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Development of quantitative screen for 1550 chemicals with GC-MS
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Abstract
With hundreds of thousands of chemicals in the environment, effective monitoring requires high-throughput analytical tech-
niques. This paper presents a quantitative screening method for 1550 chemicals based on statistical modeling of responses with
identification and integration performed using deconvolution reporting software. The method was evaluated with representative
environmental samples. We tested biological extracts, low-density polyethylene, and silicone passive sampling devices spiked
with known concentrations of 196 representative chemicals. A multiple linear regression (R2 = 0.80) was developed with
molecular weight, logP, polar surface area, and fractional ion abundance to predict chemical responses within a factor of 2.5.
Linearity beyond the calibration had R2 > 0.97 for three orders of magnitude. Median limits of quantitation were estimated to be
201 pg/μL (1.9× standard deviation). The number of detected chemicals and the accuracy of quantitation were similar for
environmental samples and standard solutions. To our knowledge, this is the most precise method for the largest number of
semi-volatile organic chemicals lacking authentic standards. Accessible instrumentation and software make this method cost
effective in quantifying a large, customizable list of chemicals. When paired with silicone wristband passive samplers, this
quantitative screen will be very useful for epidemiology where binning of concentrations is common.

Keywords Gas chromatography . Multiple linear regression . Chemometrics . Response prediction . Automated mass spectral
deconvolution and identification system (AMDIS) . Passive sampling devices

Introduction

Hundreds of thousands of chemicals exist in the environment.
Many chemicals are known to pose health risks and many
more are yet to be evaluated. Semi-volatile organic chemicals
(SVOCs) are of interest because they are often bioavailable,
have potential adverse health impacts, and can be persistent in
the environment. Rapid and cost-effective methods for sam-
pling and analysis are necessary to improve our ability to
monitor environmental contamination and prioritize
chemicals for health research.

Current analytical techniques to identify and measure
SVOCs can precisely quantify small numbers (e.g., < 100)

of chemicals within specific classes of chemicals in targeted
quantitation, e.g., Anderson et al. [1]. Typically, targeted gas
chromatography mass spectrometry (GC-MS) methods use
in-house chemical standards to develop method-specific li-
braries of retention times, mass spectra, and response factors.
Alternatively, non-target analysis thoroughly investigates
complex chromatograms for unknown components [2]. Non-
target methods use high-resolution mass spectrometry and ref-
erence libraries of mass spectra such as the National Institute
of Standards and Technology (NIST) Mass Spectral Library.
A third approach is to perform targeted screening for a hun-
dreds of chemicals which balances the analysis time of
targeted quantitation with the thoroughness of non-target
analysis.

Targeted screening methods are frequently performed on
GC or liquid chromatography with mass spectrometry. GC is
well suited for the analysis of SVOCs. Non-target and targeted
screening are performed by capturing the full scan ion profile
including potentially interfering chemicals. Deconvolution
sof tware, such as the Automated Mass Spect ra l
Deconvolution and Identification System (AMDIS, NIST),
is available to extract specific signals from complex chromato-
grams. A challenge with targeted screening is to develop
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libraries of retention times, mass spectra, and response factors
for hundreds or thousands of chemicals. It is unfeasible for a
laboratory to determine these parameters for each chemical
individually but it can rely on libraries for mass spectra such
as the NIST MS Library, and to a more limited extent, reten-
tion time. Agilent Technologies developed the Deconvolution
Reporting Software (DRS) package for ChemStation to incor-
porate retention time indices in a standardized GC method
with AMDIS and the NIST MS library [3]. This type of anal-
ysis is good for identifying chemicals in complex chromato-
grams but quantification requires more work.

In order to accurately quantify chemicals in targeted
screening methods, response factors for a large list of
chemicals need to be determined. While calibrations can
be manually constructed for every chemical [4], this is
time and resource intensive especially for methods with
hundreds to thousands of target analytes. Another method
is to assign an internal standard to groups of chemicals in
the method. Bu et al. assigned 14 internal standards based
on chemical class to a list of 847 chemicals analyzed by
GC-MS [5, 6]. They were able to quantify within a factor
of 4 the true value of target analytes in spiked sediment
extracts. Differences in response factors between the in-
ternal standard and targets contributed to the uncertainty
in quantification. A third method is to use chemometrics
to predict instrument response from chemical properties
[7]. Chemical-specific parameters that vary within chem-
ical classes such as molecular weight, polarity, and frac-
tional ion abundance [8, 9] affect chemical response.
Some work has been done to predict chemical-specific
MS responses, mostly in electrospray ionization-MS for
liquid chromatography applications [10], and for GC-MS
with thermal desorption for a small set of VOCs [11]. Our
goal was to develop a predictive model for response factor
calibration of SVOCs lacking authentic standards and to
apply the method to samples with a high-throughput
potential.

Passive sampling devices (PSDs) are versatile and simple
tools for measuring contaminants in the environment and bi-
ota [12–14]. The polymers low-density polyethylene (LDPE)
and polydimethylsiloxane (silicone) are used as PSDs to sam-
ple for SVOCs. These PSDs accumulate lipophilic chemicals
from the environment through passive diffusion. Commonly
deployed for days to weeks at a time, PSDs can concentrate
trace contaminants and lower environmental detection limits.
Consequently, environmentally deployed LDPE can contain
many hundreds to thousands of individual chemicals.
Wristband passive sampling devices made of silicone are a
recent development in passive sampling. Silicone wristbands
are used to monitor a person’s external exposure to SVOCs
and can have more variable backgrounds than environmental-
ly deployed LDPE [15, 16]. Human biomonitoring, such as
with silicone wristbands, generates immense data sets.

Wristband passive sampling devices can be used in large num-
bers because they are cheap, non-invasive, hold chemicals
stably for weeks at ambient temperature, and can be prepared
for deployment in large batches using minimal solvent [15].
Still, the majority of laboratory time and cost associated with
wristband biomonitoring is in performing the chemical extrac-
tion and analysis.

Our objective was to create a quantitative GC-MS method
for a list of more than 1500 SVOCs to pair with the high
sample generation of wristbands and other PSDs. We aimed
to leverage the integrated deconvolution and chemical confir-
mation available with the DRS package and generate a library
of calibrations for chemicals that we do not physically have in
the laboratory. We present the analytical and statistical results
of predicting response. We called the resulting multi-class
quantitative screen the Many Analyte Screen Version 1500
(MASV1500). We validated the accuracy, precision, and sen-
sitivity of this method in real environmental samples with a
focus on passive sampling devices. As the first report of a
high-throughput quantitative screen using the deconvolution
freeware AMDIS, this work demonstrates an analytical meth-
od that compliments the sample generating capacity of passive
sampling devices.

Methods

Chemical standards

A complete list of 224 chemicals used for calibration model
building and testing can be found in Table S1 (see Electronic
Supplementary Material (ESM)). Standards were purchased
from a variety of sources including AccuStandard, Sigma-
Aldrich, TCI America, SantaCruz Biotechnology, and
Chiron. Standards were prepared as singles or simple mixes
in ethyl acetate, n-hexane, or isooctane (Fisher Scientific, op-
tima grade) at concentrations typically between 0.5 and 10μg/
mL.

GC-MS parameters

All data was acquired using an Agilent 7890A GC coupled
with an Agilent 5975C MSD operated in in full scan mode
with electron ionization. The GC was equipped with an
Agilent DB-5MS column (30 m × 0.25 mm). The inlet pres-
sure was locked to the retention time of chlorpyrifos at 19.23
(± 0.20) minutes. Full details of the instrument operating pa-
rameters are available in Table S2 (see ESM).

Deconvolution

AMDIS version 2.66 (NIST), as part of the DRS (Agilent)
was used to deconvolute and identify all peaks. All AMDIS
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software parameters are given in Table S3 (see ESM). AMDIS
integrations of deconvoluted peaks were used for
quantification.

Adding chemicals to libraries

The complete chemical library consisted of 1550 chemicals
including 21 chemicals that are isotopically labeled or other-
wise not generally found in the environment.We achieved this
list by manually adding approximately 450 chemicals to li-
braries purchased with the deconvolution software. Single-
component standards were prepared from neat or purchased
in ethyl acetate, methylene chloride, n-hexane, or isooctane at
a concentration between 0.5 and 10 ng/μL. Mass spectra and
retention time for each new chemical were acquired using the
GC-MS method described above and added to a new
ChemStation probability-based matching library. Each entry
included chemical name, retention time, retention index (re-
tention time in seconds), mass spectra, molecular formula
(from which the software generates MW) and Chemical
Abstracts Service registration number (CASRN). After new
chemicals were added, the new library was appended to the
master library. AMDIS library files and an updated method
file were then generated from this master library using
ChemStation software.

Initial calibration

In order to calibrate for 1550 chemicals, we developed a pre-
dictive model based on the response factors of chemicals
available in our laboratory. A modeling set of 196 chemicals
was analyzed. The modeling set consisted of PAHs, several
classes of pesticides, polychlorinated biphenyls (PCBs),
polybrominated diphenylethers (PBDEs), and phosphate
flame retardants, phenols, and anilines (Table S1, see ESM).

Molecular weight (MW), topical polar surface area (PSA),
Henry’s law, octanol-water partitioning coefficient (logP),
octanol-air partitioning coefficient (Koa), acid disassociation
constants (pKa), halogen and heteroatom substitution abun-
dance, and fractional ion abundance were examined as poten-
tial explanatory variables. These parameters were obtained
fromAdvanced Chemistry Development (ACD) Labs through
Chemspider (R version 3.3, webchem package). For
chemicals that were not available through Chemspider (n =
97), we manually retrieved the parameters from Episuite 4.1
Software or from ChemStation and AMDIS libraries.
Fractional ion abundance was obtained from the AMDIS
spectral library and is calculated as the ratio of the most abun-
dant ion to the sum of all ion abundances. Python (version 3.6)
code used to calculate fractional ion abundance from the
AMDIS library files and to pull values from Chemspider can
be found in the ESM. We assessed the representativeness of
the modeling set by comparing the distributions of the final

selected chemical parameters to the entire 1550 list
(Kolmogorov-Smirnov test, alpha = 0.05).

The responses of triplicate injections at 500 pg/μL were
used to construct a multiple linear regression (JMP Pro 13)
to predict responses at that concentration based on chemical
parameters. Chemicals in the modeling set were randomly
assigned to either a training set (75%, 147 chemicals) or a test
set (25%, 49 chemicals). The distributions of the GC-MS re-
sponse and explanatory variables were first evaluated for the
need for transformation. Many parameters that were not al-
ready in logarithmic scale (e.g., logP and pKa) were left-cen-
tered. To normally distribute these data, log10 (log) transfor-
mations were applied. Model optimization proceeded through
forward and backward stepwise regression to maximize the
adjusted R2 while minimizing root mean square error (RMSE)
and minimizing the Akaike information criterion. We
interpreted RMSE as an estimate of the standard deviation of
the model residuals. Assuming that two standard deviations
plus and minus the mean encompass 95% of the observations,
the untransformed precision of the calibration model is given
by 10(RMSE*2).

The equation of the optimized multiple linear regression
used to predict the response of a given chemical at 500 pg/
μL is:

log 500 pg=μL Predicted Responseð Þ ¼ 9:372þ 0:05678*logP½ �
þ 0:7394*log fractional ion abundanceð Þ½ �− 1:169*log MWð Þ½ �
− 0:173*log PSAþ 1ð Þ½ � þ logP−5:045ð Þ* log MWð Þ−2:432ð Þ* −0:2466ð Þð Þ½ �

ð1Þ

Raw instrument responses were directly divided by re-
sponse factors to estimate concentration in picogram per mi-
croliter as given by:

Concentration ¼ Response� 500 pg=μL
Predicted Response500 pg=uL

ð2Þ

Method performance

We evaluated the calibrated method with an overspike solu-
tion of 112 chemicals in isooctane (Table S1, see ESM) that
represent a range of physico-chemical properties from chem-
ical classes including pesticides, PAHs, phenols, and anilines.
With clean standard solutions at several concentrations, and
matrix-matched overspikes, we determined method linearity,
precision, accuracy, and estimated limits of quantitation.

Linearity

Because our prediction model was designed using only a sin-
gle concentration level, we performed experiments to evaluate
the range of concentration over which it could be applied. We
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measured response of 112 chemicals in the overspike solution
at 100, 500, 2500, and 10,000 pg/μL in isooctane. The accu-
racy of the response prediction was evaluated at each concen-
tration level and the adjustedR2 was used to evaluate the linear
response range of each modeled chemical.

Inter-instrument

Method transferability was tested by running the samemethod
on a second GC-MS with identical parameters. The method
calibration verification (CV) standards described in the quality
control section were evaluated on two GC-MS instruments on
the same day.

Matrix overspikes

Typical samples that we anticipate analyzing with the method
described in this paper include biological tissue extracts [14],
LDPE passive sampling device extracts deployed in river wa-
ter [17], and silicone wristbands that were worn by people [15,
18]. We evaluated the detection rate and quantitative accuracy
and precision of 112 chemicals added to samples representa-
tive of typical background matrices. Silicone wristbands tend
to have variable and high backgrounds of silicone, fatty acids,
and steroidal chemicals (cholesterol, squalene). Five people
wore a silicone wristband for 5 days to generate samples with
background matrices typical of deployed wristbands. The
samples were randomized and no personal information was
collected which might be used to identify the participants.
Aliquots of the five deployed wristbands were cleaned with
C18 solid-phase extraction as described elsewhere [19]. Both
pre- and post-SPE-cleaned wristband samples were evaluated.
We also tested the overspike solution in one crayfish extract
[14], one pre-deployment LDPE, one pre-deployment wrist-
band, and four deployed LDPE [17].

Instrumental limit of quantitation

Instrumental limits of quantitation (LOQs) were calculated in
accordance with other methods in our laboratory [1, 20] and as
described by the U.S. EPA [21]. Several adjustments were
made to this method to account for modeling chemical re-
sponses rather than measuring them directly. The previously
described overspike mixture (112 chemicals) was prepared at
500 pg/μL and was injected seven times to assess instrument
variability. For each chemical with at least three detections by
AMDIS, the standard deviation of the responses was calculat-
ed and multiplied by a single-tailed Student t value with the
appropriate degrees of freedom (d.f. = n − 1; where n was the
number of times that the chemical was identified). The aver-
age adjusted standard deviation for all evaluated chemicals
was used in Eq. 2 to estimate LOQ for 1550 chemicals. We

refer to this method of calculating LOQ as average response
variation.

We also estimated LOQs using a second method, termed
linear extrapolation, and compared the two. For all chemicals
used to evaluate linearity that were detected in at least three of
the four concentrations measured (n = 64), we extrapolated to
the x-intercept for each chemical and used that value as a
prediction of LOQ.

Quality control

An analyst evaluated all chromatograms processed with
AMDIS for identification and integration quality.
Chromatographic peaks that did not meet data quality objec-
tions were rejected, and positive identifications that were
poorly integrated by AMDIS were flagged as poor AMDIS
peaks (PAP) to indicate that quantification would not be reli-
able. Our minimum data quality objectives for peak identifi-
cation required retention times shifted by no more than 45 s
and at least one qualifier ion should be within 20% of its
predicted abundance relative to the quantitation ion. The
AMDIS match factor threshold was set to 60 (out of 100)
and the extracted spectra of identified chemicals were
reviewed manually for missing or extra m/z peaks.

CVs were prepared to monitor instrument conditions. To
establish target responses and acceptable deviation for the CV,
15 diverse chemicals were monitored in 12 injections over the
course of several days. An average response was taken for
each chemical across all injections in which a chemical was
identified and not flagged as a PAP. These responses were
used in Eq. 2 to give target concentrations for our CVs.

Instrument blanks (clean ethyl acetate or hexane) and CVs
were evaluated before and after every sample set analyzed
with this method. To meet our suggested data quality objec-
tives, no target chemicals should be identified in the instru-
ment blanks and greater than 70% of CV target chemicals
must be within 30% of the responses given in Table S4 (see
ESM). The CV included diagnostic chemicals to inform about
instrument condition [6]. For example p,p′-DDT degradation
to p,p′-DDE or p,p′-DDD indicates contamination at the GC
inlet [22]. Method QC samples can contain some target
chemicals. Specifically, phthalates are regularly identified as
background in undeployed PSD matrices of both LDPE and
silicone. However, the amounts of these pervasive chemicals
in deployed samples are typically 100–10,000 times greater
than QC samples [18].

One of the challenges encountered at the outset of this
project was data curation. Purchased libraries often contained
errors in chemical names and/or CAS numbers. We cross-
checked the library entries for accuracy using R, Python,
and JMP. Several chemicals in purchased libraries also lacked
any retention time data. These errors were corrected when
possible with individual standards but there may be additional
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errors in purchased retention time data that could not be iden-
tified without obtaining all standards.

Results and discussion

Calibration

We calibrated for chemicals lacking authentic standards by
predicting response factors based on physico-chemical prop-
erties of model chemicals. As a predictivemodel, our goal was
not to interpret the explanatory variables but to optimize the
precision and accuracy of the model predictions. However, we
chose to test physico-chemical properties based on (1) poten-
tial to affect GC-MS response and (2) availability to the aver-
age user. After model optimization, we determined that MW,
logP, fractional ion abundance, and PSAwere good predictors
of response factor.

Chemicals in the domain of the calibration model are or-
ganic chemicals that are measurable by GC-MS. Specifically,
the ranges of each parameter for all chemicals in the method
are MW 93 to 793 g/mol; fractional ion abundance 0.0223 to
0.7849; logP − 3.77 to 10.14; and PSA 0 to 202 Å2. These
predictors were generally representative of the entire list (Fig.
S1, see ESM). The distributions of log(MW) and
log(fractional ion abundance) in the model set were not sig-
nificantly different from the non-modeled chemicals
(Kolmogorov-Smirnov test, p > 0.05). LogP and log(PSA +
1) showed evidence that the distributions were not equal
(Kolmogorov-Smirnov test, p < 0.001).

MW and fractional ion abundance were the most signifi-
cant model parameters. MW was negatively associated with
MS response because the detector measures an analyte’s mo-
larity, rather thanmass concentration which are the units of the
calibration. At the same concentration, fewer molecules of a
large MW chemical reach the detector, compared to a lighter
chemical. The degree and pattern of fragmentation influences
the area of the quantitation ion [9] and we observed that frac-
tional ion abundance was a predictor of response. Quantitation
is based on the AMDIS adjusted response of the ChemStation
quantitation ion, which is the most abundant ion fragment in
the mass spectrum. Chemicals that have a greater degree of
fragmentation (e.g., endosulfan) may have lower response
than a chemical that remains relatively intact (e.g.,
phenanthrene).

We observed that greater polarity as described by logP and
PSA resulted in decreased response. Polar chemicals com-
monly have functional groups that may interact with instru-
ment components, reducing the mass of the chemical that
reaches the detector [23]. Polar chemicals are often less vola-
tile than non-polar chemicals holding everything else con-
stant. However, we did not observe a significant effect of
Henry’s law constant or logKoa on instrument response so

volatility does not seem to be directly related to response.
For the same reasons, we also expected acidity of analytes to
influence response but pKa was also not a significant model
parameter. This is possibly because acidic chemicals (e.g. phe-
nols, anilines) are a minority among the chemicals in the li-
brary and are very weak acids. Polarity can also influence the
ionization efficiency in electrospray ionization-MS [10] and
may also be important at the electron ionization source used in
this study. We also observed an interaction between MWand
logP. For non-polar chemicals, logP increases with MW but
instrument response is negatively associated with MW and
positively associated with logP. Interestingly, no interaction
was observed between PSA and other parameters.

The frequency of heteroatoms and halogens (N, O, Cl, Br,
I) in molecules was also evaluated as a predictor of response.
It was suspected that the number and type of these atoms
could be used to describe contributions to polarity and possi-
bly fragmentation patterns. However, their contribution to the
model when also including MWand PSA as explanatory var-
iables was not significant and were worse predictors of re-
sponse than MWand PSA.

The final optimized model had an adjusted R2 of 0.80 and
RMSE of 0.18 (Fig. 1). The RMSE translates to 95% of mea-
sured responses were within a factor of 2.28 of the true value.
The model test and training sets had similar distributions of
residuals with standard deviations of 0.20 and 0.18, respec-
tively. Training and test set evaluation is commonly used for
evaluation of predictive models. Steyerberg et al. also recom-
mend bootstrapping of the models, but found that training/test
set validation and bootstrapping gave similar results when
events per variable were approximately 40 or more [24]. The
events per variable in the current study were 39 (196
observations/5 variables). We also evaluated prediction error
with a leave-one-out approach using the prediction error sum
of squares (Press) statistic. The Press RMSE was 0.19. We
used the most conservative estimate of prediction error, 0.20
from the test set, to determine the precision of prediction as a
factor of 2.5.

The final model predicted the response factor for 95% of
chemicals within a factor of 2.5 of their true value. This is, to
our knowledge, better than for any previously reported meth-
od of this type. Bu et al. were able to quantify organic
chemicals within a factor of 4 using a set of internal standards
[6]. Naturally, quantitative screens are as precise as conven-
tionally calibrated target methods which develop response
factors with standards for every chemical. The compromise
of being able to quantify over a thousand chemicals within a
factor of 2.5 or 4 is within variability assumed in some disci-
plines. Epidemiology studies may bin chemistry results into
just a few groups [25], and human health risk assessment may
assume uncertainty factors of 100 when calculating reference
doses [26]. The silicone wristband PSDs used as examples in
the present study commonly accumulate concentrations that
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range several orders of magnitude, much greater than the pre-
cision of the MASV1500 method [17, 20].

While the prediction of chemical concentration in the pres-
ent study is less precise than traditional targeted quantification
methods, the instrumental error is comparable. The method in
the present study includes peak integrations by AMDIS which
did not seem to add a significant variability to the measure-
ments. For 12 replicate injections of a standard at 100 pg/μL
evaluating 62 chemicals, the relative standard deviation of the
average and median chemical response were 17 and 16% re-
spectively. The entire method was also successfully trans-
ferred to an identical GC-MS. In that inter-instrument evalua-
tion, linalool had the greatest difference between instruments.
The quantitation ion for linalool was 73m/z, smaller thanmost
chemicals in the method. A MS tune adjustment to weight the
lower end of the mass axis could reduce this increased
variation.

AMDIS performance

The performance of identifying and quantifying chemicals in
standard solutions and matrix overspikes is shown in Figs. 2
and 3. AMDIS detected 85 of 112 chemicals (75%) among
four concentrations of the overspike mixture. For chemicals
that were detected in at least three levels, 64 had adjustedR2 >
0.97 (Fig. S2, see ESM). These estimates of fit indicate good
linearity from 100 to 10,000 pg/μL. AMDIS detection rate
and integration quality was best for clean standard solutions

at 500 pg/μL and above (Fig. 2a). This is not surprising be-
cause background matrix can interfere with chemical identifi-
cation, even when using deconvolution. Standards at 100 pg/
μL were near the limits of quantitation and limits of detection
so had lower detection rates despite no background matrix.
The number of detections in matrix overspike solutions at
500 pg/μL was mostly similar to a standard solution at
500 pg/μL. An exception was deployed wristband samples
before SPE clean-up which had lower and more variable num-
ber of detections than the standard solution at 500 pg/μL. The
rate of PAPs was lower for high concentrations of standard
solutions but varied around 10% for matrix overspike solu-
tions (Fig. 2b). The number of positive detections that were
within the expected quantitation range, excluding PAPs, was
above 80% for all samples (Fig. 2c).While backgroundmatrix
does not seem to affect quantitation, it does affect the number
of detections in a sample (Fig. 2a). Performance of AMDIS
identifications was best for high concentrations of standards in
clean matrices as indicated by a high number of detections and
few PAPs, followed by SPE-cleaned wristbands. AMDIS per-
formed worst for wristbands that were not cleaned.

Figure 3 shows calculated concentrations of chemicals in
spiked solutions and matrix-matched samples, and compares
them to the expected precision of within a factor of 2.5 from
the nominal value, between 200 and 1250 pg/uL. All stan-
dards and matrix overspikes were centered around the expect-
ed value indicating the accuracy of the method. Matrix-
matched samples had more detections beyond the expected
range, especially on the high end. This could be due to matrix
enhancement for some chemicals, despite the method using
deconvolution software.

A solution of pesticides and laboratory surrogates selected
as a diverse list of chemicals was run three times at 500 pg/μL.
AMDIS detected 73 out of 78 different chemicals at least once
among the runs. Of these, 65 chemicals were identified by
AMDIS in every replicate and 54 had RSDs less than 25%.
Of the chemicals with RSDs greater than 25%, 5 out of 11 had
higher variability because they were poorly integrated by
AMDIS. The physico-chemical properties of the compounds
evaluated for intrainstrumental variation ranged as follows:
fractional ion abundance 0.0253–0.6227; MW 201–540;
logP 1.19–8.1; PSA 0–171. In another test, method conditions
as described above were applied to a second, identical, GC-
MS. The average percent difference in response between the
instruments was 13% across all chemicals identified in the CV.
The percent difference ranged from 0.5% for benzothiazole to
63% for linalool which was 35% higher than any other chem-
ical measured. Therefore, we think transferring the method
would be successful.

Kadokami et al. found that the accuracy of identification by
their screening method was superior to the performance of
AMDIS [4]. However, they acknowledge that they did not
use retention time or optimize AMDIS deconvolution settings.

R2: 0.80
RMSE: 0.18

Predicted response
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Fig. 1 Measured vs. predicted values of 196 chemicals used in modeling
GC-MS response at 500 pg/μL. Axes are log10 transformed. Model ex-
planatory variables were log(MW), log(fractional ion abundance), logP,
log(PSA + 1), and log(MW) crossed with logP. Training set chemicals
(closed circles) and test set chemicals (open circles). Solid line is the
model fit of the training set, dark shading is the fit 95% confidence
interval, and light gray shading is the 95% prediction interval. R2 and
root mean square error (RMSE) are given for the model fit of the training
set
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Fig. 2 AMDIS performance in the MASV1500 method. The samples
tested are shown in five groups, listed here from left to right. Standards
are 100, 500, 2500, and 10,000 pg/μL overspikemixtures in ethyl acetate.
QC (quality control) samples are 500 pg/μL overspike mixtures in three
QC matrices: non-deployed LDPE, non-deployed wristband, and a cray-
fish extract. LDPE (low-density polyethylene), WBs (wristbands), and

SPE WBs (solid-phase extraction cleaned wristband extracts) are repli-
cate extracts of eachmatrix typewith the overspike mixture at 500 pg/μL.
(a) The number of positive detections byAMDIS regardless of integration
quality. (b) Proportion of positive detection that were PAPs (poor AMDIS
peaks). (c) The percentage of non-PAP positive detections that were
quantified within the expected bounds of a factor of 2.5
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Fig. 3 Performance of
MASV1500 quantitation of
matrix overspikes at 500 pg/μL.
Dash-dot line is expected con-
centration (500 pg/μL), pink
shade is ± a factor of 2.5, which is
the estimated prediction error of
the calibration model. Standard is
500 pg/μL in ethyl acetate. QC
(quality control) samples from left
to right: non-deployed LDPE,
non-deployed wristband, and a
crayfish extract. LDPE low-
density polyethylene, WB wrist-
band, SPE WB solid-phase ex-
traction cleaned wristband extract
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We found that AMDIS performed well but did not identify all
chemicals. We observed that AMDIS can misidentify
chemicals as their isomers within a retention window of ap-
proximately 45 s. Often, pairs or groups of isomers are present
in a sample and the software will identify one peak as multiple
isomers. If multiple peaks are identified as isomers but there is
uncertainty about which peak is an isomer then the analyst
user may choose to report all detected isomers as the sum of
those chemicals.

Limits of quantitation

A major improvement in our analysis was estimating
chemical-specific LOQs. LOQs were estimated in two differ-
ent ways which corroborated each other and converged on
LOQs of approximately 40–500 pg/μL depending on the
chemical. The median predicted LOQs were nominally the
same (Fig. S3, see ESM) for both the average response vari-
ability method (201 pg/μL) and the linear extrapolation meth-
od (237 pg/μL). Additionally, the range and distribution of
LOQs predicted by both models were similar. The ranges of
response variability model and the linear extrapolation model
were 2580 and 2393 pg/μL, respectively. Predicted LOQs for
all chemicals by the response variability method can be found
in Table S5 (see ESM).

The method we used to report LOQ, the average response
variation method, is typically used for limit of detection
(LOD) calculations. We have determined that these concen-
tration limits are better described as LOQs than LODs because
AMDIS is often able to detect chemicals at concentrations
estimated below these limits but with poor performance dur-
ing integration. The frequency of PAPs in a 100 pg/μL solu-
tion was much higher than any other standard (Fig. 2b), and
those peaks could not be reliably integrated for quantitation.

A number of assumptions were made to determine LOQs.
It is recommended to use a standard near the expected LOD
when evaluating instrument variability for LOD calculations
[21]. For the present method, 500 pg/μL is likely near the
LOD of some chemicals in the method, but also likely to be
an order of magnitude above the true LOD for many others. At
100 pg/μL, fewer chemicals were quantifiable than at 500 pg/
μL because more detections were poorly integrated by
AMDIS. Therefore, we chose to use 500 pg/μL to capture a
greater range of chemicals, but may be overestimating the
LOQ concentration for some chemicals. Additionally, we as-
sume that the average measured response is representative of
all chemicals in the model. Chemical specific response factors
from the calibration model should normalize any bias from
this average. Finally, all LOQ calculations have the modeling
error implicitly built into them. We should therefore expect
that the true LOQs may be within a factor of 2.5 from the
values given here.

Analysis time

Analysis of 1550 chemicals in one GC run saves time and
cost compared to analyzing for the same chemicals in
separate methods. Most traditional GC-MS methods target
fewer than 50 chemicals and may take anywhere from
30 min to over an hour to acquire a chromatogram.
Using conservative estimates, this would require a com-
bined instrumentation time approaching 30 h by as many
as 30 individual methods compared to 1 h for the
MASV1500 method. Analyst time would increase corre-
spondingly as it might require 10 or more minutes per
method per sample, or about 5 total hours per sample.
The MASV1500 method requires approximately 15 min
per sample to process the chromatogram. These estimates
do not include the time spent curating standard libraries,
and establishing and maintaining each method.

Limitations

GC-MS analysis is only appropriate for specific types of
chemicals. The method described here does not perform well
for non-volatile chemicals or very polar chemicals. Some po-
lar chemicals (e.g. nitro-anilines, halogenated phenols) gave
no response at approximately 10 ng/μL. This impacts LODs
and LOQs and is a compromise for the ability to analyze for a
large number of chemicals. Our linearity evaluation may be
biased to good performers because only those with at least
three detections among a concentration series could be includ-
ed in R2 calculation.

Estimation of physico-chemical parameters can be a
limiting factor when predicting accurate response factors
because different sources may provide very different
values [27]. Another example is that PSA method used
by ACD Labs does not assign a contribution of polarity
for halogen substituents. For example, all PCBs and
PBDEs have PSA of 0 and 9, respectively. Different
number and orientation of halogens between congeners
should produce different PSA among the classes. The
source of input parameters can affect model results. We
chose ACD Labs as the primary source for the thorough-
ness of parameters available and consistency within this
study. The Chemistry Dashboard from U.S. EPA is a
platform for centralized chemical properties, including
from ACD Labs, and offers a parameter prediction with
open quantitative structure activity relationship applica-
tion (OPERA) modeling [28]. Kim et al. used effective
carbon number as a predictor of response for volatile
organic chemicals measured with thermal desorption
GC-MS [11]. We did not pursue more advanced chemical
descriptors because one goal of this paper was to create
an accessible method with common and easily obtainable
physico-chemical parameters.
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Conclusions

The MASV1500 method described here is a targeted analysis
for a large number of chemicals that can be used effectively in
conjunction with non-targeted methods or sample fraction-
ation [17, 29]. Quantitation using AMDIS and a predictive
model for response factor was able to quantifymultiple classes
of chemicals in representative samples within a factor of 2.5,
better than comparable methods that have been previously
reported. This method can screen for over a thousand
chemicals with less analyst time than typical methods. A dif-
ferent deconvolution software may offer better resolution be-
tween isomers. Other software options are available for
deconvolution including a component of Agilent’s Mass
Hunter [30], and many open source packages. When com-
binedwith high-throughput analysis such as with passive sam-
pling wristband work-flows, the quantitative screen described
here improves efficient environmental monitoring. Overall
analysis workflow would be improved through the reduction
of solvents in sample processing. To that end, thermal desorp-
tion of PSDs instead of solvent extraction could increase ex-
traction efficiency and reduce cost of analysis.
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