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Abstract

Coronary artery disease (CAD) is a complex inflammatory disease involving genetic influences 

across cell types. Genome-wide association studies (GWAS) have identified over 200 loci 

associated with CAD, where the majority of risk variants reside in noncoding DNA sequences 

impacting cis-regulatory elements (CREs). Here, we applied single-nucleus ATAC-seq to profile 

28,316 nuclei across coronary artery segments from 41 patients with varying stages of CAD, 

which revealed 14 distinct cellular clusters. We mapped ~320,000 accessible sites across all 

cells, identified cell type-specific elements, transcription factors, and prioritized functional CAD 

risk variants. . We identified elements in smooth muscle cell (SMC) transition states (e.g. 

fibromyocytes) and functional variants predicted to alter SMC and macrophage-specific regulation 

of MRAS (3q22) and LIPA (10q23), respectively. We further nominated key driver transcription 
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factors such as PRDM16 and TBX2. Together, this single nucleus atlas provides a critical step 

towards interpreting regulatory mechanisms across the continuum of CAD risk.

Introduction

Coronary artery disease (CAD) is the leading cause of death globally and results from injury 

to the vessel wall and atherosclerotic plaque buildup. Atherosclerotic coronary arteries are 

complex due to the propensity of multiple cell types to undergo cell phenotypic switching, 

including endothelial cells, smooth muscle cells (SMCs), fibroblasts, and various immune 

cells 1–3. This has hindered efforts to combat the disease process itself, as currently 

approved therapies only treat the traditional risk factors, such as elevated blood pressure or 

cholesterol levels. Recent single-cell RNA sequencing (scRNA-seq) analyses have yielded 

numerous cellular insights into atherosclerosis 4–11. In particular, lineage-traced scRNA-seq 

approaches have shown that SMCs transdifferentiate to several distinct phenotypes during 

atherosclerosis: 1) “fibromyocytes” with fibroblast-like signatures7; 2) an intermediate cell 

state that can become fibrochondrocyte or macrophage-like 9 ; or 3) a transitional state 

giving rise to multiple plaque cell types10. Together these studies demonstrate that SMC-

derived cells can elicit beneficial or detrimental effects depending on the stage of CAD 

and/or plaque environment. Despite these advances, the underlying cell-specific regulatory 

mechanisms remain elusive.

As a complex disease, CAD involves an interplay of environmental and genetic factors 

over the life course. Genome-wide association studies (GWAS) have now identified over 

200 independent CAD loci 12–16. Many of these are predicted to function in vessel wall 

processes such as regulation of vascular remodeling, vasomotor tone, and inflammation 
17. The majority of CAD associated single nucleotide polymorphisms (SNPs) reside in 

non-coding regions and are enriched in cis-regulatory elements (CREs)18, pointing towards 

regulatory functions19. Since CREs are commonly cell type specific 20,21, understanding 

CAD regulatory mechanisms at the cellular level is required to fully interpret the 

functional impact of risk variants. The Assay for Transposase-Accessible Chromatin with 

sequencing (ATAC-seq) is a widely adopted approach to systematically detect CREs 22 

and has been conducted in CAD-relevant cultured human coronary artery SMCs 23–25 and 

aortic endothelial cells 26. However, cultured cell models often do not fully recapitulate 

the complex cellular and regulatory landscape in vivo. Thus, single-nucleus ATAC-seq 

(snATAC-seq) 27,28 of primary human coronary artery samples has the potential to provide a 

more complete regulatory map to unravel disease mechanisms in vivo.

Single-nucleus epigenomic profiling has recently been applied across various human tissues 
29–38, including carotid arteries 8,39 ; however, to date there is still no large reference 

dataset spanning CAD progression in coronary arteries. In this study, we performed 

snATAC-based chromatin profiling to uncover ~320,000 candidate CREs in human coronary 

arteries from 41 patients with varying clinical presentations of CAD. In generating this 

cell-specific chromatin atlas of the human coronary artery, we identified candidate CREs and 

transcription factors for the major cell types or transition states in the coronary artery. We 

then applied these profiles to associate CAD risk variants with specific cell types by linking 
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CREs to target gene promoters. Finally, we employed both allele-specific mapping and 

sequence-based predictive modeling to resolve genetic regulatory mechanisms that could 

help inform pre-clinical studies of CAD targets in the vessel wall.

Results

Single-nucleus ATAC-seq profiling in human coronary artery

We performed snATAC-seq on coronary arteries (left anterior descending artery (LAD), left 

circumflex artery (LCX), or right coronary artery (RCA)) from 41 patients with various 

presentations of atherosclerosis using a droplet-based protocol 29 (Figure 1a, Supplementary 

Tables 1–4, Extended Data Figure 1). We isolated nuclei from a total of 44 frozen coronary 

segments using a protocol optimized for frozen tissues 40. After sequencing, we performed 

stringent quality control to retain highly informative nuclei (Supplementary Figure 1). 

The libraries showed the expected insert size distributions and enrichment of reads at 

transcription start sites (TSS) (Supplementary Figure 1). Aggregating reads from all nuclei 

approximated bulk coronary ATAC-seq profiles derived from the same patient, further 

illustrating the quality of the single-nucleus dataset (Supplementary Figure 2).

After filtering, we obtained a total of 28,316 high quality nuclei and identified 14 clusters 

using iterative Latent Semantic Indexing (LSI) in ArchR41 for dimensionality reduction 
29,42 (Figure 1b). Importantly, the identified clusters distinguished biological cell types 

rather than individual donor or other covariates (e.g., age, sex) (Supplementary Figures 

1, 3). We assigned each cluster to a coronary artery cell type using gene activity scores, 

which infer gene expression based on chromatin accessibility at established marker genes 
41. Accessibility at SMC marker genes MYOCD, MYH11, CNN1, TAGLN, and ACTA2 
(Figure 1c, Extended Data Figure 2) defined four distinct clusters of SMCs, the most 

abundant cell type in our dataset (57.8 +/− 17.6% of cells, Figure 1b). We further 

identified clusters of endothelial cells (CLDN5), fibroblasts (TCF21, LUM), macrophages 

(CSF1R), and T cells/natural killer cells (TBX21) (Figure 1c). Additional cluster annotations 

included pericytes, plasma (B) cells, mast cells, and ‘unknown’ immune cells (resembling 

macrophages/mast cells). Data integration (Methods) showed our gene activity score-based 

annotations were in high agreement with recently reported scRNA-seq annotations from 

human coronary artery 7 (Figure 1d, Extended Data Figures 2 and 3). In general, 

we observed higher immune cell proportions (cells in clusters 8-14) in atheroma and 

fibrocalcific coronary artery samples (44.1 +/− 18.8%) relative to non-lesion or healthy 

controls (17.7 +/− 8.3%), which is consistent with the cellular etiology of atherosclerosis 

progression 43 (Figure 1e, Supplementary Figure 3). In samples devoid of adventitia (n=11), 

we observed nearly absent fibroblasts as well as depletion of endothelial cells and pericytes 

(Figure 1e). This is consistent with the expected cell composition of the outer adventitial 

layer and vasa vasorum 44,45 and supports the specificity of our cell-type annotations.

Characterization of cell type-specific regulatory profiles

We next applied this coronary artery snATAC-seq dataset to characterize cell type-specific 

cis-regulatory profiles. Using snATAC gene scores we identified 5,121 marker genes across 

all cell types, which revealed both cell identity and/or disease response genes (Figure 2a, 
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Supplementary Data 1). By aggregating reads from all nuclei we generated a master set 

of 323,727 peaks (Supplementary Data 2), which mostly map to intronic and intergenic 

sequences as expected (Extended Data Figure 4 provides peak annotations). Notably, 54% 

were uniquely accessible in only one or limited cell types (Figure 2b), emphasizing the 

benefits of single-nucleus profiling to define context-specific regulatory profiles that could 

be missed in bulk studies.

We next compared these marker genes and peaks with cultured human coronary artery 

SMC super enhancers detected by previous H3K27ac ChIP-seq data 23. SMC ATAC-seq 

peak clusters (ATAC-seq peaks longer than 10 kb, Methods) showed the highest association 

with SMC super enhancers (Supplementary Figure 4). These SMC super enhancers showed 

significantly higher regulatory potential for the identified SMC marker genes compared to 

the marker genes from all other cell types.

To investigate the transcription factors (TFs) potentially driving the regulatory profiles/

programs in each coronary artery cell type, we performed HOMER 46 motif enrichment 

analysis for these marker peaks (Figure 2c, Supplementary Data 3). Top enriched motifs 

in SMCs (MEF2 family 47, TEAD family 48,49, CArG box binding myocardin/serum 

response factor (Figure 2d) 50–53) strongly agree with established SMC TFs in the literature. 

Similarly, we observed enrichment of ETS and SOX family motifs in endothelial cells 
54,55, PU.1/SPIB and IRF motifs in macrophages 56, CEBP and AP-1 family members in 

fibroblasts 57, RUNX family motifs in T cells 58,59, and GATA family motifs in mast cells 
60 (Figure 2c). Besides defining established cell type specific TFs, we also discovered a 

number of lesser known coronary TF motifs (e.g., SIX1/2 in fibroblasts and PRDM1 in 

immune cells). As a complementary approach, we applied chromVAR 61 on a per-cell level 

and observed cell-specific motif enrichment (e.g., TCF21 in SMCs and fibroblasts) (Figure 

2e). Importantly, TCF21 was also highly enriched in fibromyocytes (Figure 3c), providing 

epigenomic-based support for this TF previously shown to drive SMC modulation 7,62.

In order to determine whether cell type-specific accessible regions were enriched for GWAS 

variants for CAD and other vessel wall phenotypes, we performed cell type Linkage 

Disequilibrium (LD) Score Regression (LDSC) 63. CAD and blood pressure GWAS variants 

were highly enriched in SMC, endothelial cell, and macrophage peaks (Figure 2f), while 

variants for pulse pressure and intimal-medial thickness (cIMT) were specifically enriched 

in SMC peaks (Figure 2f). This is in line with the major contribution of SMC in subclinical 

atherosclerosis compared to more advanced atherosclerosis involving multiple cell types 
3,64. In contrast, there was limited enrichment for non-vascular traits (Figure 2f). Overall, 

this comprehensive set of coronary artery snATAC-seq chromatin profiles provides a rich 

landscape to unravel cell-specific regulatory mechanisms in healthy conditions and across 

diverse diseased stages.

Characterization of gene regulatory programs in SMCs

Given the extensive phenotypic plasticity of SMCs, we next investigated differences in 

the cis-regulatory profiles between contractile and modulated SMCs. While the studies 

from Alencar et al. 10 and Pan et al. 9 both provide compelling evidence of modulated 

SMC populations, we expanded upon the Wirka et al. 7 study. This study included 
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human coronary arteries and identified a modulated ‘fibromyocyte population’ (markers 

TNFRSF11B and FN1). SMCs in our dataset partition into four sub-clusters (Figure 

1b), referred to as C4-C7 (Figure 3a). Clusters C5 and C6 have greater accessibility in 

differentiated SMC genes (MYH11 and CNN1), whereas clusters C4 and C7 have greater 

accessibility in phenotypically modulated SMC marker genes (TNFRSF11B and FN1) 

(Figure 3a–b). To address potential noise due to sparsity of snATAC-based gene scores, 

we also derived integrated RNA scores using mutual nearest neighbor integration and label 

transfer between identified anchors in the snATAC-seq data and Wirka et al. 7 scRNA-seq 

data (Methods, Extended Data Figures 2,3). This approach provided higher resolution to 

clearly delineate the SMC-derived fibromyocyte population based on TNFRSF11B, FN1 and 

other modulation markers (Figure 3a, Extended Data Figure 2). Consistently, chromVAR 

based TF enrichment revealed highly enriched motifs for AP-1 family members (e.g. 

ATF3) and TCF21 in the fibromyocyte cluster, which was depleted of differentiated SMC 

CArG box motif (Figure 3c, Extended Data Figure 2). Other TFs such as TEAD4 were 

enriched in all SMC clusters (Figure 3c). Together these results suggest that we can leverage 

single-nucleus accessibility profiles to understand regulatory drivers of SMC phenotypic 

modulation.

In a similar approach, we leveraged chromVAR motif deviations to perform trajectory 

analyses in SMC clusters. By assigning a path of accessibility from differentiated SMCs 

towards fibromyocytes (Figure 3d), we identified enriched MEF2 and CArG motifs at 

the start of the trajectory, followed by enrichment of ETS and NFY motifs, then AP-1 

and RUNX motifs in fibromyocytes (Figure 3d). Using the scRNA-seq integrated data, 

we further identified 7,802 differentially accessible peaks (5,681 upregulated and 2,121 

downregulated) between cells annotated as fibromyocytes vs. traditional/differentiated 

SMCs (Supplementary Data 4). In particular, we identified 170 significantly upregulated 

and 108 downregulated promoter peaks in fibromyocytes (Figure 3e, Supplementary Data 

4). Promoters with higher accessibility in fibromyocytes include several extracellular 

matrix (ECM) genes (e.g., VCAN, COL4A3/4 and TNFAIP6), previously identified using 

scRNA-seq 7. However, we also revealed a number of candidate fibromyocyte markers 

such as the Rho GTPase effector gene, CDC42EP5, linked to actin-mediated migration/

proliferation 65. Using HOMER de novo motif enrichment, we again observed AP-1 

(FRA1), RUNX, TEAD, and TCF21 motifs in upregulated fibromyocyte peaks, but also 

motifs for inflammatory response factors STAT3 and ARID5A 66 (Figure 3f, Supplementary 

Data 4). The RUNX motif includes RUNX2, suggesting this fibromyocyte population may 

include osteochondrogenic cells 67,68. Conversely, MEF2A and CArG box motifs were 

the top enriched motifs in the downregulated peaks. Genomic region enrichment analysis 

identified ECM organization and cell migration processes in upregulated fibromyocyte 

peaks, compared to enrichment for SMC contraction and related processes in downregulated 

peaks (Figure 3g). Together, these snATAC based results confirm the role of TCF21 and also 

identify candidate TFs underlying SMC phenotypic modulation during CAD.

Annotation of target cell types and genes at CAD GWAS loci

Noncoding GWAS variants are enriched in CREs and often operate in a cell type-specific 

manner 18,30,69. We thus prioritized candidate functional CAD GWAS variants 13,15 using a 
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multi-tiered approach. To first identify variants in CREs, we overlapped CAD lead variants 

(and variants in high linkage disequilibrium (r2 > 0.8; EUR)) from two recent CAD GWAS 

meta-analyses13,15 with snATAC peaks (Figure 4a). This resolved a subset of variants (+/− 

50 bp) overlapping both shared and marker peaks (Figure 4b, Supplementary Data 5), with 

the majority of CAD SNPs residing within SMC peaks, followed by macrophage, fibroblast, 

and endothelial cell peaks. Based on these overlaps, we then highlighted target cell types 

for CAD regulatory variants (Figure 4c). Several top candidate CAD variants map to cell 

type-specific peaks, including rs3918226 at the NOS3 (endothelial nitric oxide synthase) 

locus and rs9337951 at the KIAA1462/JCAD (Junctional cadherin 5 associated) locus 70 

both within endothelial peaks, and rs7500448 at the CDH13 (T-cadherin) locus within a 

SMC peak (Figure 4c). Other CAD variants map to peaks shared across SMC, fibroblast 

and pericyte cell types such as rs1537373 at the 9p21 locus (CDKN2B-AS1/ANRIL), 

rs2327429 (upstream of TCF21) and rs9515203 at COL4A2 (Figure 4c). The lead variant 

rs9349379 (PHACTR1/EDN1), disrupting a MEF2 binding site 71, is located within SMC 

and macrophage peaks (Figure 4c). We identified other CAD variants in macrophage peaks 

(e.g. rs7296737 at SCARB1 and rs12246441 at TSPAN14) (Extended Data Figure 7). We 

also prioritized a number of CAD loci within CREs acting through more than one cell type 

and confirmed SMC-specificity for previously validated loci such as LMOD1 72 (Figure 4d).

Since noncoding variants do not always regulate the nearest gene(s), we also linked 

candidate variants to target promoters through co-accessibility and scRNA-seq integration 

(Methods, Figure 4a). For instance, the SMC peak-containing variant, rs7500448, shows 

high co-accessibility with the CDH13 promoter (Extended Data Figure 5), which is also 

an artery-specific eQTL for CDH13 in GTEx. Another relevant example is rs998584, 

located within a strong fibroblast peak 3’ of VEGFA, which is highly co-accessible with 

the VEGFA promoter (Extended Data Figure 5). In an orthogonal approach, we combined 

co-accessibility and RNA integration to identify peaks where accessibility correlates with 

target gene expression (referred to as Peak2Gene links). We identified a total of 148,617 

Peak2Gene links when aggregating all cell types (Extended Data Figure 5), including 

for many CAD risk variants (Supplementary Data 5). Together, these single-nucleus 

chromatin annotations refine candidate regulatory mechanisms at CAD GWAS loci, for 

future functional validation in the appropriate cell types.

Prioritizing cell type-specific CAD functional variants

Chromatin accessibility quantitative trait locus (caQTL) mapping is a powerful association 

analysis to resolve candidate GWAS regulatory mechanisms 73–78. We thus calculated 

caQTLs in our dataset in four major coronary cell types (SMC, macrophages, fibroblasts, 

and endothelial cells) (Supplementary Data 6). Given our modest sample size (n=41), we 

used RASQUAL 79 for caQTL mapping to capture both population and allele-specific 

effects (Methods), as done previously for cultured coronary artery SMCs 80. As expected, 

the number of QTLs discovered per coronary cell type was proportional to the respective 

number of annotated nuclei (Figure 5a), with the most belonging to SMCs (1,984 at 

5% FDR). 26% of these single cell caQTLs were also observed in coronary artery bulk 

ATAC-seq libraries (Supplementary Data 7) from the same patients (n=35) with 86% 

consistent effect size directions (Extended Data Figure 6). To determine whether these 
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caQTLs regulate gene expression, we queried these variants for eQTL signals in GTEx 

artery tissues (coronary, aorta, and tibial). Out of the 1,984 unique SMC caQTLs (5% FDR), 

47% were significant eQTLs (GTEx 5% FDR) in at least one GTEx arterial tissue. Most 

of the coronary SMC caQTLs that are GTEx eQTLs are shared across all artery types 

(Figure 5b). We also identified 71% concordant coronary artery caQTL and eQTL effect 

sizes (Figure 5c), which is consistent with reported findings in human T cells 75.

We next applied these cell type caQTLs to further dissect CAD related mechanisms in the 

vessel wall. One example is rs4450010 at the MEF2D migraine/cardiovascular-associated 

gene within a SMC peak. The rs4450010-T allele creates a TEF1 (TEAD) binding site and 

correlates with both increased peak accessibility (Figure 5d) and increased MEF2D RNA 

expression in GTEx arterial tissues (Supplementary Figure 5). Several CAD GWAS variants 

were significant caQTLs in SMC or macrophages. For example, rs13324341 within intron 

1 of MRAS (Muscle RAS oncogene homolog), also in a DNase site 81, is both a SMC 

caQTL and strong eQTL in GTEx arterial tissues (Supplementary Figure 5). Other top CAD 

GWAS-overlapping caQTLs include, among others, rs73551705 (BMP1) and rs17293632 

(SMAD3) in SMCs and rs72844419 (GGCX) and rs10418535 (FCHO1) in macrophages 

(Extended Data Figure 6, Figure 5e). At the MRAS locus, the rs13324341 minor allele 

T (increased CAD risk) creates a MEF2 binding site (Figure 5f) and correlates with both 

increased accessibility and increased MRAS mRNA levels (Figure 5g). These MEF2D, 

MRAS, BMP1, SMAD3, and FCHO1 SNPs (or highly linked SNPs, r2 > 0.8) are all 

significant caQTLs (5% FDR) in bulk coronary artery ATAC-seq data (Supplementary Data 

7).

To complement our QTL-based approach, we employed a machine learning-based strategy 

to assign sequence importance scores to CAD variants (10,117 tested) with effects on 

chromatin accessibility 82. Across three similar approaches (GkmExplain 83, gkmpredict, 

deltaSVM 84) we identified 127 high- or moderate-confidence CAD variants with predicted 

functional effects on chromatin accessibility (Supplementary Data 8). 102 (80%) had 

functional probability scores > 0.6 in RegulomeDb 2.0 and were annotated by enhancer, 

promoter, and TF ChIP-seq enrichment as well as motif disruption (Supplementary Data 

8). About half of these variants were predicted to be functional in a single cell-type. One 

representative CAD variant, rs1320496 (LIPA), resides in a strong macrophage-specific 

peak, with the T allele (increased CAD risk) creating putative binding sites for SPIB, 

TBX21, and IRF4/8 (Figure 5h). Another intergenic SNP, rs10418535-C/T (between 

MAP1S and FCHO1), resides in a macrophage-specific peak with Peak2Gene links to 

FCHO1. The rs10418535-C allele (increased CAD risk) disrupts a PU.1/IRF motif and 

is predicted to attenuate chromatin accessibility (Extended Data Figure 7). rs10418535 

is also a macrophage caQTL with a positive effect for the T allele, consistent with the 

deltaSVM prediction (Figure 5e, Extended Data Figure 7). Together, we demonstrate cell-

type caQTL mapping and machine learning are complementary approaches to pinpoint 

candidate functional disease risk variants at high resolution.
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PRDM16 and TBX2 are top candidate CAD transcription factors

Epigenomic profiles in disease-relevant tissues have been shown to resolve the correct target 

gene(s) at GWAS risk loci, which are often incorrectly annotated to the nearest gene 85. 

Importantly, our data nominates many targets of CAD risk variants in the vessel wall, 

including two previously unannotated TFs as candidate causal genes at their respective loci 

(Supplementary Data 5). The first locus on chr17 harbors dozens of tightly linked CAD 

variants within peaks in the BCAS3 gene (Extended Data Figure 8). However, Peak2Gene 

analysis demonstrates stronger links between these peaks and TBX2 expression in coronary 

arteries. At the second locus on chr1, several linked CAD variants are located within SMC 

peaks 5’ of the ACTRT2 gene and are highly correlated with PRDM16 and LINC00982 
(PRDM16 divergent transcript) expression, but not other genes at the locus (Figure 

6a). This locus also harbors an independent missense CAD-associated SNP (rs2493292; 

p.Pro634Leu) in exon 9 of PRDM16, suggesting both noncoding and coding effects on 

PRDM16 expression (Figure 6a). These results are consistent with activity-by-contact 

enhancer-gene mapping of CAD SNPs in coronary artery in ENCODE (Supplementary 

Table 6), differential expression (Supplementary Table 7) and cis-eQTLs (TBX2) in artery 

tissues (Supplementary Data 10), supporting PRDM16 and TBX2 as target CAD genes.

Both PRDM16 and TBX2 are snATAC SMC marker genes and remarkably PRDM16 is one 

of the top SMC marker genes along with known SMC gene LMOD1 72 (Supplementary 

Data 1). Given the similar gene score enrichment of PRDM16 and LMOD1 in SMC, we 

ranked PRDM16 by correlating all SMC gene scores and integrated RNA scores with 

LMOD1 (Figure 6b). Interestingly, PRDM16 was modestly correlated with traditional SMC 

markers, and negatively correlated with fibromyocyte marker genes. This may implicate 

PRDM16 as a SMC injury-response gene as opposed to a SMC identity marker gene. In 

additional scRNA-seq datasets, PRDM16 and TBX2 are enriched in mural cells (SMCs 

and pericytes) in both human coronary artery 7 and mouse aorta 9 (Supplementary Figure 

6). To gain further insight into these two TF genes, we queried the Stockholm-Tartu 

Atherosclerosis Reverse Network Engineering Task (STARNET) gene regulatory networks 

across 7 cardiometabolic tissues (n=600), which revealed both PRDM16 and TBX2 as 

significant key driver genes in artery tissues (Supplementary Table 8, Extended Data 

Figure 8). In subclinical artery, the PRDM16-regulated module was highly enriched for 

the presence of atherosclerotic lesions and CAD severity, as well as metabolic clinical traits 

(Figure 6c, Extended Data Figure 8). Finally, we confirmed PRDM16 protein expression via 

immunofluorescence of normal, subclinical and advanced atherosclerotic coronary artery 

segments, with alpha-smooth muscle actin (a-SMA) and LMOD1 as positive controls 

(Figure 6d, Extended Data Figure 9). Similar to a-SMA, PRDM16 localized to the SMCs 

in the medial layer and small vessels in the vasa vasorum in healthy arteries, however 

expression was more restricted to the vasa vasorum and endothelium in diseased arteries 

(Figure 6d, Extended Data Figure 9). While we highlight these two examples, particularly 

PRDM16, this coronary dataset can be similarly utilized to prioritize mechanisms at many 

other CAD loci.
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Discussion

In this study we have generated a single-nucleus atlas of human coronary artery chromatin 

accessibility for over 40 patients encompassing healthy and atherosclerotic samples, which 

captures gene regulation in vivo. Over half of the 323,767 identified cis-regulatory elements 

(54%) are unique to a specific cell type or limited number of cell types, underscoring the 

power of single-nucleus epigenomics for resolving unique cell type regulatory processes. 

Our snATAC results also provide direct insights into SMC phenotypic modulation. More 

specifically, we discovered accessible regions, genes and putative TF motifs that may drive 

the transition of native SMCs towards modulated SMCs (e.g. fibromyocytes). Finally, using 

an integrative statistical genetics and machine learning approach we prioritized cell-specific 

candidate regulatory variants and mechanisms underlying CAD loci.

There are now over 200 genetic loci associated with CAD risk, primarily located within 

noncoding genomic regions 13,15. This single-nucleus coronary artery epigenomic landscape 

provides a valuable resource to disentangle the target cell type(s), candidate causal genes 

and variants at the expanding number of CAD risk loci in diverse populations. For example 

we highlight a top caQTL rs13324341 at the MRAS locus which alters a MEF2 binding 

site in SMCs. Given the role of MRAS in Noonan syndrome-associated cardiomyocyte 

hypertrophy 86, these results may provide clues into SMC growth responses during CAD. 

We also highlight top predicted CAD regulatory variants acting in one or more cell types 

(e.g. rs1320496 at LIPA in macrophages). This dataset can also be leveraged to interrogate 

GWAS loci for related common vascular diseases (e.g., hypertension or coronary artery 

calcification).

By taking into account co-accessibility and scRNA-seq integration, we systematically link 

CAD risk variants to target gene promoters. This is critical given that GWAS variants 

are estimated to only target the nearest gene ~50% of the time. For example, using this 

approach we nominate two TF genes, PRDM16 and TBX2, as top candidate genes at their 

respective loci. PRDM16 is a top SMC marker gene from snATAC gene scores, however 

it may not be limited to marking SMC identity. PRDM16 (MEL1) is a TF known for 

roles in metabolism and controlling brown fat-to-skeletal muscle switches 87–89. However, 

PRDM16 is enriched in GTEx arterial tissues and was identified as a key driver gene 

in STARNET artery tissue, consistent with our snATAC data. PRDM16 regulates TGFβ 
signaling 90 through direct interactions with Smad91 and SKI92 proteins, both of which are 

associated with CAD 13. PRDM16 may play key roles in endothelial cells in arterial flow 

recovery 93. Similarly, TBX2 is enriched in GTEx arterial tissues and SMC clusters in our 

dataset, consistent with prior studies showing that Tbx2 activates SRF 94. TBX2 also links 

to relevant CAD pathways such as BMP, TGFβ, and FGF signaling 95. Functional follow-up 

studies to investigate target binding sites and affected SMC processes for these TFs may 

reveal additional mechanisms of disease risk.

While this study provides high-resolution insights into coronary artery gene regulatory 

signatures using primary human tissue samples, there are some known limitations. Given the 

lack of available lineage-tracing snATAC datasets, we cannot fully annotate intermediate cell 

types or precisely resolve their origins and fates during atherosclerosis 9,10. For example, 
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some SMC-derived cells may be incorrectly annotated in T cell clusters, consistent with 

Alencar et al. 10 and Hansson et al. 96. Also, it is worth noting that we captured more nuclei 

from subclinical lesions compared to advanced atherosclerotic lesions, which potentially 

reflects higher difficulty in nuclei extraction for diseased samples. Finally, given our modest 

sample size for QTL based studies, we were underpowered to discover a large number of 

caQTLs for less abundant cell types (e.g. endothelial, T cells) or less frequent transition 

states. Future studies that can capture more nuclei per individual, especially in diseased 

coronary samples, will facilitate identification of additional context-specific regulatory 

mechanisms. Decreasing costs and adoption of single-nucleus and spatial sequencing 

technologies may further improve discovery of regulatory variants and mechanisms through 

multi-modal and integrative approaches 97,98.

In summary, we provide an atlas of chromatin accessibility in both healthy and 

atherosclerotic human coronary arteries. These cell type-specific epigenomic profiles 

characterise cis-regulatory programs at base-pair resolution to further our understanding 

of cell plasticity and heritable disease risk in the coronary vessel wall. We anticipate 

this will provide a valuable resource for the field, and act as a key next step toward 

functionally interrogating causal disease processes and informing pre-clinical studies to treat 

atherosclerosis.

Methods

Ethics Statement

All research described herein complies with ethical guidelines for human subjects research 

under approved Institutional Review Board (IRB) protocols at Stanford University (#4237 

and #11925) and the University of Virginia (#20008), for the procurement and use of human 

tissues and information, respectively.

Coronary artery tissues and human subjects

Freshly explanted hearts from orthotopic heart transplantation recipients were procured 

at Stanford University under approved IRB protocols and written informed consent. 

Participants were not compensated for this study. Hearts were arrested in cardioplegic 

solution and rapidly transported from the operating room to the adjacent lab on ice. The 

proximal 5–6 cm of three major coronary vessels (left anterior descending (LAD), left 

circumflex (LCX), and right coronary artery (RCA)) were dissected from the epicardium 

on ice, trimmed of surrounding adipose (and in some samples the adventitia), rinsed 

in cold phosphate buffered saline, and rapidly snap frozen in liquid nitrogen. Coronary 

artery samples were also obtained at Stanford University (from Donor Network West 

and California Transplant Donor Network) from non-diseased donor hearts rejected by 

surgeons for heart transplantation and procured for research studies. All hearts were 

procured after written informed consent from legal next-of-kin or authorized parties for the 

donors. Reasons for rejected hearts include size incompatibility, comorbidities or risks for 

cardiotoxicity. Hearts were arrested in cardioplegic solution and transported on ice following 

the same protocol as hearts used for transplant. Explanted hearts were generally classified 

as ischemic or non-ischemic cardiomyopathy and prior ischemic events and evidence of 
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atherosclerosis was obtained through retrospective review of electronic health records at 

Stanford Hospital and Clinics. The disease status of coronary segments from donor and 

explanted hearts was also evaluated by gross inspection at the time of harvest (for presence 

of lesions), as well as histological analysis of adjacent frozen tissues embedded in OCT 

blocks. Frozen tissues were transferred to the University of Virginia through a material 

transfer agreement and Institutional Review Board approved protocols. All samples were 

then stored at −80°C until day-of-processing.

Coronary artery sample processing and nuclei isolation

We performed single-nucleus ATAC on four coronary artery samples per day. For nuclear 

isolation we used a similar protocol to Omni-ATAC 40 that was optimized for frozen tissues 

and reported lower mitochondrial reads. We used approximately 50 mg of tissue per sample 

and the full nuclear isolation protocol is provided in Supplemental Methods. After the 

iodixanol gradient step we then carefully took the band containing the nuclei (setting the 

pipette volume to 100 μl) and added the nuclei to 1.3 mL of cold Nuclei Wash Buffer 

(10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20) in 

a 1.5 mL Lo-Bind microcentrifuge tube. The microcentrifuge tube was inverted gently 

5 times, nuclei gently mixed by pipetting (setting the pipette volume to 1 mL), and 

contents passed through a 40 μm Falcon cell strainer (Corning) into a new 1.5 mL Lo-Bind 

microcentrifuge tube (Eppendorf). Nuclei were pelleted by centrifugation for 5 minutes 

at 500 g at 4°C and supernatant carefully removed. Finally, this nuclei pellet was gently 

resuspended in 100 μl of the Nuclei Buffer provided with the kit (diluted from 20X Stock 

to 1X working concentration with nuclease-free water) by gently pipetting up and down. 

Samples and nuclei were kept on ice for all steps of the nuclear isolation. For each sample 

we measured the nuclei concentration by taking the mean of two separate counts using 

Trypan blue (Thermo Fisher) and the Countess II instrument (Thermo Fisher). Post cell 

lysis we generally observed less than 5% Live cells when visualizing with the Countess, 

consistent with proper lysis.

Single-nucleus ATAC library preparation

We used the 10x Genomics Chromium Single Cell ATAC Kit for all snATAC-seq 

experiments (additional details provided in Supplemental Methods). The full protocols for 

the single nucleus ATAC-seq data generation are available at the following link: https://

support.10xgenomics.com/single-cell-atac.

Single-nucleus ATAC library sequencing

Single-nucleus ATAC libraries were shipped on dry ice to the Genome Core Facility at the 

Icahn School of Medicine at Mt. Sinai (New York, New York) for sequencing on an Illumina 

NovaSeq 6000. 40 libraries were sequenced using a NovaSeq S1 flow cell (100 cycles, 2 x 

50 bp) and 4 libraries were sequenced using a NovaSeq S Prime (SP) flow cell (100 cycles, 2 

x 50 bp).
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Raw snATAC data processing and quality control

In-house single-nucleus ATAC-seq (snATAC) data was pre-processed using the 10x 

Genomics pipeline (Cell Ranger ATAC version 1.2.0 41) using the hg38 genome and default 

parameters. Samples from different patients were pre-processed separately. Individual cells 

with high quality were kept for downstream analysis (TSS enrichment >=7, unique barcode 

number >= 10,000 and doublet ratio < 1.5). QC measurements and filtering were conducted 

using ArchR (v1.0.1) 41.

Clustering of coronary artery snATAC data

snATAC reads from different individuals were combined at the single nucleus level and then 

mapped to each 500 bp bin across the hg38 reference genome for dimensionality reduction 

and clustering. The dimensionality reduction was conducted using a latent semantic indexing 

(LSI) algorithm and the 25,000 bins with the highest signal variance across individual 

cells were selected as input. The top 30 dimensions were selected for cell clustering. 

Cell clusters were identified by a shared nearest neighbor (SNN) modularity optimization-

based clustering algorithm from the Seurat (v4.0.0) 99 package). Batch effect removal was 

conducted using the Harmony (v1.0) 100 package. We did not observe any improvement after 

batch correction using Harmony 100.

Single-nucleus ATAC gene scores and cell-type specific genes

The chromatin accessibility within a gene body as well as proximally and distally from the 

TSS was used to infer gene expression via computation of a “Gene Score” using the default 

method in ArchR (v1.0.1). The gene score profiles for all cells were subsequently used to 

generate a gene score matrix. The gene score matrix was also integrated with single-cell 

RNA-seq (scRNA) expression data (described below). Finally, a cell type annotation for 

each cluster was assigned using gene scores for cell type marker genes and later validated or 

further refined through scRNA-seq label transfer (Figure 1b–d).

Cell-type specific marker genes in our snATAC data (genes with significantly higher 

chromatin accessibility in a cluster than in other clusters) were identified using Wilcoxon 

rank-sum test and the genes with (Benjamini-Hochberg) adjusted p-value <= 0.01 and fold 

change >=2 were selected. The z-normalized gene scores for the cell-type specific genes 

were plotted as heatmap (Figure 2a).

scRNA-seq processing and snATAC integrative analysis

We integrated the coronary snATAC-seq dataset (28,316 nuclei) with previously published 

human coronary artery single-cell RNA-seq (scRNA-seq) from Wirka et al. 7. The 

preprocessed scRNA-seq data was downloaded from Gene Expression Omnibus (GEO) 

(accession GSE131780) and processed using Seurat 99 as described in the study. Genes 

expressed in less than 5 cells were filtered out. Cells with <= 500 or >= 3500 genes 

were also trimmed from the dataset as they likely represent defective cells or doublet/

multiplet events. Moreover, cells containing >= 7.5% of reads mapping to the mitochondrial 

genome were discarded as low quality/dying cells often exhibit high levels of mitochondrial 

contamination. Upon discarding poor quality cells, 11,756 high quality cells and 19,965 

genes remained for further analysis. Read counts were normalized using Seurat’s global-
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scaling method that normalizes gene expression measurements for each cell by the total 

expression, multiplies them by a 10000-scaling factor and log-transforms them. Upon 

finding the 2000 most variable genes in the data, dimensionality reduction was performed 

using PCA. The top 10 PCs were further used for UMAP visualization and cell clustering 

(using a shared nearest neighbor (SNN) modularity optimization-based algorithm in the 

Seurat package). The cluster specific genes (marker genes) for each cluster were identified 

with Seurat default method. The cell types of clusters were assigned according to the 

comparison between the cluster specific genes and the cell-type specific gene lists provided 

in the previous study (Supplementary Table 6) 7.

The cell type annotated scRNA expression matrix was then integrated with the snATAC 

gene score matrix (described in the above section) using the “addGeneIntegrationMatrix” 

function from ArchR, which identifies corresponding cells across datasets or “anchors” 

using Seurat’s mutual nearest neighbors (MNN) algorithm. To scale this step across 

thousands of cells, the total number of cells was divided into smaller groups and alignments 

were performed in parallel. Cell type labels within the Seurat scRNA-seq object metadata 

were transferred to the corresponding mutual nearest neighbors in the snATAC-seq data 

along with their gene expression signature. The output of the integration step resulted in 

snATAC-seq cells having both a chromatin accessibility and gene expression profile. After 

integration, snATAC cells were re-annotated in UMAP space using the scRNA transferred 

labels and these defined groups were used for downstream analyses as an alternative 

annotation in addition to the marker gene-based annotation. The scRNA transferred labels 

were also used in the Fibromyocyte vs. SMC differential analysis (Figure 3h–j).

Cell-type specific peak and TF motif enrichment

Genome-wide chromatin accessible regions for each “pseudo bulk” sample (reads 

from the same cluster were combined as a new sample) were detected using the 

“addReproduciblePeakSet” function in ArchR (with parameters extsize=100, cutOff=0.01, 

extendSummits=200). 323,767 chromatin accessible regions (peaks) were detected 

thereafter. The cell-type specific peaks (marker peaks) for each cluster/cell-type were 

identified using a similar strategy as identification of cell-type specific genes (with 

parameters FDR <= 0.01 & Log2FC >= 1). This resulted in a total of 173,357 cell-type 

specific peaks for different cell types. The enriched motifs for each cell type were predicted 

using the “addMotifAnnotations” function in the ArchR package based on the HOMER 46 

motif database (v4.11) . The chromatin accessibility variability and deviation of transcription 

factors was estimated by chromVAR (1.12.0) 61 with genome-wide motif sites provided as 

potential binding sites.

Peak pathway annotation

To perform functional annotation of cell-type marker peaks (Extended Data Figure 4), we 

used GREAT 101 (v4.0.4) with default parameters. The top 5 functional annotation terms 

(from the Gene Ontology (GO) Biological Processes database) for each cell type were 

displayed as a dot plot. The colors and sizes of the dots represent -log10(FDR) (from the 

hypergeometric gene-based test) and the percentage of associated genes, respectively.
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Trajectory analysis

The trajectory analysis was performed using the “addTrajectory” function in ArchR and 

specifying the cluster order (cluster 6 – cluster 5 – cluster 7, Figure 3f). We further 

visualized trajectory-dependent changes of (summarized) ATAC-seq motif signals using the 

“plotTrajectoryHeatmap” function in ArchR (Figure 3g).

Peak to gene linkage and co-accessibility analysis

We leveraged the integrated scRNA and snATAC data in order to explore correlations 

between co-accessible regions and gene expression. These candidate gene regulatory 

interactions were predicted using the “getPeak2GeneLinks” function with default parameters 

in ArchR. The peak2gene loops were collected and plotted using the Sushi package 102 

with red color highlighting SNP-associated loops and grey color for other loops (Figure 

6a–b). For the loops around VEGFA and CDH13 promoter (Extended Data Figure 5), the 

loops were predicted using the ArchR “addCoAccessibility” function with the additional 

parameter “maxDist=1e6”.

Differential analysis between SMCs and fibromyocytes

Details for differential analyses between SMCs and fibromyocytes are provided in 

Supplementary Methods.

LD score regression

We used the LDSC package (https://github.com/bulik/ldsc) to perform LD Score Regression 

using our single-nucleus ATAC peaks 63. We first downloaded GWAS summary statistics 

for: CAD 13; carotid intima-media thickness (cIMT) 103; carotid artery plaque 103; diastolic 

blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) from the 

Million Veterans Program (MVP) 104; Alzheimer’s Disease 105; type 2 diabetes (UK 

Biobank) 106; body mass index (BMI) (UK Biobank) 106; and White Blood Cell (WBC) 

count (UK Biobank) 106. The UK Biobank summary statistics were downloaded from 

https://alkesgroup.broadinstitute.org/UKBB/. We used the provided munge_sumstats.py 

script to convert these GWAS summary statistics to a format compatible with ldsc. For 

each coronary artery cell type we lifted over bed file peak coordinates from hg38 to hg19. 

We then used these hg19 bed files to make annotation files for each cell type. We performed 

LD Score Regression according to the cell type-specific analysis tutorial (https://github.com/

bulik/ldsc/wiki/Cell-type-specific-analyses).

CAD GWAS datasets

For comparison with CAD GWAS data we primarily used summary statistics from van 

der Harst et al. 13 that performed GWAS in UK Biobank subjects followed by replication 

in CARDIoGRAMplusC4D. For overlap of cell type peaks we also used SNPs from this 

GWAS and a recent CAD GWAS (Koyama et al. Nature Genetics 2021) that performed 

trans-ancestry meta-analysis 15. We obtained the list of lead SNPs (p < 5 x 10−8) from 

GWAS catalog (https://www.ebi.ac.uk/gwas) for the van der Harst study (accessions: 

GCST005194-GCST005196) and Supplementary Table 8 of Koyama et al. We used 
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these lead variants as input to LDlinkR (https://ldlink.nci.nih.gov, https://github.com/CBIIT/

LDlinkR) and subsequently kept variants with r2 >= 0.8 using EUR population.

Overlap of CAD GWAS SNPs with cell type peaks

We first used the UCSC liftover tool to convert the LDlinkR output of LD-expanded CAD 

SNPs from hg19 to hg38 coordinates. To account for CAD variants directly adjacent to 

a peak we considered a 100 bp window with the SNP lying within the center. We used 

BEDOPS 107 (v2.4.37) to extend the SNP position 50 bp in each direction. Next we used 

bedtools (v2.26.0) 108 to intersect these SNP coordinates with peak bed files from each cell 

type. We considered 1) peaks from the total peak set annotated to that cell type and 2) cell 

type marker peaks.

Genomic DNA sequencing

We isolated genomic DNA for each patient using the Qiagen DNeasy Blood and Tissue Kit. 

Approximately 20-25 mg of frozen left ventricle or coronary artery was placed in a 1.5 mL 

microcentrifuge tube and tissue lysed using lysis buffer, proteinase K, heating at 56°C for 

1-3 hours or overnight, and intermittent vortexing. We then followed the kit instructions and 

genomic DNA eluted using 100 μl of Buffer AE (TE buffer). Genomic DNA samples were 

diluted to concentrations of between 5 ng/μl and 15 ng/μl in skirted 96 well PCR plates 

using TE buffer. Plates were sealed and shipped to Gencove (New York, USA) for 0.4X 

low-pass genomic DNA sequencing.

Genotype phasing, imputation, and genomic liftover

We obtained and downloaded the low-pass 0.4x whole-genome sequencing files (unphased) 

from the Gencove website. These were all provided in human genome build b37. We phased 

and imputed to the 1000 Genomes reference panel using Beagle (v5.1) 109,110. We then used 

Picard to liftover the phased autosomal VCFs from b37 to hg19, then hg19 to hg38 (“Picard 

Toolkit.” 2019. Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; 

Broad Institute). Approximately 43,000 variants could not be mapped after liftover and 

were subsequently discarded. This left approximately 38 million total variants (10.1 million 

variants with minor allele frequency >1%).

Chromatin accessibility QTL preprocessing

To identify cell type-specific chromatin accessibility QTLs (caQTLs) we focused on four 

coronary cell types: smooth muscle cells, endothelial cells, fibroblasts, and macrophages. 

We first extracted cell-type assigned reads from our ArchR analysis in bam format for each 

snATAC library. For each individual cell type we excluded individuals with less than 20 cells 

from caQTL analysis. We ended up with SMC bam files for 40 patients, endothelial cell 

bam files for 37 patients, fibroblast bam files for 26 patients (due to some samples lacking 

adventitia), and macrophage bam files for 39 patients. To obtain region sets we took the peak 

set across all cell types and converted these peaks from bed to saf format. We used these 

peak coordinates in saf format and cell type bam files as input for featureCounts111 (v1.6.4) 

with the -p flag for paired-end mode. This subsequently generated raw count matrices for 
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SMC, endothelial, fibroblast, and macrophage cells. For each cell type we only retained 

peaks with an average of 5 read counts across individuals.

We used RASQUAL79 (v1.0) to calculate caQTLs, which leverages differences in read 

counts between individuals as well as allele-differences within an individual at heterozygous 

sites 79. To simplify preparation of RASQUAL input files we used rasqualTools (https://

github.com/kauralasoo/rasqual/tree/master/rasqualTools) to prepare compatible snATAC 

read count, metadata, and sample specific offset files. To calculate sample offsets we 

adjusted for library size as well the GC content of each peak.

For each individual we obtained genotypes from the low-pass whole genome sequencing 

that was performed by Gencove. We used VCFtools 112 to filter for variants with at least 

5% minor allele frequency and select patients with corresponding snATAC-seq libraries. 

We used RASQUAL to create allele-specific vcf files (createASVCF.sh) for each cell type, 

which contains genotype information plus counts for reference and alternative alleles. We 

bypassed the qcFilterBam part of the createASVCF.sh script due to incompatibility and 

memory issues with our snATAC bam files. However, our bam files extracted from each cell 

type were previously filtered using ArchR and contain high quality cells and reads.

Calculation of chromatin accessibility QTLs

For each snATAC peak we tested association for all variants within a +/− 10 kb window. 

We ran RASQUAL using the -t flag to output only the top associated SNP for each peak. 

For all RASQUAL runs we adjusted for age, sex, and the first three principal components of 

ancestry in the covariate file (-x flag). To obtain a null distribution of q values we performed 

5 separate permutation runs for each cell type using the --random-permutation flag to break 

the relationship between genotype and peak accessibility.

To adjust for multiple testing, we performed two FDR (false discovery rate) corrections. 

First, for each peak we obtained a q value corresponding to the SNP level FDR (Benjamini-

Hochberg method) for that peak.. Next, the permutation test in RASQUAL adjusts for 

genome-wide multiple testing. For each peak we averaged the q values across the 5 

RASQUAL permutation runs. This produced two vectors: one with real RASQUAL q values 

and one from the permuted q values for each peak. By comparing the real and permuted 

vectors of q values we were then able to calculate the q value corresponding to either 10% 

FDR, 5%, or 1% FDR. For plotting RASQUAL caQTL results as boxplots, we took raw 

count files for each cell type, adjusted for library size and performed variance stabilizing 

transformation in DESeq2 113 (v1.26.0).

Overlap of caQTLs with GTEx eQTLs

We used the QTlizer R package 81 to query the significant SMC caQTL rsIDs for eQTL 

signals in GTEx v8. We only retained GTEx eQTL signals at 5% FDR and subsequently 

filtered for relevant arterial tissues (coronary artery, aorta, tibial artery).
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Publicly available gene expression data

Gene expression levels, expression quantitative loci (eQTL) data, and eQTL boxplots 

were obtained from the Genotype-Tissue Expression (GTEx) v8 portal website (https://

www.gtexportal.org/home/). Differential gene expression data from publicly available Gene 

Expression Omnibus (GEO) in cardiovascular relevant systems was obtained via the 

HeartBioPortal (https://heartbioportal.com/).

Functional variant sequence-based predictive modeling

We first downloaded CAD GWAS summary statistics from van der Harst et al.13 and 

retained variants passing the genome-wide threshold (p < 5 x 10−8). This resulted in 10,117 

variants that were tested. The variant scoring analysis (Figure 5h) was conducted using the 

lsgkm package (https://github.com/kundajelab/lsgkm) 82,114 and the GkmExplain package 

(https://github.com/kundajelab/gkmexplain) 83. For a given cell type (e.g. SMC), the reads 

from all the individual cells assigned to the cell type were first collected as a pseudo bulk 

sample. The pseudo bulk ATAC-seq peaks were detected with MACS2 115 (paired end mode, 

with additional parameter -q 0.01). In the model building step, peaks were split 10-fold 

for cross-validation. For each fold, the top 60000 peaks with highest −log10(q-value) were 

selected as the training set. The +/− 500 bp sequence from the peak summits were used 

as a positive set, while sequences from a 1000 bp region outside of peaks with matching 

GC-content were used as a negative set. The importance score of all the positions around the 

target SNP (up to +/− 100 bp) were plotted as sequence logo (Figure 5h).

STARNET gene regulatory network analysis

Based on STARNET multi-tissue gene expression data (bulk RNA-seq), tissue-specific 

and cross-tissue co-expression modules were inferred using WGCNA 116 as previously 

described 117. Enrichment for clinical trait associations was computed by aggregating 

Pearson’s correlation p values by co-expression module using Fisher’s method. Enrichment 

for differentially expressed genes was calculated using the hypergeometric test, with 

differentially expressed genes called by DESeq2 (+/− 30% change, FDR < 0.01) with 

adjustment for age and gender. The gene regulatory network was inferred among PRDM16 

and TBX2 co-expressed genes using GENIE3 118 with potential regulators restricted to 

eQTL genes or known transcription factors. To identify hub genes in the network, weighted 

key driver analysis (wKDA) was carried out using the Mergeomics R package 119.

Immunofluorescence of human coronary artery tissues

Human coronary artery tissues were obtained as described above. Briefly, coronary artery 

segments were isolated from healthy and subclinical atherosclerotic left main and right 

coronary artery branches. Tissues were embedded in OCT blocks, snap-frozen in liquid 

nitrogen and stored at −80°C. Tissue blocks were cryosectioned at −20°C and 6 μm 

thickness and processed for immunostaining. Sections were rehydrated in PBS at room 

temperature (RT) and fixed in 10% neutral buffered formaldehyde for 10 min at RT, 

followed by PBS washes, protein blocking in casein buffer for 1 hour at RT, and 

incubated overnight at 4°C with anti-LMOD1 rabbit polyclonal antibody (Proteintech, 

15117-1-AP; 1:100), alpha-smooth muscle actin (a-SMA) mouse monoclonal antibody 
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(clone 1A2; Agilent/Dako, M0851; 1:100) or anti-PRDM16 rabbit polyclonal antibody 

(Abcam, ab106410; 1:2000) or no antibody negative control (PBS), with optimal dilutions 

determined by titrations with control tissues. Sections were washed in PBS and incubated 

with donkey anti-rabbit Alexa Fluor 555 conjugated secondary antibody (Thermo Fisher, 

A31572; 1:150) or donkey anti-mouse Alexa 488 conjugated secondary antibody (Thermo 

Fisher, A21202; 1:150) for 30 min at RT, washed in PBS, and stained with DAPI (1:500) and 

coverslipped using aqueous mounting media.

Whole slide images were captured at 25X magnification using a Zeiss LSM 880 Indimo, 

AxioExaminer confocal microscope with a Plan-Apochromat 25×/0.8 M27 objective in 

Line Sequential unidirectional mode. Signal corresponding to the DAPI (channel 1) and 

the protein of interest (channel 2) were obtained using lasers (respective wavelength of 

excitation of 405 and 561nm); a PMT and filters were used to collect the fluorescence 

emitted respectively at 410-480nm and 561-597nm. Images in both channels were merged 

with the Zeiss ZEN 3.3 Lite software (version 3.3.89). Brightness, gamma, and contrast 

were uniformly adjusted. Corresponding regions of interest of the sections immunostained 

with both antibodies were numerically magnified. Whole slide images were reconstructed 

from tiles acquired in brightfield using a high resolution HV-F203SCL Hitachi camera 

mounted on a Axio Scan microscope using a Plan-Apochromat 10X/0.3 objective.

For histology analysis, adjacent sections were stained with hematoxylin and eosin and 

Movat pentachrome as previously described 120. Images were captured using a Zeiss 183 

Axio Scan Z1 at 20X magnification. The resulting czi files were visualized for staining 

using Zeiss ZEN 3.3 Lite software (version 3.3.89).

Histological analysis and quantitation of atherosclerosis

Please refer to Supplemental Methods

Sample size

No sample size calculations were performed a priori. Sample size (n=41) was determined 

based on the availability of tissue materials. However we also confirmed with a power 

analysis calculator that this sample size has 95% power to detect low frequency cell types 

(5-10%) based on the average number of cells captured per sample. Additional descriptions 

of post-hoc power calculations are provided in Supplementary Figure 7 and Supplementary 

Methods.

Genome annotations and browser tracks

All sequence alignments and annotations are with respect to the hg38 human reference 

genome. For each cell type we created bigWig files from aggregated cells and created 

custom tracks that were uploaded to the UCSC Genome Browser and viewed using hg38.

Statistical analyses

The statistical tests performed are listed in the respective figure legends or sections of the 

Methods. Data collection and analyses were performed with authors blind to the precise 

disease stages of the samples.
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Extended Data

Extended Data Fig. 1. 
Histological characterization of human coronary artery sections. (a) Representative histology 

staining of adjacent frozen human coronary artery sections at different disease categories 

used for snATAC profiling. Category 1 reflects normal to Stary atherosclerosis stage I/II 

lesions with adaptive intimal thickening and early lipid (Oil Red O (ORO)) and collagen 

(Sirius Red) accumulation in the subintimal layer. Category 2 reflects Stary stage III/IV 
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early/intermediate atheroma lesions with increased lipid and collagen accumulation and 

proliferation (Hematoxylin & Eosin (H&E)). Category 3 reflects Stary stage V/VI advanced 

fibroatheroma or complex lesions with more severe lipid and collagen deposition as well 

as lipid core and thin media layer. (b) Whole slide quantitative results of ORO area 

(mm2) normalized to overall tissue area and (c) Sirius Red based quantitation of intima-

media thickness (IMT) with maximum intima and average media width captured from >6 

automatically defined measurements (Methods). (a-c) Similar results were observed from 

n=3, n=5, and n=10 independent donor samples per lesion stage, respectively. One-way 

ANOVA p-values after Tukey post-hoc test are shown for comparisons across lesion stages. 

Boxplots (b-c) represent the median and interquartile range (IQR) with upper (75%) and 

lower (25%) quartiles shown. Scale bars = 1 mm.
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Extended Data Fig. 2. 
Coronary artery cell type marker genes from snATAC gene scores. (a) Representative 

UMAP plots of snATAC imputed gene activity scores and integrated RNA scores for SMC 

and fibromyocyte marker genes. (b) UMAP plots of imputed gene scores for additional cell 

type marker genes and CAD GWAS genes. (c) Top candidate genes at CAD GWAS loci with 

cell type enriched chromatin accessibility. Negative Log10 FDR enrichment values shown 

for CAD GWAS marker genes.
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Extended Data Fig. 3. 
Integration of human coronary artery snATAC-seq data with human coronary artery scRNA-

seq (from Wirka et al. Nat Med 2019). (a) UMAP showing projection of scRNA-seq 

cluster labels onto cells in the snATAC-seq dataset. Colors represent the assigned cellular 

identities from scRNA-seq label transfer. Detailed parameters of the snATAC-seq/scRNA-

seq integration are provided in the Methods section. (b) Heatmap of marker gene scores after 

ArchR RNA/ATAC integration highlights 4,649 marker features. (c) Correlation of cell type 

specific scRNA and snATAC promoter accessibility (pseudo bulk reads from ATAC signal 
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centered on TSS (+/− 3kb) for each gene). Log2 transformed data is represented as scatter 

plots and Pearson correlation coefficients are shown for each cell type. White lines represent 

missing gene counts from scRNA-seq dataset, which is most apparent in the low abundant 

Mast cells.

Extended Data Fig. 4. 
Coronary artery snATAC peak cell type and functional annotation. (a) Pie chart showing 

genomic annotations of the consensus set of coronary peaks across all cell types 
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(n=323,767). Peaks were annotated using the ChIPseeker R/Bioconductor package (Yu et 

al. Bioinformatics 2015). (b) Pie chart of cell type annotation for peaks in the consensus 

peak set (n=323,767) according to ArchR (Granja et al. Nature Genetics 2021). Peaks were 

annotated with a cell type according to the group from which each peak originated according 

to ArchR’s iterative overlap procedure. (c) Functional enrichment analysis of cell type 

marker peaks using GREAT.

Extended Data Fig. 5. 
snATAC-seq co-accessibility and integration with scRNA-seq link putative regulatory 

elements to target promoters. (a) Genome browser tracks highlighting CAD-associated 

SNPs located within peaks linked to the VEGFA promoter peak through co-accessibility. 
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Chromosome coordinates are hg38 genome build. (b) Genome browser tracks highlighting 

the intronic CAD SNP rs7500448 located in a smooth muscle cell peak in the CDH13 
gene linked to the CDH13 promoter peak through co-accessibility. (c) Heatmap summary 

of ArchR Peak2Gene links (n=148,617) at 10 kb resolution where chromatin accessibility is 

highly correlated with target gene expression. Shown on the left are Z-scores for ATAC peak 

accessibility and on the right are Z-scores for RNA expression.

Extended Data Fig. 6. 
Additional CAD-associated variants that are coronary artery chromatin. accessibility QTLs 

(caQTLs). (a-b) Smooth muscle cell caQTL boxplots for variants at the BMP1 (rs73551705) 

and SMAD3 (rs17293632) CAD loci (n=40 unique individuals). (c) Macrophage caQTL 

boxplot for the rs72844419 variant at the GGCXCAD locus (n=39). Chromatin accessibility 

reads were normalized using variance stabilizing transformation (vst) in DESeq2. Boxplots 

represent the median and interquartile range (IQR), while the whisker represent up to 1.5 X 

IQR. (d-e) Comparison of effect size directions between smooth muscle cell caQTLs (5% 
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FDR) and bulk coronary artery caQTLs (5% FDR), as visualized in scatter plot (d) and 

donut plot (e). For this analysis, 503 caQTL peaks are shared between both datasets (peaks 

with a corresponding significant caQTL variant). The rsID reported in the SMC caQTL 

results (n=40 individuals) was compared with the rsID reported in the bulk caQTL results 

(n=35 individuals). Two variants were considered to be in linkage disequilibrium (LD) if the 

r2 value between them was between 0.2 and 1 (in EUR population). If variants had an r2 

value < 0.2 (in EUR population), the variants were considered to be in low LD (blue). For 

the caQTL effect size direction, we considered the RASQUAL Pi statistic. The RASQUAL 

Pi statistic can range from 0-1, where Pi < 0.5 reflects lower peak accessibility for the 

alternative allele and Pi > 0.5 reflects higher accessibility for the alternative allele. The effect 

sizes for linked variants go in the same direction (green) if the Pi values in SMCs and bulk 

coronary artery are both < 0.5 or both > 0.5. Linear regression line and Pearson correlation 

coefficient shown in (d).

Extended Data Fig. 7. 
Examples of candidate CAD functional variants within macrophage accessible chromatin. 

(a) CAD GWAS locus MAP1S/FCH01 on chromosome 19 depicting multiple genome-wide 

significant variants (above dashed line). Log normalized P-values determined by linear 
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mixed models and adjusted for genome-wide multiple testing as described by van der Harst 

et al, Circulation 2018. Highlighted variant rs10418535 is located within a macrophage/

immune cell ATAC peak as shown in the genome browser tracks. gkm-SVM importance 

scores show the predicted effects of the T allele to form a functional binding site, while the 

C allele (non-effect) is predicted to disrupt TF binding. (b) Genome browser view showing 

95% credible CAD SNPs (blue), highlighting rs7296737 located within a strong macrophage 

marker peak in the first intron of SCARB1 on chr12. (c) Genome browser view highlighting 

top credible CAD SNP rs17680741 residing in macrophage marker peak in the second intron 

of TSPAN14 on chr10.

Extended Data Fig. 8. 
Co-accessibility and gene regulatory analyses prioritize transcriptional regulators TBX2 and 

PRDM16. (a) Genome browser track highlighting the association between CAD associated 

SNPs and SMC marker genes through co-accessibility (peak2gene) detected by snATAC-seq 

data (Methods). The red loops represent the association between TBX2 promoter and CAD 

associated SNPs. (b) Network visualization of TBX2 key driver target genes in STARNET 

atherosclerotic aortic root (AOR) tissue. (c) Clinical trait enrichment for PRDM16 module 

28 in STARNET liver tissue. Pearson’s correlation p-values (gene-level) were aggregated for 
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each co-expression module using a two-sided Fisher’s exact test. Case/control differential 

gene expression (DEG) enrichment was estimated by a hypergeometric test. (d) Network 

visualization of PRDM16 key driver target genes in STARNET mammary artery (MAM) 

and liver tissues.

Extended Data Fig. 9. 
Immunostaining of PRDM16 protein in coronary atherosclerosis sections. (a) Representative 

negative control (no primary antibody) immunofluoresence (IF) staining in human coronary 

artery - left anterior descending (LAD). Positive staining of rabbit anti-PRDM16 in vessels 

in control kidney tissues. Similar results were observed from n = 4 independent donor 

samples per tissue. Scale bar = 100 um. (b) Representative IF staining of PRDM16 and 

LMOD1 in atherosclerotic human coronary artery (LAD) segments from normal-Stage II, 

Stage III-IV, and Stage V-VI lesions based on Stary classification stages. Red = PRDM16 

or LMOD1, Green = alpha smooth muscle actin (a-SMA) and blue = DAPI (nuclei). Scale 

bar = 1mm (whole slide) or 100 um (highlighted regions of interest). (c) Representative 

hematoxylin & eosin (H&E) and MOVAT histology staining of distinct human coronary 

artery segments with similar lesion stages as (b). Scale bar = 1mm. (b-c) Similar results 

were observed from n = 4 (Normal-stage II), n=6 (Stage III-IV), and n=6 (Stage V-VI) 

independent donor samples per group.
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Refer to Web version on PubMed Central for supplementary material.
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All raw and processed single-nucleus chromatin accessibility sequencing datasets are made 

available on the Gene Expression Omnibus (GEO) database (accessions: GSE175621 and 

GSE188422). The processed and analyzed snATAC data will also be made available on the 

PlaqView single-cell data portal (https://www.plaqview.com). All caQTL data are available 

in the Supplementary Data. Low-pass whole genome sequencing based genotyping data are 

available on dbGaP (accession: phs002855.v1.p1). The human coronary artery scRNA-seq 

dataset we used in this study from Wirka et al. (Nature Medicine 2019) is available through 

GEO (accession: GSE131778). The mouse atherosclerosis scRNA-seq dataset from Pan et 

al. (Circulation 2020) is available through GEO (accession: GSE155513). The reprocessed 

and analyzed human and mouse datasets are also available on PlaqView. Gene expression 

levels, expression quantitative loci (eQTL) data, and eQTL boxplots were obtained from the 

Genotype-Tissue Expression (GTEx) v8 portal website (https://www.gtexportal.org), GEO 

and HeartBioPortal (www.heartbioportal.com). Gene regulatory network analysis data from 
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the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) are 

available at http://starnet.mssm.edu.
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Figure 1. snATAC-seq profiling of 28,316 nuclei from human coronary arteries reveals cell type 
chromatin accessibility patterns across 41 individuals.
(a) snATAC-seq was performed on nuclei isolated from frozen human coronary artery 

samples taken from explanted hearts from 41 unique patients. Samples came from segments 

of either the left anterior descending coronary artery (LAD), left circumflex artery (LCX), 

or right coronary artery (RCA). After isolation using density gradient centrifugation, 

nuclei were transposed in bulk and mixed with barcoded gel beads and partitioning oil 

to generate gel beads in emulsions (GEMs). (b) Uniform manifold approximation and 

projection (UMAP) and clustering based on single-nucleus chromatin accessibility identifies 
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14 distinct coronary artery clusters. Each dot represents an individual cell colored by cluster 

assignment. (c) UMAP plot of Figure 1b colored by gene score for coronary artery cell 

type marker genes, including myocardin (MYOCD, smooth muscle cells), TCF21 (smooth 

muscle cells and fibroblasts), LUM (fibroblasts), CLDN5 (endothelial cells), CSF1R 
(macrophages), and TBX21 (T cells). (d) Heatmap representing the contingency table 

highlighting correspondence between snATAC-seq and scRNA-seq cell type assignments. 

(e) Distribution of cell types across all of the snATAC-seq samples, divided by whether or 

not the corresponding sample had an adventitial layer. Schematic in (a) was created using 

BioRender.
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Figure 2. Human coronary artery cell types display distinct gene regulatory processes.
(a) Heatmap of coronary cell type marker genes (n=5,121) across each cell type calculated 

from snATAC-seq gene scores. Each column represents a unique marker gene. The color 

represents the normalized gene score of the marker genes in cell types. (b) Heatmap 

reflecting coronary cell type marker peaks that highlight cis-regulatory elements specific 

to only one or very limited cell types. Each column represents an individual marker peak. 

The color represents the normalized marker peak accessibility in cell types. (c) Heatmap 

of transcription factor motifs enriched in cell type marker peak sequences. The color 
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represents the normalized motif enrichment score calculated in ArchR using HOMER with 

the hypergeometric test. (d) Representative motif occurrence plot for the CArG box motif. 

The CArG box motif, which binds myocardin and serum response factor, is highly enriched 

in smooth muscle cell accessible chromatin. (e) At the individual cell basis, accessible 

chromatin is highly enriched for the TCF21 motif in fibroblasts, smooth muscle cells, and 

pericytes. Transcription factor motif deviations (x-axis) were calculated for each cell using 

chromVAR. The TCF21 deviations for each cell were integrated based on the cell type 

(y-axis). (f) LD Score Regression (LDSC) reveals differing enrichment of GWAS SNPs for 

CAD, hypertension, and non-vascular phenotypes within coronary snATAC cell type peaks.
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Figure 3. Sub-cluster analysis of smooth muscle cell accessible chromatin identifies fibromyocyte 
regulatory programs.
(a) snATAC UMAP for the 4 SMC clusters (C4-C7). The UMAP was colored by snATAC 

cluster (top) and by cell type labels assigned by scRNA-seq label transfer (bottom). Dashed 

lines demarcate boundary of cells with increased SMC marker gene scores (clusters C5 

and C6), or decreased SMC marker gene scores (C4 and C7). Integrated snATAC/scRNA 

UMAP highlights both Fibromyocyte SMCs and traditional SMCs (demarcated by dashed 

lines and colors) within clusters 4-7. “Pericyte 1” and “Pericyte 2” labels from scRNA-seq 

were also mixed in clusters 4 and 5. (b) Quantification of imputed snATAC gene scores 
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highlights higher chromatin accessibility at differentiated SMC marker genes MYH11 
and CNN1 in clusters 5 and 6, and higher accessibility at modulated SMC/Fibromyocyte 

marker genes TNFRSF11B and FN1 in clusters 4 and 7. P-values were calculated using 

a one-sided Wilcoxon test. The exact P-values are as follows: MYH11: p=0; CNN1: 

p=0; TNFRSF11B: p=0; FN1: p=1.7e-260. The N values for nuclei in each cluster are 

as follows: C4: 6275; C7: 1971; C5: 6134; C6: 1988. (c) ChromVAR transcription factor 

motif enrichment for differentiated SMC CArG box in traditional SMC and enrichment 

for ATF3 and TCF21 motifs in modulated SMC/Fibromyocyte and Fibroblast clusters. 

The TEAD4 motif is enriched in both contractile and modulated SMCs. (d) Left, scatter 

plot overlay of SMC UMAP depicts the trajectory path from differentiated SMC to 

modulated SMC/Fibromyocyte sub-clusters (left). Motif enrichment heatmap shows the 

top enriched motifs across the trajectory pseudo-time (right). Values represent accessibility 

gene z-scores. (e) Volcano plot of differential peak analysis (subset to promoter peaks) 

comparing Fibromyocyte and traditional SMCs. Fibromyocyte and SMC annotated cells 

were defined based on RNA label transferring (Methods) and significant peaks determined 

by a Wilcoxon-test as implemented in ArchR. Peaks with significant differences at FDR 

<= 0.05 and Log2 fold change > 1 were colored light red (Fibromyocyte upregulated) and 

blue (Fibromyocyte downregulated). (f) Top enriched motifs within the total upregulated 

Fibromyocyte peaks (5,681) detected using HOMER de novo enrichment analysis with the 

hypergeometric distribution test. P-values shown are unadjusted for multiple comparisons. 

(g) Functional annotation of Fibromyocyte upregulated (light red) and downregulated 

(blue) peaks conducted using GREAT with the binomial distribution test. Top enriched 

biological processes functional terms are listed. P-values shown are unadjusted for multiple 

comparisons.
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Figure 4. Single-nucleus chromatin accessibility further resolves mechanisms for functional CAD 
GWAS loci.
(a) To prioritize candidate CAD-associated GWAS variants we used a multi-tiered strategy, 

first by taking variants in moderate to high linkage disequilibrium (LD) with the reported 

lead variants (r2 >= 0.8). We next prioritized variants overlapping snATAC peaks and 

narrowed down the cell type(s) whereby these variants are potentially functioning. Finally 

we determined whether candidate variants are within transcription factor motifs and linked 

to target genes through co-accessibility and links to gene expression through scRNA-seq 

integration (Peak2Gene). (b) Overlap of LD-expanded (r2 >=0.8; EUR) CAD GWAS 
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variants (+/− 50 bp) with coronary artery cell type peaks (both from the total peak set and 

marker peaks). LD-expanded SNPs were obtained from two recent CAD GWAS studies (van 

der Harst et al. 2018 and Koyama et al. 2020) that performed trans-ancestry meta-analysis. 

(c) Examples of the benefits of snATAC for pinpointing cell types whereby candidate CAD 

regulatory variants are acting. Highlighted are candidate functional variants at the 9p21 

(CDKN2B-AS1/ANRIL), TARID/TCF21, NOS3, KIAA1462/JCAD, CDH13, COL4A2, 

and PHACTR1 loci. (d) Heatmap showing number of peaks per cell type overlapping CAD 

GWAS variants for 100 of the CAD loci (van der Harst et al. Circulation Research 2018). 

Full overlaps of CAD GWAS variants with snATAC peaks are provided in Supplementary 

Data 5. Schematic in (a) was created using BioRender.
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Figure 5. Identification of genetic variants that regulate chromatin accessibility within coronary 
artery cell types.
(a) The number of chromatin accessibility quantitative trait loci (caQTLs) identified using 

RASQUAL (at 10%, 5%, and 1% FDR cutoffs) within a cell type is proportional to the 

number of annotated cells. The color represents the cell type and shape represents the FDR 

cutoff. (b) UpSet plot for smooth muscle cells caQTLs that are expression quantitative trait 

loci in GTEx arterial tissues. Bars represent the intersection size for overlap of eQTLs 

between coronary artery, aorta, and tibial artery. (c) Comparison of RASQUAL effect 

sizes with GTEx effect sizes (beta). (d) Boxplots highlighting smooth muscle cell (n=40) 

Turner et al. Page 45

Nat Genet. Author manuscript; available in PMC 2022 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



normalized accessibility for MEF2D and MRAS caQTL variants and (e) macrophage (n=39) 

normalized accessibility for FCHO1 and MARCO caQTL variants. Vst: variance stabilizing 

transformation. The q-values represent the lead caQTL SNP q-value (Benjamini-Hochberg 

correction) generated from the likelihood-ratio test for the respective peak in RASQUAL. 

Boxplots (d-e) represent the median and interquartile range (IQR), with upper (75%) and 

lower (25%) quartiles shown and each dot representing a separate individual. (f) Example 

genome browser tracks showing CAD-associated caQTL at the MRAS locus in a smooth 

muscle cell specific peak. The T allele for rs13324341 creates a MEF2 putative binding site. 

(g) In GTEx artery (aorta shown here, n=387 unique individuals) the T allele for rs13324341 

is highly associated with increased MRAS mRNA levels. The cis-eQTL p-value is shown 

from the GTEx pipeline that performs linear regression between genotype and normalized 

gene expression levels. Boxplot (black) within the violin plot includes median (white line) 

and IQR from 25% to 75%. (h) Example of prioritization of functional CAD variants 

using lsgkm machine learning based prediction. The rs13202496 variant at the LIPA locus 

(chromosome 10) resides in a strong macrophage peak. The T allele is predicted to create a 

putative SPIB binding site and increased chromatin accessibility. Feature importance score 

tracks for effect and non-effect alleles are visualized by gkmExplain (Methods).
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Figure 6. PRDM16 is a CAD-associated key driver transcriptional regulator in SMCs.
(a) Genome browser track highlighting the association between CAD associated SNPs 

and SMC marker genes through co-accessibility (peak2gene) detected by snATAC-seq 

data (Methods). The red loops represent the association between PRDM16 promoter and 

CAD associated SNPs. (b) Correlation coefficients of snATAC/scRNA integration scores 

gene expression levels between LMOD1 and genome-wide coding genes in SMCs. Genes 

were ranked by Pearson’s correlation coefficient with LMOD1. Representative positive 

and negative correlated SMC gene names are labeled. (c) Clinical trait enrichment for 

PRDM16 containing module in subclinical mammary artery in STARNET gene regulatory 

network datasets. Pearson’s correlation p-values (gene-level) were aggregated for each 

co-expression module using a two-sided Fisher’s exact test. Case/control differential 

gene expression (DEG) enrichment was estimated by a hypergeometric test. (d) Movat 

pentachrome staining and PRDM16 (red) and alpha-smooth muscle actin (a-SMA) (green) 

immunofluorescence staining of atherosclerotic human coronary artery segments - left 

anterior descending (LAD) from normal-Stage I, Stage III-IV, and Stage V-VI lesions based 

on Stary classification stages. Whole slide images captured from 20x confocal microscopy 

stitched tiles. PRDM16/a-SMA co-staining (see arrows) depicted in yellow from merged 

images. DAPI (blue) marks nuclei. n = 4 per group. Scale bar = 1 mm, except for region of 

interest (ROI): scale bar = 100 μm.
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