
al., 1991). Similarly, transgenic mice that over-express neu- 
rofilament-(NF)-L or NF-H (Xu et al., 1993; Cote et al., 
1993) developed a neuromuscular disease that is similar to 
amyotrophic lateral sclerosis (ALS). Based on these latter 
animal models, several patients with sporadic ALS were 
subsequently found to have mutations in NF-H (Figlewicz 
et al., 1994). 

In simple-type epithelia such as in the liver, exocrine 
pancreas, and intestine, the two major IF proteins are ker- 
atin (K) polypeptides 8 and 18 (K8/18) with variable 
expression of K19 and K20 (Moll et al., 1982, 1990, 1993; 
Calnek and Quaroni, 1993). K8 and K18 form obligate 
noncovalent heteropolymers which coalesce into a cyto- 
plasmic filamentous meshwork that can also include other 
IF proteins that may be expressed in the same cells (Moll 
et al., 1982). K8 and K18 are phosphoglycoproteins with 
serine phosphorylation (Celis et al., 1983; Chou and Omary, 
1993) and O-linked N-acetylglucosamine (GlcNAc) glyco- 
sylation (Chou et al., 1992). Phosphorylation of K8/18 in- 
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creases during the S and G2/M phases of the cell cycle 
(Chou and Omary, 1994) and plays an important role in 
keratin filament reorganization (Ku and Omary, 1994a). 
The function of K8/18 glycosylation is unknown although 
three human K18 head domain serine glycosylation sites 
were recently identified (Ku and Omary, 1995). No human 
disease is known to be associated with K8/18, and over- 
expression of wild type (WT) human K18 (Abe and 
Oshima, 1990) or K19 (Bader and Franke, 1990) in trans- 
genic mice yields a normal phenotype. However, homozy- 
gous disruption of mouse K8 genes resulted in fetal death 
accompanied by extensive liver hemorrhage (Baribault et 
al., 1993), or in colonic hyperplasia, colitis, and rectal pro- 
lapse (Baribault et al., 1994) depending on the genetic 
background of the transgenic mice. In addition, ectopic ex- 
pression of an epitope-tagged epidermal keratin as a trans- 
gene in mouse liver resulted in keratin filament disruption 
and hepatic inflammation (Albers et al., 1995). 

More than 80 keratin mutations have been identified in 
human skin diseases, with >80% of the mutations involv- 
ing two highly conserved regions located at the beginning 
and end of the rod domain (Coulombe and Fuchs, 1994; 
McLean and Lane, 1995). Of these two regions, the region 
that is proximal to the head domain contains a highly con- 
served arginine (arg) which is a "hot" mutation spot that 
accounts for nearly 40% of the identified mutations. Hence, 
this conserved arg is mutated in K14, K10, and K9 in the 
skin diseases EBS, epidermolytic hyperkeratosis (EH) and 
epidermolytic palmoplantar keratoderma (EPPK), respec- 
tively, in association with filament disruption. In addition, 
the mosaic disorder epidermal nevi (EN) of the epider- 
molytic hyperkeratosis type is also associated with muta- 
tion of the highly conserved arg of K10 (Paller et al., 1994). 
Our hypothesis was that tissue-specific transgenic mouse 
expression of human mutant K18, that has been altered at 
the conserved arg (arg89 of K18) could result in filament 
disruption and a potential disease phenotype in organs ex- 
pressing this mutant protein. To test this hypothesis we 
first examined the effect of K18 arg89---~cys/his mutations 
on filament assembly and showed that these mutations re- 
sult in filament disassembly after expression in insect and 
mammalian cells. We then generated transgenic mice that 
express human K18 arg89--~cys, and compared their phe- 
notype to mice that express normal human K18. The mice 
that express mutant K18 developed chronic hepatitis and 
fragile livers in association with K8/18 filament disruption. 
In addition to causing filament disruption, the K18 arg mu- 
tation also resulted in an increase in the phosphorylation 
and glycosylation levels of the soluble fraction of K8/18 in 
transfected cells and in the transgenic animals. The signifi- 
cance of these findings is discussed. 

Materials and Methods 

Cell Culture and Reagents 
Sf9 (insect ovarian) (PharMingen, San Diego, CA), NIH-3T3 (mouse fi- 
broblast), HT29 (human colon), and NMuLi (mouse liver) (American 
Type Culture Collection, Rockville, MD) cells were cultured as recom- 
mended by the suppliers. Reagents used were: uridine diphosphate 
(UDP) - [4-5-3H]-galactose, [6-3H]-glucosamine-HCl, and orthophosphate 
(32po4) (Dupont-New England Nuclear, Wilmington, DE); bovine milk 
galactosyltransferase (Sigma Chemical Co., St. Louis, MO); Baculo-Gold 

transfection kit (PharMingen); Transformer TM mutagenesis kit (Clontech, 
Palo Alto, CA); LipofectAMINE liposomes (GIBCO BRL, Gaithersburg, 
MD); enhanced chemiluminescence (ECL) kit (Amersham, Arlington 
Heights, IL). mAbs to human K8/18 were: L2A1 (Chou et al., 1992), CK5, 
and 8.13 (Sigma Chemical Co.). These antibodies recognize different epitopes 
of human K18 (mAb L2A1 and CK5) or human K8 and K18 (mAb 8.13). 
Rat mAb to mouse K8 (Troma I) was obtained from the National Insti- 
tute of Child Health and Human Development. Polyclonal rabbit antibod- 
ies to human K8/18 (termed 8592) were generated after immunizing with 
K8/18 that was purified from the human colonic cell line HT29 using high 
salt extraction, and then ion exchange chromatography with a Mono-Q 
column. 

Transfection and Construction of Mutants and 
Recombinant Viruses 
Arg89 (codon CGC) of human K18 cDNA in a pBluescript SK ÷ plasmid 
was mutated to cysteine (TGC) or histidine (CAC) using the Transformer 
kit as recommended by the manufacturer. Mutants were subcloned into 
the pVL1392 vector for expression in Sf9 cells or into the pMRB101 vec- 
tor for expression in NIH-3T3 and NMuLi cells as described (Ku and 
Omary, 1994a). Generation of the baculovirus recombinants and transfec- 
tion of mammalian cells were done as before (Ku and Omary, 1994a). Sf9 cells 
were cotransfected with linearized Baculo-Gold virus DNA, pVL1392-K8 
and pVL1392-K18 (wild-type or arg-~cys or arg--~his K18 mutants). 
NIH-3T3 and NMuLi cells were co-transfected with pMRB101-K8 and 
pMRB101-K18 wild-type or mutant constructs using LipofectAMINE TM 

liposomes, as recommended by the manufacturer. 

Isolation of Keratins 
Keratins were isolated by immunoprecipitation from detergent solubilized 
cells or tissues, or using high salt extraction (Achtstaetter et al., 1986; 
Chou et al., 1993). For high salt extraction, cells or tissue fragments were 
homogenized with 1% Triton X-100 (TX-100), 5 mM EDTA in PBS, pH 
7.4, for 2 rain and centrifuged (16,000 g; 10 min; 4°C). The pellet was ho- 
mogenized using a Dounce in high salt buffer containing 10 mM Tris-HCl 
(pH 7.6), 140 mM NaC1, 1.5 M KC1, 5 mM EDTA, 0.5% TX-100 (100 
strokes). After a 30-min incubation at 4°C, the suspension was centrifuged 
and the insoluble keratin pellet was solubilized with SDS gel sample 
buffer. For immunoprecipitation, cells or tissue fragments were solubi- 
lized with 1% Empigen BB in PBS containing 5 mM EDTA, 0.1 mM phe- 
nylmethylsulfonyl fluoride, 25 ixg/ml aprotinin, 10 ixM leupeptin, 10 ~,M 
pepstatin, 0.5 ~g/ml okadaic acid, 5 mM sodium pyrophosphate, and 50 
mM NaF (45 min, 4°C) (Lowthert et al., 1995). After centrifugation, the 
supernatant was used for immunoprecipitation followed by SDS-PAGE 
(Laemmli, 1970). 

Western Blotting and Indirect Immunofluorescence 
Western blotting (Towbin et al., 1979) was done using samples separated 
by SDS-PAGE and then transferred to Immobilon-P membranes (Milli- 
pore Corp., Bedford, MA). The membranes were incubated with mAb 
L2A1 or CK5, or with rabbit anti-keratin antibody 8592 (1 h), washed, and 
then incubated with peroxidase-conjugated goat anti-mouse or anti-rab- 
bit IgG. Keratin bands were visualized using enhanced chemilumines- 
cence. Immunofluorescence was carried out as described (Ku and Omary, 
1994a). Recombinant baculovirus infected Sf9 cells or transfected mam- 
malian cells were grown on cover slips. After 2-3 d of baculovirus infec- 
tion or 3 d of transient transfection, cells were fixed in methanol (-20°C, 3 
min), incubated with mAb L2A1 (30 min, 22°C), washed, and then incu- 
bated with Texas red-conjugated goat anti-mouse antibody (30 min, 
22°C). Fresh frozen mouse tissues were fixed then stained in a similar 
manner using mAb L2A1 or Troma I. 

Radiolabeling and Tryptic Peptide Mapping 
Cells or small mouse liver fragments were labeled with 32po 4 for 5 h (250 
~Ci/ml) in phosphate-free media supplemented with 10% dialyzed fetal 
calf serum. Keratins were then isolated from the cells using high salt ex- 
traction or immunoprecipitation. The high salt extracted material repre- 
sents the total keratin pool, whereas the immunoprecipitated material 
represents the detergent solubilized fraction. Glycosylation of K8/18 was 
assessed by galactosylation of accessible terminal GlcNAcs of K8/18 im- 
munoprecipitates, using 0.6 IxCi of UDp[3H]galactose and 25 mU of galac- 
tosyltransferase in 20 ixl reaction buffer (Chou et al., 1992). Tryptic glyco- 
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and phosphopeptide mapping was done as described (Boyle et al., 1991; 
Chou and Omary, 1993). For this, radiolabeled K18 (wild-type or mutant) 
was eluted from preparative SDS-PAGE gels, digested with trypsin, and 
then analyzed in the horizontal dimension by electrophoresis and in the 
vertical dimension by chromatography. Metabolic labeling of Sf9 cells 
with [3H]glucosamine was done exactly as described (Ku and Omary, 
1994b). 

Construction of the Genomic K18 Arg Mutant and 
Generation of Transgenic Mice 
Mutant K18 cDNA (arg89--~cys) was digested with AlwN I to produce a 
250-bp fragment that contains the K18 mutation. A Kpn I-Xho I 4-kb 
fragment of the genomic K18 pGC1853 plasmid (Abe and Oshima, 1990) 
was ligated with a 2.9-kb Kpn I-Xho I fragment of pBluescript SK+ that 
lacks an AlwN I site. The generated 6.9-kb K18-containing DNA was di- 
gested with AlwN I to remove K18 DNA that contains the region coding 
for arg89 and generate a 6.7-kb species. The 6.7-kb fragment was ligated 
with the 250-bp fragment containing the K18 mutation. The generated 
DNA (~7 kb) was digested with Kpn I and Xho I to produce a 4-kb frag- 
ment (containing the K18 arginine mutation) which was then ligated with 
the remaining 9-kb Kpn I-Xho I fragment of pGC1853. The 13-kb product 
was digested with Hind III and the 10-kb K18 genomic fragment contain- 
ing the arg mutation was then used for injection into pronuclei of fertilized 
FVB/N mouse eggs. Transgene copy number was estimated using tail 
DNA that was isolated from progeny of the founder mice using dot blot 
hybridization of multiple dilutions of the tail DNA with human K18 
cDNA as described (Abe and Oshima, 1990). Densitometric scanning was 
done to quantitate the copy number using a standard curve of K18 plas- 
mid DNA. 

Transgenic Lines, Liver Perfusion, and Blood Testing 
All transgenic lines were housed in the same room with strict infection- 
control precautions. Serum was tested monthly from randomly chosen 
mice and no evidence of infection was detected which included testing for 
murine viral hepatitis. Four transgenic mouse lines were used for breeding 
and the described experiments. One line expressed wild type human K18 
(termed TG2) and was described previously (Abe and Oshima, 1990). The 
three other lines are termed F22, F30, and F50 which express the 
arg89---)cys human K18 transgene (collectively called K18C). For liver 
perfusion and blood testing, F22, F30, and F50 heterozygous mice (2-4- 
mo old) were used and all three lines gave similar results. Age-matched 
TG2 and nontransgenic mice were used as a source of control livers. Prior 

to organ harvesting, mice were killed by C O  2 inhalation. Liver perfusion 
was carried out using 0.025 % collagenase type I (Worthington Biomedical 
Corporation, Freehold, NJ) as described (Clayton and Darnell, 1983). Cell 
viability was determined using trypan blue exclusion. For blood testing, 
~0.4 ml of blood was collected from age matched transgenic mice that do 
not carry the K18 transgene (five mice), TG2 (six mice) which made up 
the control group (11 mice); and from heterozygous K18C mice (six F22, 
three F30, and three F50). From this, 0.1 ml was used to obtain a complete 
blood count, and the remaining was used for serum testing of creatinine, 
total protein, albumin, alkaline phosphatase, lipase, serum glutamic- 
oxaloacetic (SGOT) and glutamic-pyruvic transaminase (SGPT). 

Results 

Effect of Human K18 Arg89-~hislcys Mutations on K81 
18 Filament Assembly in Insect and Mammalian Cells 

We tested two K18 arg89 mutations, arg--~cys (RAC) and 
arg-~his (RAH), which have been reported in several pa- 
tients with EBS (K14 mutations), EHK and EN (K10 mu- 
tations), and EPPK (K9 mutations) (reviewed by Fuchs et 
al., 1994; McLean and Lane, 1995). Wild type, RAH, or 
RAC K18 were coexpressed with their wild type het- 
eropolymeric counterpart K8 in insect Sf9 cells after infec- 
tion with recombinant baculovirus constructs. We chose to 
initially test these constructs in Sf9 cells since this system 
allows us to obtain large quantities of K8/18 for biochemi- 
cal analysis including sufficient material for tryptic peptide 
mapping. In addition, we previously showed that the gly- 
cosylation and phosphorylation of human K18 expressed 
in Sf9 cells, in terms of labeled peptides, is nearly identical 
to what is observed in mammalian cells (Ku and Omary, 
1994a, b). As shown in Fig. 1 A (lanes 1-3), significant 
amounts of K8/18 were expressed, as determined using 
high salt extraction followed by Coomassie staining. High 
salt extraction provides >90% recovery of all the ex- 
pressed K8 and K18 (Chou et al., 1993). Expression of K8/ 
18 was also confirmed by immunoprecipitation using de- 

Figure 1. The  K18 arg89---~cys/his 
mutan ts  fo rm disrupted  f i laments  
when  co-expressed  with wild-type 
K8 in Sf9 cells. (,4) Equiva len t  
number s  of  Sf9 cells were  infected 
with r ecombinan t  wild type K8/K18 
or  W T  K8/K18RAH or  W T  K8/ 
K18RAC baculoviruses for four days. 
Cells were  then  processed  for  high 
salt extract ion (lanes 1--3), or  for im- 
munoprecipi ta t ion with m A b  L2A1 
(lanes 4---6) as descr ibed  in Mater i -  
als and Methods .  The  panel  shows a 
Coomass ie  stain af ter  S D S - P A G E .  
(B) Sf9 cells were  grown on  cover  
slips then  infected for  two days with 
the  r ecombinan t  baculovirus con- 
structs used in A. Cells were  then  
fixed and s ta ined by indirect  immu-  
nof luorescence  using m A b  L2A1 as 
described in Materials and Methods .  
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tergent solubilized cells that are identical to those used for 
lanes 1-3 (Fig. 1 A, lanes 4-6). We then analyzed the na- 
ture of K8/18 filaments formed in Sf9 cells using immuno- 
fluorescence staining. Expression of WT K8/18 in Sf9 cells 
results in formation of disorganized rope-like filaments 
(Ku and Omary, 1994b; and Fig. 1 B, a). In contrast, ex- 
pression of WT K8 with the RAH or RAC K18 mutants re- 
suited in formation of dot/inclusion-like patterns (Fig. 1 B, 
b and c) that were distinctly different than the pattern ob- 
served after expression of WT K8/18 (Fig. 1 B, a). 

We tested if K18 arg mutations in mammalian cells also 
result in filament disruption when co-transfected with WT 
K8, similar to what was observed in Sf9 cells. As shown in 
Fig. 2, a and d, transfection of WT K8/18 into mouse NIH- 
3T3 fibroblast or liver NMuLi cells, which contain vimen- 
tin and keratins as their endogenous IF, respectively, 
showed the expected filamentous staining pattern. In con- 
trast, transfection of WT K8 and RAH or RAC K18 into 
both cell lines resulted in a punctate nonfilamentous pat- 
tern (Fig. 2), similar to what was observed in Sf9 cells (Fig. 
1 B), and consistent with inability of the filaments to as- 
semble properly. 

Development and Analysis of  Transgenic Mice that 
Express Human arg-~cys K18 

To study the effect of the highly conserved arginine in the 
context of a whole animal, we used a 10-kb human K18 ge- 
nomic clone (Kulesh and Oshima, 1989) to introduce a sin- 
gle base substitution in exon 1 that converted arg89 to cys 
(K18C). This genomic construct resulted in formation of 
disrupted filaments when co-transfected with WT K8 into 
NIH-3T3 cells (not shown, but a pattern similar to that in 

Fig. 2 b). The K18C genomic DNA was injected into 
mouse embryos and three founder lines (termed F22, F30, 
and F50) were bred to produce the progeny used for fur- 
ther analysis. Incorporation of the human K18 10-kb trans- 
gene was confirmed by Southern blotting (not shown). 
The K18 transgene copy number/cell for the three het- 
erozygous K18C lines relative to transgenic mice that ex- 
press the WT K18 gene (termed TG2; Abe and Oshima, 
1990) was 10, 12, and 18, respectively. The TG2 mice (het- 
erozygous copy number = 17) were used as control in our 
studies and were the same strain (FVB/N) as the F22, F30, 
and F50 mice. 

Our in vitro transfection experiments (Fig. 2) suggested 
that K18 arg89 mutations may behave in a dominant nega- 
tive manner and result in filament disruption. We used im- 
munofluorescence staining to examine filament organiza- 
tion in several tissues isolated from TG2 mice that express 
WT human K18 or from F22, F30 and F50 mice that ex- 
press mutant K18C. As shown in Fig. 3, TG2 hepatocytes 
have normal appearing filaments after staining using mAb 
L2A1 (a) which recognizes human K18, or after staining 
with mAb Troma I which recognizes endogenous mouse 
K8 (e). The L2A1 antibody does not crossreact with 
mouse keratins (not shown but see Fig. 4). In contrast, 
staining of hepatocytes from transgenic mice F22 and F30 
(Fig. 3, b, f, and g) and F50 (not shown) using either anti- 
body showed a dramatic alteration in filament staining. 
There was maintenance of staining at the cell perimeter 
but complete or near complete disruption of cytoplasmic 
staining. A similar loss of the cytoplasmic filamentous 
staining pattern was also noted in the pancreas with re- 
placement by a fine dot pattern and retention of the apical 

Figure 2. Immunofluorescence of transfected wild-type K8/18, and wild-type.K8/mutant K18 expressed in mammalian cells. NIH-3T3 
and NMuLi cells were transiently co-transfected with WT K8/18 or with WT K8/K18RAH or RAC. After 3 d, cells were fixed and ana- 
lyzed by indirect immunofluorescence using mAb L2A1 as described in Materials and Methods. 

The Journal of Cell Biology, Volume 131, 1995 1306 



Figure 3. Immunofluores- 
cence of keratin assembly in 
transgenic mouse liver, pan- 
creas and colon expressing 
wild type and mutant human 
K18. Tissues taken from mice 
expressing WT human K18 
(TG2) or arg89---~cys K18 
(F22, F30, F50) were imme- 
diately frozen in O. C. T. 
compound. Frozen sections 
were cut, fixed briefly in cold 
acetone, then stained using 
mouse anti-human K18 (mAb 
L2A1) or rat anti-mouse K8 
(mAb Troma I) antibodies in 
phosphate buffered saline 
containing 2.5% bovine se- 
rum albumin. After rinsing, 
sections were incubated with 
Texas red conjugated goat 
anti-mouse or anti-rat anti- 
bodies, respectively. Tissues 
were visualized using a fluo- 
rescence microscope with a 
100x objective lens. Slides 
taken with Ektachrome 400 
film were scanned using a 
Leafscan 45 T M  scanner (Leaf 
System Inc., Southboro, MA). 
White arrow (panel/) shows 
punctate keratin staining pat- 
tern in colon. No staining was 
noted in non-transgenic 
mouse liver, pancreas, and 
colon using mAb L2A1 (not 
shown). 

ductal staining (Fig. 3, compare c and h with d and i). 
However, minimal disruption of K8/18 filaments was noted 
in the colon of F22 mice (Fig. 3 k) with disruption becom- 
ing more prominent with increasing copy number in the 
F50 mice (Fig. 3 l). The filament disruption noted in the 
pancreas and liver of the K18C mice was age independent 
and involved the majority of cells, with only few cells man- 
ifesting a normal appearing filament staining pattern (not 
shown). 

We used high salt extraction (HSE) or immunoprecipi- 
tation with mAb L2A1 to compare the level of expression 
of human K18C transgene to that of the endogenous K18 
gene in K18C mice, and to that of the human WT K18 

transgene in TG2 mice. Given that human K18 also forms 
heteropolymers with endogenous mouse K8/18, immuno- 
precipitation using mAb L2A1 allows for the preferential 
isolation of detergent solubilized human K18 together 
with complexed endogenous mouse keratins, whereas high 
salt extraction provides a near quantitative recovery of the 
total keratin pool. As shown in Fig. 4 A, mAb L2A1 spe- 
cifically immunoprecipitated keratins from detergent solu- 
bilized liver, pancreas and colon from mice expressing WT 
human K18 (lane 2) or K18C (lanes 3-5)  but not from nor- 
mal nontransgenic mice (lane 1). The human K18 trans- 
gene product co-migrates with human K18 isolated from 
HT29 cells, and human K8 migrates slightly faster than 
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mouse K8 (Fig. 4 A, compare lanes 2--6 with lane 7). 
Colonocytes in culture (from human HT29 cells, Fig. 4 A, 
lane 7) or isolated from fresh mouse tissues (Fig. 4 A, lane 5) 
also express K19 which co-immunoprecipitates with K8/18. 

In order to assess the relative levels of expression of hu- 
man K18 versus endogenous mouse K18, analysis of the 
total keratin pool using high salt extraction was carried 
out. As shown in Fig. 4 B, the relative ratio of human to 
mouse K18 is nearly 3:1 in TG2 mice (lane 2) whereas the 
ratio in F22 mice is only 1:2 (lane 3). In the case of HSE of 
liver from F50 and F30 mice, the relative levels of human 
versus mouse K18 are nearly equal, and the absolute total 
keratin per gram tissue was reproducably lower than that 
obtained from TG2 or F22 mice (Fig. 4 B), presumably 
due to the amount of liver inflammation/necrosis (see be- 
low) and/or differences in protein turnover. This indicates 
that the K18C transgene is behaving in a dominant nega- 
tive fashion, and that the filament disruption noted in 
K18C mice is related to the arg mutation and not simply to 
K18 overexpression. Verification of the assignment of the 
individual bands obtained after HSE was carried out by 
Western blotting using antibodies specific for mouse K8 
(Troma I), human K18 (CK5), and a rabbit polyclonal an- 
tibody (8592) that recognizes mouse and human K18 (Fig. 
4 B). Of note, in contrast to the K18 protein levels in the 
liver (F22 > F30 > F50, Fig. 4 B), the protein level of K18 
in colon of the F50 mice was more than that in the F22 and 
F30 mice but similar to the level in the TG2 mice (not 
shown). Hence, it appears that the hK18 protein levels 
correlate with the transgene copy number, with more ker- 
atin degradation occurring in liver than colon, due to the 
lack of "protection" based on the absence in hepatocytes 
of other type I keratins (e.g., K19 in colonocytes). The de- 
creased level of mK18 in the K18C and TG2 livers is very 
likely due to the degradation of both mK18 and hK18, 
which are in excess of the limiting amounts of mK8 as 
shown previously by transfection experiments (Kulesh et 
al., 1989). 

Histologic and intact-tissue examination of liver, kidney, 
lung, gall bladder, pancreas, colon and small intestine from 
F22, F30, and F50 mice revealed changes only in the liver 
(Fig. 5). Inspection of intact livers showed increased prom- 
inence of the vascular subcapsular markings, with appear- 
ance of a punctate pattern rather than a meshwork vascu- 
lar pattern, in older (>16 mo) F50 (Fig. 5 b), F22 and F30 
mice (not shown) compared with age matched TG2 (Fig. 5 
a) or nontransgenic mice (not shown). Microscopic liver 
examination showed a chronic inflammatory infiltrate (Fig. 
5 d) which was nonregionalized and patchy (not shown) 
with areas of necrosis (Fig. 5 e). These findings were noted 
in liver sections of mice as early as one month of age, and 
were absent in TG2 mice (Fig. 5 c). Trichrome staining 
showed lack of fibrosis in mice up to nine months old al- 
though necrosis and bleeding into necrotic (Fig. 5 f) and 
nonnecrotic areas became highly prominent as the mice 
aged (Fig. 5, g and h). Furthermore, collagenase liver per- 
fusion of young K18C and TG2 mice, at an early stage 
when inflammation and necrosis are mild or minimal, re- 
suited in significant cell death only in K18C mice (mean 
cell viability was % 21 ± 3 [n = 6] and % 90 --- 5 [n = 4] 
for K18C and TG2 mice, respectively), which supports the 
noted progressive necrosis and is consistent with an in- 

Figure 4. Analysis of wild type and mutant human K18 expres- 
sion in transgenic mice. (A) Indicated organs were obtained from 
TG2 and K18C transgenic mice, or from non-transgenic FVB/N 
mice (N). Tissues were homogenized in phosphate buffered sa- 
line containing 1% Empigen, 5 mM EDTA, 10 p,M leupeptin, 10 
IxM pepstatin, 25 p,g/ml aprotinin and 0.1 mM phenylmethylsulfo- 
nyl fluoride. After solubilization (45 min, 4°C), nonsolubilized 
material was removed by pelleting followed by immunoprecipita- 
tion using mAb L2A1 as described in Materials and Methods. 
The immunoprecipitated proteins were compared to normal 
mouse K8/18 (mK8 and mK18 isolated from normal mice) or hu- 
man K8/18 (hK8 and hK18 isolated from the colonic human cell 
line HT29) which were purified using high salt extraction (HSE). 
Mouse (F22 colon) and human (HT29 cells) K19 is also indicated. 
(B) 1 g of liver tissue was removed from the indicated mice fol- 
lowed by HSE and SDS-PAGE analysis of equivalent fractions, 
then Coomassie blue staining. Triplicate gels were transferred to 
polyvinylidene difluoride membranes followed by immunoblot- 
ting using mAb Troma I (specific for mouse K8), CK5 (specific 
for human K18) or rabbit polyclonal antibody 8592 which was 
raised against purified human K8 and 18 but as shown cross re- 
acts with mouse K8 and K18. Immunoblotting of total liver cell 
lysates (5 p.g of protein per liver, after homogenizing then solubi- 
lizing in 2% SDS sample buffer) from the above mouse lines with 
Troma I and 8592 antibodies gave identical results (not shown). 

crease in the fragility of the K18C livers. The histologic 
findings of inflammation and necrosis were also supported 
by serologic testing which showed a statistically significant 
twofold transaminase elevation in the K18C as compared 
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with TG2 or nontransgenic mice (Table I). The extent of 
transaminase elevation is mild but similar to elevations 
noted in patients with chronic liver disease (Ellis et al., 
1978). No significant difference was noted in white cell, 
platelet or red blood cell counts (not shown) or in other 
serum chemistry tests (Table I). 

Effect of human KI8 arg89 Mutations on K8/I8 
Phosphorylation and Glycosylation 

The altered filament organization of K8/K18RAC or RAH 
expressed in Sf9 ceils raised the possibility that concurrent 
alteration in K8/18 phosphorylation and/or glycosylation 
may also occur. This is based on the observed filament re- 
organization in association with K8/18 hyperglycosylation 
and/or hyperphosphorylation in several systems including 
cell cycle progression through the S and G2/M phases 
(Chou and Omary, 1994) and heat stress (Liao et al., 
1995b). We tested this by comparing the specific activity of 
these modifications in WT K8/18 versus WT K8 and RAH 
K18 isolated by immunoprecipitation from detergent solu- 
bilized cells. Phosphorylation was assessed by in vivo 
labeling with 32po4, and glycosylation was assessed by ga- 
lactosylation of accessible terminal GlcNAcs using galacto- 
syltransferase and UDp[3H]galactose, and by metabolic 
labeling using [3H]glucosamine. As shown in Fig. 6 A, when 
equal amounts of K8/18 immunoprecipitates isolated from 
32po4-1abeled Sf9 cells expressing WT or RAH K18 were 
analyzed, a marked increase in the specific activity of K8/ 
mutant K18 phosphorylation was noted. An increase in 
the glycosylation specific activity of K8/mutant K18 iso- 
lated from cells expressing K18 arg89--~his (Fig. 6 A, com- 
pare lanes c and d) was also noted. A similar increase in 
the glycosylation and phosphorylation of KS/K18RAC was 
obtained as compared with WT K8/18 immunoprecipitates 
(not shown). Furthermore, these increases were noted us- 
ing polyclonal and a panel of monoclonal K8/18 antibodies 
(not shown), indicating that the observation is indepen- 
dent of an antibody-antigen phenomenon. In addition, 
metabolic labeling of Sf9 cells with [3H]glucosamine pro- 
vided similar results (not shown) to those obtained by in 
vitro galactosylation (Fig. 6 A). 

Analysis of the tryptic glyco- and phosphopeptide maps 
of immunoprecipitated WT versus RAH K18 (Fig. 6 B) or 
RAC K18 (not shown) demonstrated that the modified 
peptides were identical. Similarly, analysis of the tryptic 
glyco- and phosphopeptides of K8 isolated from Sf9 cells 
infected with recombinant baculovirus containing WT K8/ 
18 or WT K8/K18RAH were also identical (not shown). In 
contrast to the detergent solubilized material which consti- 
tutes only a small fraction of the expressed total keratin 
pool in Sf9 cells, when phosphorylation of the entire high 
salt extract keratin pool was analyzed, only a small in- 
crease (1.4x) was noted between WT and RAC or RAH 
K18 (not shown). This indicates that the increase in spe- 
cific activity of K8/18 phosphorylation and glycosylation 
occurs preferentially in the soluble fraction after mutation 
of K18 arg89. Analysis of K8/18 phosphorylation and gly- 
cosylation in NIH-3T3 cells transfected with WT K8/18 or 
WT K8/RAH K18 showed a similar increase in the specific 
activity of both modifications (Fig. 7, compare lanes 4 with 
3 and lanes 6 with 5) as observed in Sf9 cells (Fig. 6). A sig- 

nificant but less dramatic increase in the phosphorylation 
and glycosylation of detergent solubilized K8/18, isolated 
from TG2 or K18C mice, was also noted (Fig. 7 B). The in- 
crease in K8/18 phosphorylation involved only the rela- 
tively small pool of detergent soluble keratin since two- 
dimensional isoelectric focusing/SDS-PAGE analysis of 
K8/18 HSE samples obtained from TG2 and F22 mouse 
livers did not show any significant shifts in K8 or K18 iso- 
electric forms (not shown). 

Discussion 

Importance of the Highly Conserved arg in 
IF Protein Assembly 

The first finding of this study is that the highly conserved 
arginine 89 of human K18, which is found in most type I 
keratins and in many other IF proteins including NF-H, vi- 
mentin, lamins, nestin, desmin and peripherin, plays an 
important role in filament assembly in vivo. Support for 
this includes the filament reorganization observed in asso- 
ciation with mutation of the conserved arg89 of K18 in re- 
combinant baculovirus infected insect cells (Fig. 1), trans- 
fected mammalian cells (Fig. 2), and liver and pancreas of 
trangenic mice (Fig. 3). This adds a glandular keratin (i.e., 
K18) to the epidermal keratins (K14, K10, and K9) for 
which this arg plays a critical in vivo role in filament as- 
sembly. The importance of this arg in filament assembly is 
evident in patients with the skin diseases involving muta- 
tion of this residue (EBS, EHK, EN, EPPK) (reviewed by 
Fuchs et al., 1994; McLean and Lane, 1995) and is sup- 
ported by cell culture transfection experiments of K14 
arg125--)cys (Coulombe et al., 1991) or lamin A arg41---~his 
(Heald and McKeon, 1990). In addition, earlier evidence 
for the general importance of arg residues in IF assembly 
was obtained by metabolic labeling of vimentin-expressing 
cultured cells with the arg analog canavanine (Moon and 
Lazarides, 1983) or by in vitro deimination of arg residues 
(Inagaki et al., 1989) which resulted in the inability of the 
modified vimentin to incorporate into filaments. 

The findings of this study indicate that expression of 
arg89---~cys K18 in transgenic mice, at levels that are less 
than those in mice expressing WT K18, manifests a domi- 
nant negative phenotype, particularly in the liver and pan- 
creas which express K8/18 as their primary IF proteins. 
The less pronounced filament disruption noted in the co- 
lon (and small intestine, not shown) is potentially related 
to a "dilution" effect by K19 and K20 which are expressed 
at varying levels in the intestine (Moll et al., 1993; Calnek 
and Quaroni, 1993). Although significant K8/18 filament 
reorganization was noted in the pancreas, we did not ob- 
serve any histologic changes. In addition, the normal li- 
pase (Table I) and glucose levels (mean glucose of 211 -+ 
28 for the control group and 200 -- 44 mg/dL for the K18C 
group, n = 8 per group) in the K18C mice support the lack 
of pancreatic inflammation and diabetes, respectively. This 
differs from the ectopic expression of epidermal keratins 
in transgenic mouse pancreatic islet cells which resulted in 
significant diabetes and early mortality (Blessing et al., 
1993). At this stage, we do not know why the pancreas was 
histologically spared in the K18C mice except for the pos- 
sibility of functional redundancy by other proteins that 
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Figure 5. Pathology of transgenic mouse livers. Mice were euthanized by CO2 inhalation. Livers from 9-mo-old mice (a and b) were 
photographed without any manipulation. Alternatively, livers from 2-mo-old (c-e) or 9-mo-old (f-h) mice were formalin-fixed, paraffin- 
embedded, sectioned, and stained using hematoxylin-eosin (c-h). e is an enlargement of the area in d enclosed by a square. Arrows indi- 
cate: mononuclear chronic inflammatory infiltrate (d), degenerating hepatocytes (e), extensive necrosis (f) and scattered areas of hem- 
orrhage (g and h). 
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Table I. Serum Chemistry Analysis of Control and K18 
arg----)cys Transgenic Mice 

Control Transgenic Transgenic Significant 
Test (n = 11) (n = 12) Control difference 

Cr  0.28 0,28 1.00 No 
Alk  Phos  138.00 145.00 1.05 No 
Total protein 4 .50 5.00 1.11 No 
Albumin  2.47 2.42 0.98 No 
Lipase 1,043.00 1,051.00 1.01 No 

S G O T  125.00 238.00  1.90 Yes (0.04) 
SGPT 87.00 180.00 2.07 Yes (0.01) 

Approximately 400 ul of blood was collected from control and K18C mice as de- 
scribed in Materials and Methods. The serum was separated then used for the follow- 
ing analysis: Cr (creatinine mg/dL); Alk phos (alkaline phosphatase U/L); total pro- 
tein and albumin (g/dL); lipase (U/L); SGOT (serum glutamic-oxaloacetic 
transaminase U/L) and SGPT (serum glutamic-pyruvic transaminase U/L). Panel 
shows mean values of indicated tests. Significant difference indicates p < 0.05. 

would offset K8/18 disruption in the pancreas. Histologic 
sparing of the pancreas was also noted in the K8 null mice 
(Baribault et al., 1993, 1994) which lends support to a func- 
tional redundancy hypothesis for certain K8/18 functions 
in some organs. Regardless, the K18C and TG2 transgenic 
mice will provide useful animal models for studying poten- 
tial K8/18 tissue specific functions in a number of organs 
despite the presence or absence of any histologic changes. 

Alteration of  K8118 Phosphorylation and Glycosylation 
Secondary to the K18 arg89 Mutation 

Mutation of the highly conserved arg results in abolish- 
ment of a potential consensus phosphorylation site (RXXS 
to C/HXXS, S = ser-92 in K18) for a number of kinases in- 
cluding calmodulin-dependent protein kinase and protein 
kinase C (Pearson and Kemp, 1991). However, in the case 
of K18, there is no detectable phosphorylation or glycosy- 
lation of this serine (data not shown) which is conserved in 
type I and II keratins but not in other IF proteins. It is not 
known if this serine is phosphorylated in the epidermal 
keratins, although the nine characterized phosphorylation 
sites of K1 (Steinert, 1988) do not include this serine. In 
addition, in vivo IF phosphorylation regions identified to 
date exclude the rod domain and, instead, involve the 
head, tail, or head/tail domains (e.g., Evans, 1988; Ku and 
Omary, 1994a). 

Although a clear consequence of the arg mutation is fil- 
ament disruption and secondary cell fragility, it is unclear 
if other cellular functions of keratins also become affected. 
The difficulty is that clear-cut functions for IF proteins re- 
main elusive and, therefore, full understanding of the 
physiologic significance of the arg mutation is not yet 
within reach given our current limited functional and 
mechanistic information. To that end, the relative enrich- 
ment of phosphoglyco-K8/18 in the detergent solubilized 
fraction could indicate that a small but potentially func- 
tionally significant fraction of K8/18 becomes available, or 
ceases to become available for interaction with putative IF 
associated proteins (depending on the nature of the inter- 
action of a given IF associated protein). For example, in 
vitro phosphorylation of plectin or lamin B by protein ki- 
nase A or C result in a significant decrease in the plectin- 
lamin B interaction (Foisner et al., 1991). With regard to the 
single O-GlcNAc type of K8/18 glycosylation, its function 

is unclear although it is a dynamic modification (Kearse 
and Hart, 1991; Chou et al., 1992) that is found in cytoplas- 
mic and nuclear proteins involved in protein-protein inter- 
action (reviewed by Haltiwanger et al., 1992). It remains to 
be determined if modulation of the phosphoglyco-K8/18 
soluble pool or if the arg89 mutation per se play a role in 
K8/18 interaction with associated proteins. For example, a 
recently described ATP dependent interaction of K8/18 
with the 70-kD heat shock proteins occurs preferentially 
with the soluble fraction of K8/18 (Liao et al., 1995a). 

Transgenic Mice that Express K18 arg89~cys Serve as 
a Model for Human Chronic Hepatitis and for Studying 
KI 8 Function(s) 

Chronic inflammation in the livers of K18C transgenic 
mice provides an animal model for chronic hepatitis and 
raises the possibility that some cases of human chronic 
hepatitis may in fact be caused by mutations in K18. To 
that end, 10-33 % of patients with chronic liver disease and 
cirrhosis have an "idiopathic" or cryptogenic form of liver 
disease (Conn and Atterbury, 1993; Greeve et al., 1993). 
Our hypothesis is supported by several transgenic animal 
models that express deleted forms of K14 and K10 in kera- 
tinocytes, with resultant skin disease phenotypes (e.g., 
Vassar et al., 1991; Fuchs et al., 1994). In addition, the 
number of keratins that are involved in human disease is 
accumulating so that at this stage it may be more appropri- 
ate to ask what disease(s) do mutations in K18 cause, 
rather than could mutations in K18 cause any human dis- 
ease. The keratins that are involved in human disease to 
date include: K5, K14, K1, K10, K9, K2e (reviewed by 
Fuchs et al., 1994; McLean and Lane, 1995), K16, K17 
(McLean et al., 1995), and K6a (Bowden et al., 1995). The 
keratin-associated diseases together with mutations in NF-H 
that have been associated with ALS (Figlewicz et al., 1994) 
can result in autosomal dominant and recessive, mosaic, 
and sporadic diseases. Therefore, testing patients with "id- 
iopathic" chronic liver disease for the presence of K18 mu- 
tations should clarify the potential role of K18 in this dis- 
ease. Other candidate chronic liver diseases to consider 
that may involve mutations in K18 include familial cirrho- 
sis (Maddrey and Iber, 1968) and Indian childhood cirrho- 
sis (Adamson et al., 1992) which are familial, and autoim- 
mune type hepatitis (reviewed by Mieli-Vergani and 
Vergani, 1994) which is sporadic. 

Abnormal aggregation of K8/18-containing complexes 
in hepatocytes, in the form of Mallory bodies (Mallory, 
1911; and reviews by Jensen and Gluud, 1994a, b), is noted 
in several liver diseases, particularly alcoholic liver dis- 
ease. We did not observe any Mallory body formation in 
the K18C transgenic mice (not shown), but it is possible 
that mutations in K18 could predispose to toxin induced 
liver injury. Although it is not clear if the initial event in 
K18C mouse livers is necrosis (likely due to cell fragility) 
or inflammation or both, the observations of liver fragility 
upon collagenase perfusion and bleeding into necrotic ar- 
eas as the mice age are prominent features. Therefore, as 
has been clearly demonstrated for the epidermal keratins, 
a role in the maintenance of tissue integrity is also likely to 
extend to simple epithelial keratins. Such a role does not 
exclude other potential tissue specific functions that re- 
main to be explored. 
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Figure 6. The detergent solubilized fraction of arg---~his K18 is 
hyperphosphorylated and hyperglycosylated, and displays similar 
tryptic glyco- and phosphopeptides as compared with WT K18. 
(A) Sf9 cells were infected with a baculovirus recombinant con- 
taining WT K8/18 or WT K8/K18RAH in duplicate dishes. One 
dish was labeled with 32po 4 for 5 h during the fourth day of infec- 
tion followed by immunoprecipitation of K8/18 as described in 
Materials and Methods. Immunoprecipitates were also obtained 
from the non-labeled duplicate dishes followed by galactosylation 
using galatosyltransferase and UDp[3H]galactose. The amount of 
immunoprecipitated K8/18 were normalized so that equal amounts 
were loaded on the gel. (B) [riP]phosphate or [3H]galactose la- 
beled K18 were purified using preparative SDS-PAGE followed 
by electroelution of the individual K18 bands. After trypsiniza- 
tion, samples were analyzed by electrophoresis in the horizontal 
direction and chromatography in the vertical direction. 10,000 
cpm were spotted (position indicated by arrowhead) for each of 
the maps. Exposure was 14 d for the 3H maps and 1 d for the 32p 
maps. 

Figure 7. Phosphorylation and glycosylation of WT K8/18 and 
WT K8/arg mutant K18 expressed in NIH-3T3 cells or isolated 
from transgenic mice livers. (A) Transiently transfected NIH-3T3 
cells expressing the indicated constructs were set up in duplicate 
100 mm dishes. One set was labeled with 32po 4 for 5 h followed 
by immunoprecipitation of K8/18. The second nonlabeled set was 
used for K8/18 immunoprecipitation then galactosylation using 
UDp[aH]galactose. The immunoprecipitated K8/18 that was ana- 
lyzed by SDS-PAGE was normalized so that equal amounts of 
the WT and RAH containing immunoprecipitates were loaded. 
Lanes 1 and 2 show the Coomassie stained gel of the radiograph 
in lanes 3 and 4. The Coomassie stained gel for the 3H-labeled 
samples was similar to that in lanes 1 and 2 (not shown). (B) Liv- 
ers were isolated from heterozygous TG2, F22, and F50 trans- 
genie mice (~2-mo-old). One lobe of each liver was cut into small 
pieces using a razor blade then labeled with 32po 4 for 5 h fol- 
lowed by immunoprecipitation. A second lobe of each liver was 
homogenized in detergent then processed by immunoprecipita- 
tion followed by galactosylation using UDp[aH]galactose as de- 
scribed in Materials and Methods. m, mouse; h, human. 

Comparison of the Phenotypes of  K18C Mice with K8 
Null and Ectopic KI 4 Expressing Transgenic Mice 

The observed phenotype in our K18C mice is similar but 
more severe than that observed in transgenic mice that ex- 
press a substance P epitope-tagged K14, which was tar- 
geted to the liver using a transthyretin gene promoter  and 
enhancer  elements (Albers et al., 1995). The similarities 
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include the presence of liver inflammation, keratin fila- 
ment disruption, and lack of Mallory bodies. It is not 
known if the transgenic mice that express K14 manifest in- 
creased liver fragility and hemorrhage. However, any dif- 
ferences between the two phenotypes may be accounted 
for by differences in the type (K18 versus K14) and/or 
level of expressed keratin transgene, or in the mouse strain 
used to express the transgene. 

Liver abnormalities were also noted in the K8 null mice, 
but varied depending on the mouse strain. For example, 
C57/B1 K8 null mice that died at a late embryonic stage 
had extensive liver hemorrhage (Baribault et al., 1993) 
that was more significant but reminiscent to the spontane- 
ous parenchymal microscopic bleeding noted in the K18C 
mice. In contrast, the FVB/N K8 null mice (i.e., same 
strain as the K18C mice) developed mild hepatitis and ne- 
crosis, but the major phenotype included female sterility, 
embryonic lethality of some animals and colorectal pathol- 
ogy (Baribault et al., 1994), with the latter three findings 
not seen in the K18C heterozygous mice (not shown). In- 
terestingly, filament disruption in the K18C mice appeared 
to occur preferentially in the central regions of the cell 
while sparing filaments near the plasma membrane (Fig. 
3), which may reflect increased stability of filaments asso- 
ciated with membrane associated proteins such as desmo- 
somal components. Such an effect is seen in doubly tar- 
geted mK8 embryonic stem cells, where mK18 is lost due 
to degradation except for the cell periphery with apparent 
association with desmosomes (Baribault and Oshima, 
1991). This effect is also seen in the intestine of the mK8 
null FVB/N mice (Baribault et al., 1994). Of note, phos- 
phorylated K18 appears to be preferentially associated 
with the basolateral surfaces of normal human hepato- 
cytes and with the apical regions of pancreatic cells, per- 
haps implying a favored association or stabilization of 
phosphorylated keratin filaments with membrane struc- 
tures (Liao et al., 1995c). Electron microscopy of K18C 
liver specimen also showed association of keratin filaments 
with desmosomal structures (not shown) although relative 
quantitation of intracellular versus peripheral filaments was 
not done. 

All the effects that we observed in the K18 arg89 mutant 
transgenic mice can be specifically attributed to the arg 
mutation since expression of the wild type human K18, at 
levels higher than the mutant K18, generated a normal 
phenotype. The full spectrum of the K18C transgenic mice 
phenotype will be further evaluated as homozygous mice 
are generated and crossbreeding into additional strains is 
carried out. 
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