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Analysis of Serum Metabolites to 
Diagnose Bicuspid Aortic Valve
Wenshuo Wang1,*, Aikebaier Maimaiti1,*, Yun Zhao1, Lingfei Zhang2, Hongyue Tao3, Hui Nian1, 
Limin Xia1, Biao Kong4, Chunsheng Wang1, Mofang Liu2 & Lai Wei1

Bicuspid aortic valve (BAV) is the most common congenital heart disease. The current study aims to 
construct a diagnostic model based on metabolic profiling as a non-invasive tool for BAV screening. 
Blood serum samples were prepared from an estimation group and a validation group, each consisting 
of 30 BAV patients and 20 healthy individuals, and analyzed by liquid chromatography-mass 
spectrometry (LC-MS). In total, 2213 metabolites were detected and 41 were considered different. A 
model for predicting BAV in the estimation group was constructed using the concentration levels of 
monoglyceride (MG) (18:2) and glycerophospho-N-oleoyl ethanolamine (GNOE). A novel model named 
Zhongshan (ZS) was developed to amplify the association between BAV and the two metabolites. 
The area under curve (AUC) of ZS for BAV prediction was 0.900 (0.782–0.967) and was superior to all 
single-metabolite models when applied to the estimation group. Using optimized cutoff (−0.1634), 
ZS model had a sensitivity score of 76.7%, specificity score of 90.0%, positive predictive value of 80% 
and negative predictive value of 85.0% for the validation group. These results support the use of serum-
based metabolomics profiling method as a complementary tool for BAV screening in large populations.

Bicuspid aortic valve (BAV) is a congenital defect in which two of the three leaflets present in the aortic valve are 
fused together leading to a bicuspid configuration and impaired ability of the heart to maintain a unidirectional 
blood flow from the ventricle to the aorta. It is the most common type of cardiac valvular deformity and can be 
found in 0.5% to 2% of the total population1.

Despite its prevalence and association with a variety of other cardiovascular abnormities such as aortopathy2, 
early detection of BAV is difficult and conclusive diagnosis usually has to be achieved by an echocardiogram 
that directly visualizes the heart chambers and valve configuration. While echocardiograms scan are generally 
non-invasive and radiation-free, they can only be performed individually and as a result are not compatible with 
automation. Moreover, accurate interpretation of the imaging results often depends heavily on the skill levels of 
medical practitioners. Therefore, the development of a fast and simple screening method that can be conducted 
in an unbiased, high-throughput format is highly desired for prompt diagnosis of BAV.

Genetic testing has been successfully employed in the screening of a variety of diseases such as mitral valve 
prolapse and aortic valve stenosis3,4. Garg et al. in 2005 provided the first experimental evidence indicating the 
involvement of NOTCH1, a gene that encodes a single-pass transmembrane receptor, in the pathogenesis of var-
ious developmental aortic valve defects including BAV5. Subsequently, Laforest and colleagues demonstrated 
that Gata5-knockout mice developed partially penetrant BAV and that the same cardiac dysfunction could also 
result from simple deletion of the same gene from endothelial cells6. There has also been research that suggests 
the implication of several other genes, such as transforming growth factor–receptor types I and II (TGFBR1 and 
TGFBR2)7. Despite these advances, the exact molecular mechanism for BAV pathogenesis remains stubbornly 
elusive, largely due to the involvement of an intricate regulatory network that governs cardiac development not 
only at the transcriptional level, but also at the translational and posttranslational levels. As a consequence, this 
created significant technological hurdles for the development of gene-based diagnostic tests for BAV screening.

Metabolite profiling has in recent years emerged as a powerful analytic tool for the identification of 
disease-related biomarkers and pathways that can be used to develop new diagnostic and treatment methods8. 
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Herein we report the metabolic profiling of the blood serum samples obtained from BAV patients and healthy 
individuals. The results of the study suggested that a predominant majority of the identified metabolites showing 
statistically significant concentration differences between the patient group and the control group were mainly 
clustered in several key pathways, including those associated with fatty acid metabolism, adenosine triphosphate 
(ATP) degradation, purine metabolism and endocannabinoid biosynthesis. Of particular significance is that we 
constructed a regression model based on the concentrations of several key metabolites and demonstrated that 
it could be used for accurate BAV diagnosis. Our serum-based diagnostic method can serve as a complement to 
echocardiogram for BAV screening, particularly in large populations.

Methods and Materials
Patient selection and specimen acquisition. Our participants comprised 76 patients diagnosed with 
BAV by echocardiography and confirmed in subsequent surgery of aortic valve replacement and 40 healthy 
individuals who underwent physical examination at Fudan University affiliated Zhongshan Hospital from Feb 
2014 and May 2015. The guideline used for determining valve dysfunction is “AHA/ACC Guideline for the 
Management of Patients With Valvular Heart Disease”9. All experimental procedures, including collecting serum 
specimens from patients during the pre-operation period and healthy individuals at health check-ups, were car-
ried out according to the guidelines approved by the Ethics Committee of Zhongshan Hospital and informed 
patient consent (Reference Number: 20131105002). Informed consent was obtained from all subjects. The exclu-
sion criteria included medicine usage, diabetes, lung diseases, impaired ejection fraction, heart failure, vascular 
infection, and hypotension. The final pool of eligible participants were divided randomly and equally into an esti-
mation group and a validation group. Each whole-blood sample was centrifuged at 1000 rpm for 15 min to obtain 
the serum. All serum specimens were stored in liquid nitrogen until metabolomics analysis (Fig. 1).

Sample treatment. The frozen serum samples were thawed under room temperature. A 100 μ L of the serum 
sample was mixed with 300 μ L of methanol (HPLC grade, Merck, Darmstadt, Germany), thoroughly vortexed for 
30 s, and subsequently centrifuged at 12000 rpm and 4 °C for 15 min to pellet the protein contents. Once the cen-
trifugation was complete, 200 μ L of the supernatant was transferred to a clean sample vial for subsequent analysis. 
A quality control sample was prepared by pooling equal volumes of blood sera from patients and controls.

Separation, detection and identification of blood serum metabolites on liquid chromatography- 
mass spectrometry (LC-MS). All LC-MS analyses were performed on a 6530 Accurate-Mass Q-TOF LC/
MS System with Agilent 1290 Infinity LC (Agilent, Santa Clara, CA, USA). In a typical run, 4 μ L of the blood serum 
sample was directly loaded without further treatment onto a Zorbax column (C18, 100 mm ×  2.1 mm, 1.8 μ m,  

Figure 1. Flow of participants. 
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Agilent, Santa Clara, CA, USA). The separation was achieved under the column temperature of 40 °C using 
a controlled gradient of mobile phase A consisting of 0.1% (v/v) formic acid in water and mobile phase B, 
consisting of 0.1% formic acid in acetonitrile at a flow rate of 0.4 mL/min. The gradient flow was first set at 5% 
(v/v) B for 2 min, linearly increased to 95% B over 11 min, and maintained at this composition for an additional 
2 min.

MS signals in the m/z range of 50–1000 were separately acquired under positive-ion and negative-ion mode 
using nitrogen as both the nebulizing gas and cone gas. The instrument settings were as follows. For positive-ion 
mode: source temperature – 100 °C; capillary voltage – 4 kV; cone voltage – 35 kV; extraction voltage – 4 V; desol-
vation temperature – 350 °C; cone gas flow – 50 L/h; desolvation gas flow – 600 L/h; scan time – 0.03 s; inter-scan 
delay – 0.02 s. For negative-ion mode, the capillary voltage, cone voltage, desolvation temperature and desolva-
tion gas flow were set to 3.5 kV, 50 kV, 350 °C and 700 L/h, respectively, while other instrument parameters were 
unchanged. For lock mass correction, a standard leucine-enkephalin sample was used, which should generate 
an [M+ H]+ ion with a theoretical m/z value of 556.2771 Da under positive-ion mode and an [M-H]− ion of 
554.2615 Da under negative-ion mode. Data reproducibility was verified by performing the same LC-MS exper-
iment on the abovementioned quality control sample and subsequently conducting coefficient of variation (CV) 
analysis.

Statistical analysis. The raw LC-MS data sets obtained under the positive- and negative-ion modes were 
first subjected to unit variance scaling and mean-centered using XCMSonline (https://xcmsonline.scripps.edu/). 
All samples were normalized based on the total area and then imported into SIMCA-p 12.0 Software (Umetrics 
AB, Umea, Sweden) for multivariate statistical analysis. The area of peaks that failed to be detected was trans-
ferred to 0.01. In total, three analytical methods, including principle component analysis (PCA), partial least 
squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA), 
were used to identify the global metabolic differences between the patient group and the control group. The vari-
able importance for the projection (VIP) value for each identified metabolite came from the validated OPLS-DA 
model10. Meanwhile, Student’s T-test was performed on each metabolite using SPSS 22.0 software (SPSS, Inc., 
Chicago, IL, USA) to calculate the p-value. The screening criteria of VIP >  1 and p <  0.05 were applied to the final 
selection of a panel of metabolites for further analysis of their potential implications in the pathogenesis of BAV. 
Cross-validation of PLS–DA was performed by employing R software.

Chemical identification of the selected metabolites. Data matching was performed by querying the 
high performance liquid chromatography-mass spectrometry (HPLC-MS) results of each selected metabolite 
against the METLIN database (http://metlin.scripps.edu/) to determine its chemical identity. The list of selected 
metabolites was imported into MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) for a variety of functional 
enrichment analysis.

Model construction and validation for the prediction of BAV. Correlation analysis was conducted by 
calculating the Spearman correlation coefficient. Binary logistic regression analyses were employed to construct 
the models for BAV diagnosis and prediction. Probability values were yielded from the diagnostic models, which 
were subsequently utilized as new input variables for the receiver operating characteristic (ROC) curve analysis. 
Model accuracy assessment was conducted by constructing ROC curves. Differences among the areas under 
curve (AUCs) were evaluated by z-test. The probability cut-off thresholds for the optimal combination of sensi-
tivity and specificity for all generated models were calculated by the Youden index. All P- values were 2-sided, and 
values <  0.05 were considered statistically significant.

The diagnostic models were validated by the standard diagnostic analysis of sensitivity, specificity, as well as 
positive and negative predictive values. And the performers were blind to the clinical information.

Results
Overall description of the study population. A total of 76 patients and 40 healthy individuals were 
initially enrolled in this study. Seven patients were excluded due to medicine usage and another nine based on 
exclusion criteria. The final study cohort, comprising a total of 100 subjects, was equally divided between an 
estimation group and a validation group, each consisting of 30 patients and 20 healthy participants as controls. 
Table 1 summarized the demographic and echocardiographic data for all participants, as well as the prevalence 
of aortic valve dysfunction, aortopathy and other concomitant abnormalities such as atrial fibrillation and atrio-
ventricular block in different groups.

The metabolic profiles of BAV patients versus healthy controls. An untargeted metabolomics 
approach based on liquid chromatography coupled to electrospray ionization quadrupole time-of-flight MS was 
employed to analyze the relative abundance of metabolites in both the BAV patients and healthy participants. 
The MS-based platform in theory can detect more than 5000 metabolite features, defined as molecules each with 
a unique set of mass/charge ratio and retention time. The relative abundances of all identified metabolites were 
determined based on their respective peak areas and then used to construct global metabolic profiles for all sub-
jects. An overall peak detection of the metabolic profiles in members of the patient group and those of the control 
group led to the identification of 738 features under positive-ion mode and 1475 features under negative-ion 
mode (See Supplement Fig. 1). The analysis of the quality control sample found an average CV of 11.5% for the 
integrated peak area, confirming the excellent data reproducibility and robustness of the experimental method.

Identification of putative BAV metabolite biomarkers. The normalized integration values of all 
metabolite features were subjected to unit variance scaling and mean centering before being evaluated through 
Principle Component Analysis (PCA) in Simca-P to ascertain whether there were statistically significant 

https://xcmsonline.scripps.edu/
http://metlin.scripps.edu/
http://www.metaboanalyst.ca/
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differences between the metabolic profiles of the patient group and those of the control group. QC samples were 
used to confirm the reliability of the analytical method (For representative base peak chromatograms of the 
QC samples for positive- and negative-ion modes, see Supplement Fig. 2). As evidenced by the PCA plots (See 
Supplement Fig. 3), the QC samples were tightly clustered together and the two study groups were separated from 
each other, suggesting a possible association between BAV and certain metabolic perturbations. Furthermore, 
91% of all detected metabolites showed a CV below 20%, indicating negligible random errors and satisfactory data 
reproducibility. The PLS-DA score plots also indicated a clear separation between the BAV patients and controls 
(Fig. 2a,b). The Q2 values of the PLS-DA models were 45.7% for positive-ion mode and 52.5% for negative-ion 
mode, both of which exceeded the 40% threshold indicative of model validity (See Supplement Fig. 4). To identify 
and select diagnostically important metabolic features, the VIP and P values of each metabolite were determined 
from OPLS-DA and t-test, respectively. In the end, 16 metabolite features (2.17%) under positive-ion mode and 
25 (1.76%) under negative-ion mode met the selection criteria of VIP >  1 and P-value <  0.05, which denoted that 
their levels in the BAV patients were significantly different from those in the healthy participants (Fig. 2c,d). These 
metabolite features were thus selected to be further analyzed for their possible roles in the pathogenesis of BAV.

Abnormal metabolism in bicuspid aortic valve. The clinical implications of the 41 metabolites meet-
ing the selection criteria were investigated by MetaboAnalyst 3.0, which calculated the enrichment value and 
identified the most relevant metabolic roles for each query compound (Table 2). The pathways related to purine 
metabolism and fatty acid biosynthesis were directly identified as those that might have been perturbed by the 
development of BAV. Consistent with these results, the analysis also pointed to signs of redox imbalance and 
deficiency in energy production, which could be rationalized by the fact that purine is a key component of ATP, 
and fatty acids are the primary energy source for myocardial cells. In addition, two single nucleotide polymor-
phisms (SNP), rs10827283 and rs1562861, were suggested to have the highest correlation with the observed 
metabolic perturbations in BAV patients. Both SNPs are characterized by a single A-to-G mutation, which 
was consistent with the genetic consequence of the predicted nicotinamide adenine dinucleotide phosphate 
(NADPH)-dependent guanosine 5′ -monophosphate (GMP) reductase abnormality.

Identification of the best BAV diagnostic indicators and construction of a diagnostic model 
based on logistical regression analysis. Based on correlation analysis (See Supplement Table 1), three 
metabolites, glycerophospho-N-oleoyl ethanolamine (GNOE), monoglyceride (MG) (18:2) and phosphatidyleth-
anolamine (PE) (18:2), were shown to have the best correlation with BAV (r =  0.4711 (GNOE), 0.4637 (MG, 18:2), 
0.4537 (PE, 18:2)), making them the most accurate predictive risk factors of the disease. In addition, logistical 
regression analysis was used to generate a BAV diagnostic model that incorporated only the levels of GNOE and 
MG (18:2), with the following expression:

. . .= × + × −Model ZS 0 007 GNOE 0 006 MG 18 2 5 867: ( : )

Model accuracy assessment of GNOE, MG (18:2), PE (18:2) and ZS using the estimation 
group. The predictive capacities of GNOE, MG (18:2), PE (18:2) and ZS model were assessed by ROC curve 
analysis and compared to each other. Based on the constructed ROC curves, the AUC values of MG (18:2), 
GNOE, PE (18:2) and ZS were calculated to be 0.828, 0.772, 0.798 and 0.900, respectively, for BAV prediction 
(Fig. 3a). The AUC values of MG (18:2), GNOE, PE (18:2) and ZS in the validation group were 0.815, 0.793, 0.738 
and 0.930, respectively, which were all similar to their counterparts in the estimation group (Fig. 3b). Therefore, 

Variables

Estimation group Validation group

Bicuspid 
aortic valve Control P-value

Bicuspid 
aortic valve Control P-value

Age (years) 51.7 ±  16.7 53.9 ±  12.1 0.6149 49.7 ±  10.5 51.3 ±  12.7 0.6279

male gender 20 (66%) 13 (65%) 0.570 19 (63%) 13 (65%) 0.574

Abnormal valve function 27 (90%) 0 (0%) < 0.0001 28 (93%) 0 (0%) < 0.0001

Concomitant aortopathy 20 (66%) 0 (0%) < 0.0001 22 (73%) 0 (0%) < 0.0001

Concomitant other cardiovascular structural defects 0 (0%) 0 (0%) 1.00 0 (0%) 0 (0%) 1.00

Atrial fibrillation 0 (0%) 0 (0%) 1.00 0 (0%) 0 (0%) 1.00

Atrioventricular block 0 (0%) 0 (0%) 1.00 0 (0%) 0 (0%) 1.00

BMI 21.87 ±  1.41 21.13 ±  1.67 0.0978 20.91 ±  1.75 21.23 ±  1.32 0.4901

Ejection fraction (%) 62.8 ±  9.55 62.9 ±  7.83 0.969 59.1 ±  10.69 61.7 ±  9.73 0.8478

Hypertension 9 (30%) 7 (25%) 0.763 10 (33%) 7 (35%) 0.9025

Smoking 11 (37%) 8 (40%) 1.0 9 (30%) 7 (35%) 0.7103

Surgical repair 30 (100%) 0 (0%) < 0.0001 30 (100%) 0 (0%) < 0.0001

Table 1.  Baseline characteristics of the subjects in the estimation and validation groups. Continuous 
variables are expressed as means and standard deviation. Aortic regurgitation and/or aortic stenosis with at least 
moderate severity. Aortic dilation ≥ 40 mm, affecting any part of the aorta from sinus of valsalva to proximal 
descending aorta.
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ZS model, with its highest AUC value, was the best performer in the prediction of BAV for the estimation group. 
Although ZS showed no statistical differences compared to the three metabolite candidates (p > 0.05), it exhibited 
an obvious higher AUC in the prediction of BAV.

Comparison of GNOE, MG (18:2), PE (18:2) and ZS in BAV prediction for the validation 
group. The predictive capacities of GNOE, MG (18:2), PE (18:2) and ZS were further evaluated by the use 
of a validation group that also consisted of 30 BAV patients and 20 healthy adults. The sensitivities, specificities, 
as well as negative and positive predictive values for all four models were calculated based on their respective 
cut-offs, as summarized in Table 3. Among the 20 healthy adults, 18 (90%) had ZS scores below the optimal cutoff 
of − 0.1634, 15 (75%) had PE (18:2) scores below the cutoff of 1447.81, 14 (70%) had GNOE scores lower than the 
cutoff of 227.56, and 17 (85%) had MG (18:2) scores less than the cutoff of 237.9. On the other hand, 23 out of the 
30 (76.7%) BAV patients had ZS scores above the cutoff, followed by GNOE (23, 76.7%), MG (18:2) (23, 76.7%), 
and PE (18:2) (22, 73.3%). In both cases, ZS model outperformed all three candidate metabolites in prediction 
accuracy by demonstrating the highest AUC value and the lowest likelihood of misdiagnosing healthy partici-
pants as BAV patients. In comparison, although GNOE seemed to have predicted the correct number of patients, 
this was in fact partly attributable to its propensity to misidentify BAV patients as healthy adults, and vice versa.

Discussion
To our knowledge, this study constitutes the first report on the application of metabolomics to the study of BAV 
and its underlying pathogenesis. From a pool of 738 metabolites detected under positive-ion mode and 1475 
metabolites under negative-ion mode by LC-MS, we identified a total of 41 features whose average levels exhib-
ited statistically significant differences between the patient group and the control group. Subsequent correlation 
analysis revealed that GNOE, MG (18:2) and PE (18:2) had the highest correlation with BAV. A predictive model 
(ZS) was then developed based on the concentrations of GNOE and MG (18:2), and achieved greater accuracy 
than the three individual metabolites mentioned above in the diagnosis of BAV for the validation group.

Metabolomics profiling has recently emerged as a powerful screening method that can aid in the prompt 
diagnosis of various heart diseases. The application of metabolomics analysis to a cohort of 39 chronic heart 
failure (CHF) patients and 15 healthy individuals found 18 metabolites that showed different expression pat-
terns between the two groups, out of 22 reliably detected peaks. The constructed OPLS-DA model was shown 

Figure 2. The metabolic profiles of BAV patients exhibited a distinct pattern characterized by changes 
in the levels of certain serum metabolites. The data points representing the patient group were shown to be 
clustered together and separated from those of the control group in both the PLS-DA score plots constructed for 
positive- (a) and negative-ion (b) mode. The 16 metabolites under positive-ion mode (c) and 25 under negative-
ion mode (d) that met the selection criteria of VIP >  1 and p <  0.05 were quantified in all subjects, and their 
levels, defined as the median values of the normalized peak intensities yielded by the LC-MS measurements, 
were represented by the data points and bars (green for patients and blue for healthy subjects), and plotted on a 
logarithmic scale. The fold-change value of each metabolite shown denoted the difference between the averaged 
normalized peak intensity for the patient group over that for the control group. Identification was based on 
accurate mass and MS/MS data. BAV =  bicuspid aortic valve; PLS-DA =  partial least squares discriminant 
analysis; VIP =  importance in the projection; LC-MS =  liquid chromatography-mass spectrometry; MS/
MS =  tandem mass spectrometry.
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to be able to predict CHF with 92.31% sensitivity and 86.67% specificity11. In another study, a combination of 
ultra-performance liquid chromatography (UPLC) and MS was employed in search for novel metabolite bio-
markers with predictive value for the diagnosis of ST-segment elevation myocardial infraction in young patients. 
In total, 24 different metabolites were identified out of approximately 400 statistically confirmed candidates, 
among which ceramides [Cer(d18:0/16:0), Cer(t18:0/12:0)] and sphinganine achieved 75–100% sensitivity and 
42.11–78.95% specificity in predicting major adverse cardiovascular events in young patients that had been dis-
charged12. Compared to these studies, our analytic method detected significantly more metabolic signatures, 
leading to the identification of an increased number of differentiating metabolites. In addition, our ZS model 
showed comparable predictive power, reflected by its high sensitivity and specificity scores. The statistical validity 
of our predictive models was also supported by the satisfactory Q2 values and the similar AUC scores between 
the estimation and validation groups.

The first observation from a quick overview of the 41 identified metabolites was altered levels of endocannabi-
noids and other cannabimimetic compounds in the BAV patients. Particularly, two of the three candidate metab-
olites that we identified as having the best predicting power, PE (18:2) and glycerophospho-N-ethanolamine, 

Category Total Hits P-value

Disease-associated

critical illness (cardiogenic shock) 6 3 0.0016

Lesch-Nyhan syndrome 5 2 0.0189

metabolites affected by exercise 5 2 0.0189

early markers of myocardial injury 14 3 0.0227

Crigler-Najjar syndrome | glucose-6-phosphate dehydrogenase 
deficiency | intoxication acetaminophen [dd] | pyruvate kinase 
deficiency

1 1 0.0464

Enzyme-associated

GMP reductase 6 3 0.0101

guanine phosphoribosyltransferase 6 3 0.0101

carnitine O-palmitoyltransferase 3 2 0.0212

Beta oxidation of fatty acid 3 2 0.0212

transport into the mitochondria (carnitine) 4 2 0.0400

methenyltetrahydrofolate cyclohydrolase 4 2 0.0400

carnitine transferase 4 2 0.0400

SNP-associated

rs10827283 | rs9663087 5 2 0.0385

rs1562861 5 2 0.0385

rs2039334 5 2 0.0385

Location-associated

skeletal muscle 45 4 0.0433

Pathway

Fatty acid biosynthesis 49 3 0.0052

Purine metabolism 92 3 0.0290

Table 2.  Enrichment and pathway analysis.

Figure 3. ROC of MG (18:2), Glycerophospho-N-Oleoyl Ethanolamine, PE (18:2) and ZS in the prediction 
of patients with bicuspid aortic valve in estimation (a) and validation (b) groups. AUC =  area under curve; 
ZS =  Zhongshan; ROC =  receiver operating characteristic curves.
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belonged to this category. Similar patterns were also discovered under negative-ion mode. It is widely agreed 
that endocannabinoids and cannabimimetic compounds can participate in stress response pathways to coun-
ter various forms of cardiovascular dysfunction, including myocardial infarction (MI) and circulatory shock, 
by promoting the relaxation of coronary and other arteries13. Of particular relevance to this study, a variety of 
N-acylethanolamines have been confirmed to be peroxisome proliferator-activated receptor (PPAR) ligands, 
which play key roles in essential physiological processes such as lipid metabolism and inflammation response14,15. 
It has been reported that N-oleoyl ethanolamine could activate PPAR-alpha receptor and promote the release of 
glycerol and fatty acids from rat adipocytes16. The results of these studies are perfectly consistent not only with 
the fact that glycerophospho-N-oleoyl ethanolamine was revealed in this study to be one of the best predicting 
markers for BAV, but also with the detection of elevated levels of certain types of free fatty acids and monoglyc-
erides in the patients.

Fatty acids are the primary energy source for the heart and have been associated in many studies with car-
diovascular diseases17,18. Perturbation of fatty acid synthesis and metabolism could lead to abnormal levels of 
free carboxylates. This was supported by the finding that the BAV patients and healthy participants of this study 
had significantly different levels of acetylcarnitine and dodecanonylcarnitine. Carnitine and its derivatives are 
well-known for their role in the transport of fatty acids to mitochondria for beta-oxidation19. As a result, they 
have also been explored as potential biomarkers for predicting cardiovascular anomalies20. In fact, altered levels of 
circulating carnitine and its acyl derivatives have been observed in HF and MI patients21,22. In particular, a recent 
metabolomics study reported a prognostic model that included butyrylcarnitine as an essential component, which 
achieved better results in predicting the outcome of patients with HF compared to conventional biomarkers22.

Additional signs of oxidative stress in the BAV patients were reflected by the changes in the levels of purine-based 
metabolites, which were suggested as diagnostic indicators for various cardiovascular disorders in a number of 
studies. Kugler G. examined a cohort of patients with coronary artery diseases and found increased levels of inosine 
and hypoxanthine in their coronary venous blood23. In another study, Harmsen E. et al. observed significantly 
increased levels of hypoxanthine, but not of adenosine, inosine and xanthine, in the blood samples collected from 
ischemic heart patients24. In agreement with these findings, our metabolomics results revealed substantially higher 
levels of adenosine, inosine and purine, as well as a moderately lower concentration of hypoxanthine in the BAV 
patients of this study, which were signs of ATP degradation that possibly arose from a lack of oxygen supply.

The main limitation of the current study lies in the relative small sample size. Consequently, further investi-
gations involving larger populations are necessary in order for our results and model to be generally applicable 
to the broader community. In addition, the specificity and sensitivity values of the ZS model are slightly lower 
than those of conventional echocardiogram- and CT imaging-based tests. Further metabolic profiling studies 
are also necessary to ascertain whether our models can differentiate between BAV and other heart diseases that 
share similar underlying metabolic disturbances. For example, since dysregulation of fatty acid metabolism is a 
common theme in MI and HF, a comparative study on these pathologies and BAV would be needed to determine 
their respective metabolomics signatures. Nevertheless, our serum-based diagnostic method is particularly suit-
able for use in community clinics and other medical institutes with inadequate equipment and funding, thanks to 
the easy availability of blood samples and the relatively low capital requirement for the analysis of small-molecule 
metabolites. Furthermore, the rapid advances in the area of high-throughput assays and robot-assisted automa-
tion protocols would allow the routine screening of large populations, which in turn would greatly facilitate the 
epidemiological study of BAV and the understanding of its underlying mechanisms. Efforts to enrollment of more 
participants for further assessment of ZS model and the mechanisms behind the relationship between BAV and 
significantly different metabolites are currently underway in our laboratory.

Metabolomic target Cutoffs
Patients 

classified N (%)
Diagnostic 

accuracy AUC

MG (18:2) 237.9 28 (56)

Sen (%) 76.7

0.815
Spe (%) 85.0

PPV (%) 80.0

NPV (%) 80.0

Glycerophospho-N-Oleoyl Ethanolamine 277.56 30 (60)

Sen (%) 76.7

0.793
Spe (%) 70.0

PPV (%) 76.7

NPV (%) 65.0

PE (18:2) 1447.81 35 (70)

Sen (%) 73.3

0.738
Spe (%) 75.0

PPV (%) 83.3

NPV (%) 50.0

ZS − 0.1634 27 (54)

Sen (%) 76.7

0.93
Spe (%) 90.0

PPV (%) 80.0

NPV (%) 85.0

Table 3.  Model validation and comparison with regard to identifying BAV patients in the validation 
group. Sen =  sensitivity; Spe =  specificity; PPV =  positive predictive value; NPV =  negative predictive value.
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