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Abstract: Molecular and cellular research modalities for the study of liver pathologies have been
tremendously improved over the recent decades. Advanced technologies offer novel opportunities to
establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy
and high-throughput assays (e.g., bulk or single-cell RNA sequencing). The use of stem cell and
organoid research will help to decipher the pathophysiology of liver diseases and the interaction
between various parenchymal and non-parenchymal liver cells. Furthermore, sophisticated animal
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models of liver disease allow for the in vivo assessment of fibrogenesis, portal hypertension and
hepatocellular carcinoma (HCC) and for the preclinical testing of therapeutic strategies. The purpose
of this review is to portray in detail novel in vitro and in vivo methods for the study of liver cell
biology that had been presented at the workshop of the 8th meeting of the European Club for Liver
Cell Biology (ECLCB-8) in October of 2018 in Bonn, Germany.

Keywords: hepatic stellate cells; hepatocellular cancer; fibrogenesis; steatosis; in vitro models

1. Introduction

Cell culture techniques are important tools for the study of pathogenesis and treatment of liver diseases.
Each different cell type plays a specific role in the liver. The parenchymal cells, mainly hepatocytes, constitute
80% of the total liver volume and are responsible for the majority of liver functions. The nonparenchymal
cells include hepatic stellate cells (HSCs), liver sinusoidal endothelial cells and resident macrophages such as
Kupffer cells (KCs) [1]. The connective tissue of the liver consists of blood vessels, nerves, lymphatic
vessels, bile canaliculi and extracellular matrix [2]. Inside the bile canaliculi, the epithelial cells, the so-called
cholangiocytes, participate in the regulation of bile production and in the process of biliary repair [3].
In recent years, biliary research and cholangiocytes gained much interest in the research of liver diseases.
Although conventional procedures to isolate liver cells, such as in situ liver perfusion and collagenase digestion
followed by density gradient isolation, are well established, novel methods have been introduced such as
fluorescence-activated cell sorting (FACS) of HSCs using vitamin A autofluorescence. These approaches
provide high purity of HSCs and are reproducible. In the coming years, the use of 2D microscopy,
3D microscopy, intravital microscopy, flow cytometry and cell isolation for subsequent functional experiments
or expression analyses is expected to significantly increase characterization of hepatic cell populations and
their interactions with circulating immune cells. For instance, these methods have been used to study the
impact of hepatic macrophages and monocytes on steatosis, inflammation, hepatocellular injury, HSCs
activation and angiogenesis [4]. Two novel technologies from stem cell research, induced pluripotent
stem cells (iPSCs) and liver organoids, helped to decipher the pathophysiology of cholangiopathies [5].
Using in vitro models of primary human liver cells from different human donors, co-culture systems can
simulate additional pathophysiological liver cell interactions, being complementary to animal models in
preclinical analysis. Furthermore, development of animal models to experimentally mimic alcoholic liver
disease (ALD), such as the liquid Lieber-DeCarli (LDC) diet, intragastric ethanol infusion and administration
of carbon tetrachloride (CCly) combined with ethanol in drinking water, can help to understand critical
pathophysiological steps of human ALD, such as inflammation and fibrosis during ALD progression [6,7].
Moreover, HCC models are receiving increased attention, not only for the fast xenograft model, but also
for application of N-nitrosodiethylamine (DEN) followed by repeated administration of CCly (Table 1) [8],
as well as the model of non-alcoholic steatohepatitis (NASH) combined with a HCC model described recently
by using a Western diet (WD) combined with CCly (Table 1) [7,9]. Finally, the assessment of systemic,
splanchnic and portal hemodynamics in animal models is now well accepted and crucial for the evaluation
of drugs for end-stage liver disease. The purpose of this review is to present technological tools that will
enhance our ability to isolate and purify the different cell populations and other strategies to study the full
spectrum of liver disease (Figure 1).
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Table 1. Select findings of new methodology applications in in vitro organoids and in vivo models.
Model Method Application References

HSC [10-12]
FACS and MACS sorting
Macrophages (KCs and monocytes) [13]
Percoll gradient isolation and .
filtration Cholangiocytes [14,15]
In vitro H 16-20
Human donor co-cultures 5C [ ]
Hepatocytes [20]
Bulk sequencing and single-cell RNA  Macrophages (KCs and monocytes) [13,21-23]
Hepatocyt: 24-26
iPSCs epatocytes [ ]
Cholangiocytes [27]
Hepatocytes [28]
3D liver organoids -
Organoids Cholangiocytes [27]
2D and 3D spheroids for angiogenesis Endot.hehal C?HS [29,30]
Angiogenesis
A-DW, LDC, NIAAA
LDC + “second hit” (LDC + CCly, - .
LDC + DEN, LDC + LPS, LDC + Alcoholic liver disease [6,7,31-34]
APAP)
NASH/HCC (WD + CCly)
Knock-out mice HFD - .
HE-HC Non-alcoholic liver disease [1,7,9,35-44]
MCD
Xenograft
Isograft
In vivo DEN Hepatocarcinoma [7,9,45-49]
DEN + CCL4
NASH/HCC (WD + CCly)
Hemodynamic assays
Monitoring protocols .
HVPG Portal hypertension [39,50-52]
CT- or MRI-based cross imaging
Knock-out mice, retroviral, lentiviral,
sh/siRNA knock-down, Angiogenesis [53-56]

CRISPR/Cas9-based method

A-DW: alcohol in drinking water; APAP: acetaminophen; HF-HC: high fat/high cholesterol; HFD: high-fat diet; LPS:
lipopolysaccharide; MACS: magnetic-activated cell sorting; MCD: methionine choline deficient; NIAAA: mouse

model of chronic and binge ethanol feeding.
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Figure 1. Overview of new methodologies using in vitro, cell-cell interaction and in vivo models for

the study of liver pathology.

2. In Vitro Models

2.1. Isolation and Culture of Hepatocytes

Hepatocytes are the major cell population in the liver [57]. Hepatocytes are responsible for
management of nutrient uptake, blood detoxification and packaging and secretion of proteins, lipids
and bile [58]. Theirisolation was well established by the two-step EGTA/collagenase perfusion technique
by Seglen in 1976 [59]. The 2D culture of primary hepatocytes is considered the “gold standard” for
in vitro testing of the hepatotoxic effect of therapies and drug metabolism [60]. The disadvantage of
2D culture is that within a few days, hepatocytes suffer dedifferentiation and loss of function. The 3D
techniques are gaining relevance due to the presence of the non-parenchymal cells that play the role
of maintaining hepatocyte functions [28]. Developments in the production of 3D hepatocyte culture
scaffolds are helpful in understanding the cross talk between hepatocytes and non-parenchymal cells
and their role in the regulation of liver pathologies.

Cellular stress during the isolation techniques results in a low quality of isolated cells and reduced
cell engraftment after transplantation. The use of 3D cell formats has also been successful in processes
of cryopreservation and post-thawing, improving in vivo efficacy [28]. Furthermore, applying good
manufacturing practices (GMPs) improves hepatic functions and the ability to engraftin vivo, compared
to the classic organ storage solution based on the University of Wisconsin medium [61].

Hepatocytes-like cells derived from subsequent differentiation of iPSCs using a cocktail of growth
factors and specific matrices is another alternative technique to obtain hepatocytes in vitro [24,25,62].
One disadvantage is that iPSC-derived hepatic cells are phenotypically more similar to fetal hepatocytes
than to the freshly isolated counterpart [63]. To overcome this problem, new strategies include a stepwise
induction with cocktails of small molecules to improve the final maturation [26,64].



Int. J. Mol. Sci. 2020, 21, 2027 50f19

2.2. HSCs Isolation and Immortalized HSCs Lines

HSCs, the main vitamin A-storing cells located in the perisinusoidal space between hepatocytes and
sinusoids, play a key role in collagen production, secretion and function of cytokines and chemokines,
as well as in the modulation of the immune system in addition to changes in contractile features
during homeostasis and liver fibrosis [65]. It has now become clear that not all functions are done by
the same HSC, but that the transcriptional profile of single HSCs considerably varies after activation
in vivo, particularly during fibrogenesis [4]. First protocols for HSC isolation were established in the
1980s, with collagenase/pronase digestion of the liver tissue and subsequent fractioning process of
the heterogeneous cell suspension on a density gradient [66]. In 1998, other methods to isolate HSCs
appeared, such as the first protocol to isolate HSCs with FACS. This involved applying FACS to sort
cells from rats with high purity, using simply their high side scatter of incident light (Table 1) [10]. Later,
FACS instruments equipped with a UV laser could sort HSCs by visualizing the typical autofluorescence
from vitamin A storage (Table 1) [11,12].

HSC isolation with FACS sorting allows isolation with high purity, and, compared to standard
techniques, FACS-based protocols can be used to isolate HSCs from much younger animals, such as
genetically modified mice characterized by a short life span. Moreover, these protocols improve
isolation of HSCs when hepatocytes are fattened in steatosis models. In addition, these protocols
permit simultaneous comparison of hepatic cell subpopulations from the same animal. Despite these
advantages, FACS sorting requires investment in special equipment, including UV lasers, appropriate
filters and specific skill acquisition. Furthermore, these protocols require pooling of livers, long time
periods for cell sorting and careful use of UV light, which can be stressful and cause cell damage.

In summary, HSC sorting by FACS via vitamin A autofluorescence provides the opportunity
to obtain excellent cell purity and, despite the fact that isolated HSCs cannot reproduce the same
phenotype as the one found in cirrhotic livers, these protocols can be used to optimize the study of
HSCs biology and their role in liver fibrosis. Undeniably, the co-culture systems of HSCs with other
cells could explain the relevant role of cell-cell interactions and the paracrine influences. This has been
exemplarily demonstrated more than a decade ago for the co-culture of HSC with Kupffer cells that
mimicked the in vivo activation of HSC much more accurately than single HSC cultures [67].

2.3. Analysis of Liver Cells from Different Human Donors and Co-Culture Models

Despite the emergence of therapeutic targets for liver pathologies, the response of the treatments
shows significant variations between patients. In vitro studies with liver cells from different human
donors could help to understand and determine the differences observed in in vivo studies. Use of
complex co-culture models could be a start to better simulate the complexity of the in vivo situation.
This is currently intensively explored for fatty liver disease conditions, in which novel 3D biochip
systems partially allow modelling complex cellular interactions between steatotic hepatocytes and
non-parenchymal cells [68]. However, for the comparison of primary liver cells from different human
donors, it is critical to exclude that isolation procedures can affect functional cellular characteristics.
Therefore, it is important that it has been shown that different HSC isolation procedures from tissue of
the same donor resulted in no significant differences, whereas HSCs isolated from different human
donors revealed significant variations (Table 1) [16]. The differences in the expression levels of
profibrogenic genes observed between HSCs from different human donors [69] may reveal some
aspects of varying fibrosis progression in patients as well as development of HCC.

Furthermore, numerous studies have shown that HSCs are related to the formation and progression of
HCC (Table 1) [17,18]. The treatment of human HCC cells with conditioned media of HSCs from different
human donors resulted in significantly different functional effects as well as gene expression changes in the
HCC cells [70]. Bioinformatic modeling led to the identification of pregnancy-associated plasma protein A
(PAPPA) as novel cancer-promoting stromal factor secreted by HSCs, which is related to advanced-stage
HCC [70]. In addition, HSCs can also be used in co-culture models with other cells, such as HSCs treated
with conditioned media from different human melanoma cells (Table 1) [19], or conditioned media from
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steatotic human hepatocytes that produce a more fibrotic phenotype in HSCs compared with normal
hepatocytes (Table 1) [20].

In summary, in vitro (co-)culture models of primary human liver cells from different human
donors can be a valuable system to simulate at least certain aspects of the heterogeneity and variation of
the course of chronic liver disease. Furthermore, in vitro studies with human liver cells may be used to
predict the response of patients prior to defined therapies.

2.4. Isolation and Characterization of Liver Macrophages

Liver macrophages play a key role in innate immunity, homeostasis and inflammation. Among
liver macrophages, two principal populations can be differentiated by their ontogeny, polarization and
function during injury and resolution [71], namely KCs and monocytes, and their functional behavior in
liver diseases could become a target for novel therapeutics (Table 1) [38]. Liver macrophages have been
characterized by means of new technologies, such as multicolor flow cytometry, advanced microscopy,
sorting followed by bulk sequencing or single-cell RNA sequencing (Table 1) [4,13,21-23,72]. From
an isolation perspective, KCs are firmly attached to sinusoidal endothelial cells and require gentle
perfusion-based dissociation methods [73], while monocytes can be isolated simply by collagenase
digestion (Table 1) [40]. These protocols are based on perfusion of the liver via portal vein cannulation,
cell extraction, purification via density gradient or sedimentation and optional additional steps for
cell sorting based on FACS or MACS. The inconvenience of these techniques lies in the activation of
hepatic macrophages during isolation and the fact that they also require adaptation based on the mouse
strains used, making cross-lab standardization difficult. Moreover, compared to the MACS sorting
method, FACS usually results in excellent purity and can be flexibly adjusted to the populations of
interest. However, FACS can impact cell viability, it is time-consuming and expensive. Similar to HSC,
macrophages behave differently in vitro, if cultured alone, together with other cells or in the context of
the liver structure with zonation, flow conditions and nutrient / oxygen gradients.

Many studies are currently performed to understand human liver macrophages. Initial reports using
single-cell RNA sequencing confirmed the heterogeneity and functional diversification of macrophages
in healthy and diseased human livers [23,72]. However, important pitfalls include the limited availability
of human samples, ischemic alteration of tissue during surgical procedures, heterogeneity of patients
and the relative paucity of specific markers for hepatic macrophage subsets in humans [71]. For instance,
the c-type lectin “clec4f” is considered specific for KCs in mice, but it has no direct counterpart in
humans [74,75].

2.5. Cellular Models in Biliary Research

Cholangiocytes are epithelial cells of the bile ducts. Their function is to modify the composition
and volume of bile produced by hepatocytes en route to the duodenum. Different sub-populations
of cholangiocytes exist: the large cholangiocytes involved in secretory processes and the smaller
cholangiocytes equipped with plasticity to proliferate in response to damage [76]. Cholangiopathies
represent a significant cause of liver-related morbidity and mortality and are an important indication
for liver transplantation [77].

Cholangiocyte isolation is realized firstly by in situ liver perfusion and collagenase digestion,
secondly by mechanical and enzymatic digestion, and finally the cells are separated by filtration. At this
point, it is possible to obtain different sizes of cells, intrahepatic bile duct units (IBDUs) (Table 1) [14] oz,
via immune-magnetic separation, biliary epithelial cells (BECs) (Table 1) [15]. While IBDU isolation is
not completely pure, it is sufficient for secretory function studies 48 h after plating on matrigel [78-80].
In contrast, BEC can be more purified but cannot proliferate in culture. Recently, it has been shown that
primary cultures of mouse cholangiocytes could be cultured on rat tail collagen for several passages [81]
and used for specific functional studies with transgenic mice [82].

Cholangiocytes from human liver explant tissue can also be isolated by collagenase digestion
followed by Percoll gradient isolation and immune magnetic positive selection and can then be
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expanded in culture since they acquire a more mesenchymal phenotype [83]. Furthermore, it is possible
to culture cholangiocytes from a small fragment of a liver biopsy, but with a lower purification [84].
Surprisingly, these cholangiocyte phenotypic markers are established: y-glutamyl-transpeptidase
(GGT), cytokeratins 7 and 19, EpCam, SOX-9, secretin receptor and cystic fibrosis transmembrane
conductance regulator (CFTR) [85].

The study of human cholangiocytes is relevant to the understanding of the biological functions
of the biliary epithelium and cholangiopathies. Despite relentless efforts to isolate cholangiocytes,
the main challenge lies with the yield and the purity of the cell preparation technique since these
represent about 4% of the total liver cell populations, similar in size to endothelial and KCs. Other
limitations are the need of a polarized organization to improve their functionality, the time-consuming
method and the complex media needed for expansion.

Compared to other liver cell isolation models, accessibility to human tissue is limited and restricted to
the end stage of liver disease. In the case of animal models, there are physiological inter-species differences.
A number of other options are currently under investigation, such as iPSCs and the possibility to isolate 3D
liver organoids, which may provide opportunities to overcome current limitations (Table 1) [27].

3. In Vivo Models

3.1. Angiogenesis and Gene Expression Inhibition

One of the hallmarks of chronic and liver disease is angiogenesis with new formation of blood
vessels from preexisting vasculature [29,86]. In this pathological condition, abnormal angioarchitecture
is established together with fibrogenesis, inflammation and tumorigenesis, resulting in the formation
of portosystemic collateral vessels, an increase in splanchnic blood flow and the aggravation of portal
hypertension. All of these could be targets for new therapeutic approaches in treating angiogenesis in
chronic liver disease (Table 1) [29,86].

To address angiogenesis, a number of different methods have been developed in recent decades [87].
Using in vitro bioassays, purified endothelial cell cultures or co-cultures with supporting cells (e.g., smooth
muscle cells, pericytes, fibroblasts and tumor cells), either on 2D monolayers or 3D spheroids, were employed
to mimic aspects of in vivo vascular formation. However, there are some critical points to consider regarding
the in vitro assays and the choice of endothelial cells. Different factors characterize endothelial cells: they
have species- and organ-associated phenotypic differences and depend on their microvascular origin. Also,
the number of passages, cells plated per well and the use of growth factor-reduced matrigel are factors
influencing the success of these assays. The use of primary cells derived from inducible knock-out mice, or the
use of cells genetically altered by retroviral or lentiviral constructs, including fluorescence (gain-of-function)
or by shRNA/siRNA knock-down or genome-editing CRISPR/Cas9-based methods (loss-of-function),
has provided answers to specific hypotheses in angiogenesis processes. As opposed to in vitro assays, using
in vivo assays, these hypotheses can be validated by immunohistochemical, histological and molecular
biology procedures. Recently, the use of angiogenesis inhibitors in vivo has shown a potential effect in
chronic liver disease, such as inhibiting the VEGF signaling pathway, combining treatments with VEGF
and PDGEF inhibitors directed against endothelial cells and pericytes, or gene therapy with cell-targeted
molecule-targeted liposomal small interference RNAs (Table 1) [53,88,89]. Endogenous angiogenesis inhibitors
using adenovirus-mediated gene transfer are also applied (Table 1) [56,90]. Gene expression inhibition studies
employing in vivo loss-of-function models have shown that post-transcriptional mechanisms, regulated by
cytoplasmic polyadenylation element binding proteins (CPEB), are essential for pathological angiogenesis
in chronic liver disease, but dispensable for homeostasis of healthy vessels and physiological angiogenesis
(Table 1) [30,54,55].

Despite the fact that in angiogenesis studies in vitro assays can be faster and reproducible, in vivo
assays are physiologically more relevant. Moreover, in vitro assays do not represent the same conditions
and do not allow study of the complex physiological interactions that occur in vivo. However, an in vivo
angiogenic response also presents inconveniences, as it is a time-consuming and costly method, and it



Int. ]. Mol. Sci. 2020, 21, 2027 8of 19

influences other parallel processes such as fibrogenesis and inflammation. Furthermore, angiogenesis
image analysis requires advanced skills to avoid inter-observer variability. Finally, in vitro and in vivo
models are essential to identify potential targets in neovascular processes in order to apply in new
therapies in patients with chronic liver disease.

3.2. The Leading Models of Experimental ALD

ALD is one of the main causes of liver disease. The spectrum includes simple steatosis to cirrhosis,
and it can lead to the development of end-stage HCC [91]. Unfortunately, there is no effective therapy.
For the development of novel therapies, experimental animal models can provide more understanding
of the mechanisms involved. The following is a short overview of the top three classic ALD experimental
models and their hallmarks. First, several factors must be taken into account that could influence ALD
models (Table 1) [31,92], such as gender, genetic background and age of mice. While female mice can
develop alcoholic liver injury faster, they are less likely to progress to cirrhosis and HCC. For ALD models,
the C57BL/6NCrl strain, due to its metabolism, is the most suitable. Moreover, the age recommended for
onset of ALD models in mice is 8-11 weeks with a body weight above 19 g.

A-DW is a model for alcohol consumption in rodents, whereby the concentration of EtOH in the
drinking water is gradually increased, and thereafter the animals are kept on the highest concentration
throughout the study (up to 25% v/v, from eight up to 70 weeks). Other factors can be modified, such as
opting to choose water or alcohol, or using multiple bottles with different alcohol concentrations or
drinking in the dark. Despite the fact that this model is physiological, inexpensive, without significant
mortality and with very simple animal husbandry, the strong natural aversion to alcohol of the
animals results in reduced consumption and produces a reduced blood alcohol concentration (BAC)
(50-70 mg/dL), thus inducing only moderate, clear steatosis and low elevations of ALT and AST
without signs of fibrosis or inflammation [92,93].

The LDC diet is a liquid diet to which EtOH is added. This diet also contains necessary nutrients.
At first, the EtOH is increased gradually from 1% to a concentration of 5.07% w/v (6.4% v/v) over
a period of seven days. Next, mice are maintained with the highest EtOH concentration during a period
which normally varies from 4 to 12 weeks. The control animal group is fed with LDC with the same
isocaloric conditions as the LCD-EtOH diet. This diet has the advantage of being more time-efficient
resulting in BAC ranging from 100 to 160 mg/dL. Preparation and management are straightforward,
without specific equipment requirements and may be easily approved by local ethical committees.
However, animals drink this diet when they are hungry and thirsty, and it is thus not completely
physiological. The diet is freshly prepared every day, and the animals must be monitored during the
entire process. As with AD-W, this diet also produces a mild elevation of serum transaminases and
does not mimic advanced stages of human ALD such as cirrhosis and HCC (Table 1) [31,32].

There are different combinations of the LDC diet with secondary hepatic stressors or “second
hits”, which have been widely used, producing models of progressive ALD. These combinations
include the NIAAA model using 5% v/v LCD diet for ten days or eight weeks + single or multiple
EtOH binges (5 g/kg) [33], the fibrotic model using moderate 2% LDC + CCly (1uL/g body weight,
intraperitoneally (i.p.)), twice a week) (Table 1) [34], the HCC model with LCD (7-10 weeks) + DEN
(40-100 mg/kg i.p.) [84], the LDC diet (8-10 weeks) + LPS (small-dose (1pg/g body weight) or high-dose
(0.5 mg/kg, body weight)) [53] and the drug-induced liver injury model with the combination of LDC
diet (4-6 weeks) + APAP (0.5-1 g/kg i.p.) [84].

In the intragastric ethanol infusion (IEI) method, mice are directly connected to an infusion pump
with a catheter implanted into the stomach under aseptic conditions. Alcohol is added to the LDC diet
and administered to the mice for a minimum period of six months. This method has the advantage
of a sustained high BAC (250-500 mg/dL) and total control of nutritional intake. Furthermore, it can
successfully produce advanced human ALD with the characteristic steatosis, apoptosis, central necrosis,
inflammation, portal and bridging fibrosis. Nevertheless, this model bears the risk of infection and
irritation, sometimes associated with dysbiosis. Therefore, it requires a high skill in implantation and
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considerable investment in equipment, with consequent difficulties in obtaining authorization from
the local ethic committees [6,92].

In brief, none of the above-mentioned animal models can reproduce the features of human ALD
due to the animals’ strong natural aversion to alcohol, high basal metabolic rate, fast catabolism
of alcohol, spontaneous reduction in alcohol intake when acetaldehyde blood levels increase and
absence of addictive behavior [94]. Nevertheless, these models can provide useful insights for novel
therapeutic strategies.

3.3. Mouse Models for Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is the pathology induced in the liver characterized
by fat deposition and hepatocyte steatosis. NASH is one of the stages in the spectrum of NAFLD
that can progress to fibrosis, cirrhosis and, finally, to HCC. NASH is characterized by hepatocellular
ballooning with fat vacuoles and the presence of inflammatory infiltrates. Unfortunately, as in other liver
pathologies, not all animal models can replicate the full spectrum of human NASH. In order to study
the mechanisms produced in NASH pathology and the potential therapeutic targets, the models most
commonly used are as follows [42]: dietary models, such as HFD, high-fructose diet [43], cholesterol and
cholate diet [37], MCD diet [95] and choline-deficient l-amino acid-defined (CDAA) diet [96]; genetic
models, some of which act by promoting fat synthesis (leptin deficiency ob/ob mice [44], leptin receptor
deficiency db/db mice or fa/fa in rat models [36,42]), while others act by inhibiting lipid peroxidation
(peroxisome proliferator-activated receptor-o knock-out mice) [97] and impeding fat transport (ApoE
knock-out mice) [35]; and chemical models, such as CCL4 [98], tetracycline [99] and streptozotocin in
combination with HFD [100]. In brief, these models can reproduce different aspects of human NASH.

3.4. Mouse Models for Hepatocellular Carcinoma

HCC is the fifth leading cancer worldwide. Despite medical advances, treatment options are
limited. HCC primarily occurs in the setting of chronic liver injury in a multistep process involving
hepatitis (often associated with steatosis), liver fibrosis and cirrhosis. Animal models to mimic the
different stages of human HCC are performed according to European/international animal welfare
regulations as outlined elsewhere [101]. These models can be categorized into cell transplantation
models, genetic models or chemical models alone or in combination with a second hit.

Cell transplantation HCC models consist of injection of hepatoma cells into recipient mice, either
orthotopic in the liver (through intrahepatic or intrasplenic injection) or ectopic through subcutaneous
application. Immune-deficient “nude-mice” are used for xenograft transplantation, enabling any kind of
cell transplantation. Isograft transplantation consists of injection of hepatoma cells into recipient mice
with identical genetic backgrounds. These models are fast and inexpensive, with easy management of
the hepatoma cells before transplantation and without invasive monitoring of tumors. They are suitable
for the testing of new drugs in HCC therapy. Nevertheless, these models do not allow study of all stages
of progression of HCC, and in some models of tumors are occasionally rejected.

As a result of technological advances, genetic HCC mouse models, i.e., genetically engineered
animal models of HCC, are increasingly developed [102]. Some of them enable study of steatosis,
inflammation and fibrosis, such as liver-specific nuclear factor (NF)-«B essential modulator knock-out
mice (NEMO) [103] or constitutive Mdr2-/- mice [104]. Patent regulations and material transfers are
limitations of these models.

Of the genotoxic carcinogens, the DEN model of liver cancer is probably the best established
chemical HCC model (Table 1) [45], whereby a single DEN injection in male mice at the age of exactly
14 days will give rise to small neoplastic lesions after 22 weeks and multinodular HCC after 40 weeks.
The DEN injection model provides a high tumor incidence of 90%-100% and is easy to evaluate
quantitatively by simply counting number and size of developed HCC nodules. As with other HCC
models, the DEN chemical model cannot mimic the entire disease progression as in humans and testing
of expensive new drugs is time-consuming. The DEN chemical model can also be complemented with
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a weekly injection of hepatotoxins, CCly, as a second hit (Table 1) [46,47]. This model can mimic the
human HCC processes, such as inflammation and fibrosis, after 30 days. However, it requires more
effort, and measurement of tumors can be challenging due to changes in liver architecture.

The NASH/HCC model, a combination of NASH and weekly low-dose CCly injections (Table 1) [48],
can reflect the progression of human fatty liver disease from simple steatosis to cancer within 24 weeks.
With a high incidence within a short period of time, this model shows a close transcriptome similarity
to human non-alcoholic fatty liver disease.

All these models provide important translational relevance, as they can mimic some of the human
HCC mechanisms. For example, the c-Myc transgenic animal model is highly similar to human
HCC with good prognosis, while DEN-derived tumors reflect human HCC in patients with poor
survival (Table 1) [9,49]. Moreover, the NASH/HCC model develops similar mechanisms of human
NAFLD) [48]. In brief, these models can be most valuable in the prognosis of chronic liver disease
patients and thus decrease HCC incidence and mortality.

3.5. In Vivo Setup of Liver Disease Models for Surgery and Hemodynamic Assessments

Cirrhosis and portal hypertension cause significant morbidity and mortality [105]. Non-selective
betablockers are currently the only medical therapy for portal hypertension, but have limited
efficacy [106], and do not decrease liver fibrosis and intrahepatic vascular resistance. Thus, more effort
is required to identify novel antifibrotic or anti-portal hypertensive drugs.

Importantly, the study of hepatic hemodynamics in animal models within the EU should follow
the EU directive 2010/63/EU and national regulations [107,108]. Important recommendations for animal
health monitoring, routine laboratory animal activities and animal welfare were specified by the
Federation for Laboratory Animal Science Associations (FELASA) [109]. Furthermore, the principle of
the 3Rs of Russell and Burch [110] must be considered in research with animals.

The appropriate handling of animal models of liver disease and the hemodynamic measurement
requires experience and regular monitoring of the general health condition, such as of jaundice, ascites
or hepatic encephalopathy during the induction period [39].

Atevaluation of portal hypertension in vivo, the appropriate choice of anesthesia is another important
aspect as it impacts on arterial blood pressure, heart rate (HR) and temperature. The equipment for
anesthesia monitoring should include pulse oximeter, ECG and rectal temperature probe. The choice of
anesthetics is based on pharmacodynamic characteristics, options for antagonization, administration
routes and differences in sensitivity related to sex, animal species and strain [111]. In addition, the planned
interventions, such as vascular cannulations must be taken into consideration, which can be surgically
challenging and require specific hemodynamic equipment [51]. A typical hemodynamic assessment of
the portal hypertensive syndrome requires about 45 min per animal for the simultaneous acquisition of
several important systemic, splanchnic and portal hemodynamic parameters.

A single injection of anesthesia requires less equipment, is relatively cheap, and does not require
extensive skill with animal handling. However, the hemodynamic assays described below are very
sensitive to the depth of anesthesia, which is challenging by a single injection and moreover could
interfere with the results of the measurements. In contrast, the combination of inhalation anesthesia
supported by intubation and injective anesthetics allows for an improved control and safety of
the procedures.

For a detailed evaluation of the various hemodynamic parameters characterizing the portal
hypertension syndrome and some other surgical interventions, using mice may represent a limitation
due to their small body size that requires a high level of expertise and degree of technical expertise.
This is probably the most important reason why usually rats are used when several hemodynamic
parameters must be simultaneously obtained.

The main hemodynamic parameters to characterize the portal hypertension syndrome are portal
pressure (PP), mean arterial pressure (MAP), HR, superior mesenteric artery blood flow (SMABF) and portal
vein blood flow (PVBF). The ratio between MAP and HR represents a hyperdynamic index, which reflects
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the severity of hyperdynamic circulation caused by peripheral/splanchnic vasodilation. MAP/HR are
usually invasively measured via cannulation of the femoral or carotid artery following surgical dissection
and using an intravascular catheter connected to a pressure transducer. After median laparotomy, SMABF
can be measured by perivascular, non-constrictive ultrasound flow probes at the superior mesenteric artery
as a surrogate parameter for splanchnic vasodilation. A similar, but different-sized flow probe is available
for measurement of PVBF at the portal vein. Importantly, flow probes must be calibrated for the viscosity
of blood, and their size has to be chosen according to the targeted vessel size. Portal pressure as main
readout parameter is assessed by a direct cannulation of a suitable mesenteric venous blood vessel, usually
at the junction of the ileocolic vein by an intravascular catheter. Portal pressure is recorded via a pressure
transducer after careful advancement of the catheter to the portal vein close to the liver hilum. Intrahepatic
vascular resistance can be calculated by PP and PVBE.

In patients, portal pressure can also be measured invasively via the puncture of the portal vein;
however, nowadays, mostly the indirect measurement via the hepatic venous pressure gradient (HVPG)
assessed via transjugular liver vein catheterization is used. Invasive assessment of arterial pressure
and HR is also possible via an arterial line as in an intensive care unit. In addition, splanchnic and
portal blood flow may be semi-quantitatively assessed by percutaneous Doppler ultrasound. Novel
dynamic contrast-enhanced CT- or MRI-based cross-sectional imaging methods are currently being
developed that may allow for a quantification of blood flow in various splanchnic and portal-venous
and arterial blood vessels.

4. Conclusion

Advanced technologies in molecular and cellular research have rapidly evolved to meet the
demands of clinical applications involving diagnostics and therapeutics in liver diseases.

Extensive research is required to select the appropriate model for specific liver research issues.
Any experiment or model for research purposes must be meticulously planned and should combine
different in vivo and in vitro models (Figure 2). While the currently existing knowledge gaps in the
study of liver pathophysiology can be addressed with all these methodologies, future techniques
and methods for different fields must, nevertheless, be continuously adapted for liver research
(Supplementary Table S1).
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Abbreviations

A-DW Alcohol in drinking water

ALD Alcoholic liver disease

APAP Acetaminophen

BAC Blood alcohol concentration

BEC Biliary epithelial cells

CCLy Carbon tetrachloride

CDAA Choline-deficient l-amino acid-defined

CFTR Cystic fibrosis transmembrane conductance regulator
DEN N-nitrosodiethylamine

FACS Fluorescence-activated cell sorting

FELASA Federation for Laboratory Animal Science Associations
GGT I'-Glutamyl-transpeptidase

HCC Hepatocellular carcinoma
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HFD High-fat diet

HR Heart rate

HSCs Hepatic stellate cells

HVPG Hepatic venous pressure gradient

Lm. Intramuscularly

Lp. Intraperitoneally

IBDU Intrahepatic bile duct units

IEI Intragastric ethanol infusion

iPSCs Induced pluripotent stem cells

KCs Kupffer cells

LDC Lieber-DeCarli

LPS Lipopolysaccharide

MACS Magnetic activated cell sorting

MAP Mean arterial pressure

NAFLD Non-alcoholic fatty liver disease

NASH Non-alcoholic steatohepatitis

NEMO Nuclear factor (NF)-kB essential modulator

NIAAA Chronic-plus-binge alcohol feeding model

PAPPA Pregnancy-associated plasma protein A

PP Portal pressure

PVBF Portal vein blood flow

SMABF Superior mesenteric artery blood flow

WD Western diet
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