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Drug addiction, one of the major health problems worldwide, is characterized by the loss of control in drug intake, craving, and
withdrawal. At the individual level, drugs of abuse produce serious consequences on health and have a negative impact on the
family environment and on interpersonal and work relationships. At a wider scale, they have significant socio-economic and public
health consequences and they cause delinquency and citizen insecurity. Cocaine, a psychostimulant substance, is one of the most
used illicit drugs, especially in America, Western Europe, and Australia. Cocaine use disorders (CUD) are complex multifactorial
conditions driven by both genetic and environmental influences. Importantly, not all people who use cocaine develop CUD, and
this is due, at least in part, to biological factors that are encoded in the genome of individuals. Acute and repeated use of cocaine
induces epigenetic and gene expression changes responsible for the neuronal adaptations and the remodeling of brain circuits that
lead to the transition from use to abuse or dependence. The purpose of this review is to delineate such factors, which should
eventually help to understand the inter-individual variability in the susceptibility to cocaine addiction. Heritability estimates for CUD
are high and genetic risk factors for cocaine addiction have been investigated by candidate gene association studies (CGAS) and
genome-wide association studies (GWAS), reviewed here. Also, the high comorbidity that exists between CUD and several other
psychiatric disorders is well known and includes phenotypes like schizophrenia, aggression, antisocial or risk-taking behaviors. Such
comorbidities are associated with a worse lifetime trajectory, and here we report shared genetic factors that may contribute to
them. Gene expression changes and epigenetic modifications induced by cocaine use and chronic abuse in humans are addressed
by reviewing transcriptomic studies performed on neuronal cells and on postmortem brains. We report some genes which
expression is altered by cocaine that also bear genetic risk variants for the disorder. Finally, we have a glance to the
pharmacogenetics of CUD treatments, still in early stages. A better understanding of the genetic underpinnings of CUD will foster
the search of effective treatments and help to move forward to personalized medicine.

Molecular Psychiatry (2022) 27:624–639; https://doi.org/10.1038/s41380-021-01256-1

CLINICAL DEFINITION
The term substance use disorders (SUD), including cocaine use
disorders (CUD), refers to different types of behaviors that range
from sporadic use to abuse, dependence or addiction. The
differential clinical diagnosis is based on the Diagnostic and
Statistical Manual of Mental Disorders (DSM), which current
version is DSM-5 [1], although many studies still use the previous
DSM-IV-TR [2]. The main change of DSM-5 with respect to the
previous version of the manual is the unification of abuse and
dependence into a unidimensional category, SUD, that is
qualified on a severity scale (i.e. mild, moderate and severe
addiction) based on the number of symptoms endorsed, over a
total of 10 (Table 1). In addition, DSM-5 drops one of the
diagnostic criteria (legal problems) due to infrequent endorse-
ment and poor discriminant validity [3], and adds a new one:
craving. The World Health Organization developed another
diagnostic interview, the International Classification of Diseases
(ICD-11; https://icd.who.int/en), that keeps substance depen-
dence as the main diagnostic criterion. Several authors have
attempted to establish more homogeneous subgroups of

cocaine-related phenotypes that may be useful for subsequent
genetic analyses. Thus, five subtypes of cocaine abusers have
been defined on the basis of clinical presentation, family history,
and response to treatment [4]. More recently, cluster analysis was
not only used to classify individuals on different groups according
to cocaine-related measures but also to demographic features
and prevalence rates of comorbid substance use and psychiatric
disorders. Interestingly, those clusters characterized by a more
severe phenotype yielded higher heritability estimates [5, 6].

EPIDEMIOLOGY
According to the United Nations Office on Drugs and Crime, the
number of people aged 15–64 years that use illegal drugs
increased from ~210 to ~269 million over the period 2009–2018
(more than 28%, partly as a result of the global population
growth) and the prevalence raised from 4.8 to 5.4% (12% increase)
[7]. From these, over 35 million people suffer from SUD. Cocaine,
together with metamphetamines, dominates the psychostimu-
lants share. Some 19 million people used cocaine in 2018 (0.4% of
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the global population aged 15–64), fueled by the drug’s
popularity in North and South America, Western Europe, and
Australia. In Europe, cocaine is the most used illegal psychosti-
mulant, around 5.4% of adults have tried cocaine [8], but at most
20% of them will develop addiction [9, 10]. From these data, the
prevalence of cocaine dependence in the European population
can be estimated around 1.1%, a value similar to that observed in
American populations [11]. The prevalence of CUD is higher in
males than in females, with 85% of cocaine users that initiate a
treatment being males in contrast to 15% of females [8]. Ethnicity
is also relevant, for example with rates of cocaine overdose
deaths being much higher in African–American (AA) individuals
in the United States [12]. For different reasons, research studies,
and clinical trials have underrepresented women and ethnic
minorities. This may lead to gaps in the discovery of risk factors
for addiction, as several factors that influence the origin and
development of the disorder differ across gender and ethnic
groups. These factors include psychiatric comorbidities, socio-
demographic status, frequency and severity of cocaine use, and
also biological determinants [13, 14].

NEUROBIOLOGY
At the molecular level, cocaine binds the monoaminergic
transporters (DAT, NET, and SERT) blocking the reuptake of
these neurotransmitters by the presynaptic neuron, increasing
the levels of dopamine, serotonin, and noradrenaline at the
synaptic cleft [15]. Cocaine pleasurable and rewarding effects are
mediated mainly by the increase of dopamine activity in the
limbic system. Chronic cocaine use induces alterations and
adaptations in several neurotransmitter systems and affects the
function of several circuits and areas such as the mesocortico-
limbic system (including the nucleus accumbens (NAc) and
ventral tegmental area as well as prefrontal cortex). Serotonin
neurotransmission is also key to cocaine addiction since it
contributes to relapse by modulating impulsivity and responsiv-
ity to cocaine-associated stimuli [16].
Preventing relapse is the main challenge for treating CUD and

SUD in general. Learning and memory processes associate
memories between cocaine’s reinforcing and rewarding effects
and environmental stimuli, which then will trigger cocaine
craving during abstinence. This vulnerability to relapse, even
after a long period of abstinence, involves stable gene expression
changes and epigenetic modifications, especially in the corticos-
triatolimbic circuitry (hippocampus, prefrontal cortex, NAc, dorsal
striatum, and amygdala) [17]. Stress plays an important role in
relapse since increases drug craving, involving mainly the HPA
axis and corticotropin-releasing factor [18].
Cocaine-induced changes and adaptations in the brain

through repeated use will depend on the genetic background
of each individual. Also, these functional modifications are
modulated by environmental factors and the interplay between
them and genetic risk factors. Thus, some individuals are more
genetically susceptible to develop CUD and addiction than
others, being only around 16–20% of cocaine users. In this
review, we focus on the genetics of CUD.

GENETIC PREDISPOSITION TO COCAINE DEPENDENCE
Heritability: family and twin studies
SUD, in contrast to other psychiatric disorders, are often seen as
preventable and attributed to individual’s choice, but many studies
have shown that they are heritable, highlighting the relevance of
genetic risk factors [19]. Familial aggregation of alcoholism and
addiction to illicit drugs is well described, and relatives of probands
with SUD have an eightfold increased risk of drug use disorders,
being 4.4-fold in the case of cocaine [20]. Familiar, adoption, and
especially twin studies have brought consistent evidence that bothTa
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environmental and genetic risk factors contribute to initiating the
use of drugs of abuse, the transition to abuse, and the development
of dependence. Heritability estimates described by different twin
studies have shown that the genetic contribution to SUD and
addictions is in general high, and also variable depending on the
drug of abuse [21].
Heritability estimates for CUD are summarized in Table 2. In

general, heritability is lower for drug use than for dependence for
all drugs of abuse [19]. In the case of cocaine, the contribution of
genetic factors for cocaine use is estimated ~0.39–0.44 [22–25],
although higher estimates, 0.61–0.7, were found in other studies
[26, 27] (Table 2). For cocaine abuse, heritability estimates are also
highly variable, ranging from 0.32 to 0.79 [22, 24, 27–29]. Finally,
genetic risk factors explaining the variance for cocaine depen-
dence have been estimated to be consistently high across studies
0.65–0.79 [24, 27, 30] (Table 2), being one of the most heritable
psychiatric disorders. Some of these studies estimated the
contribution of common genetic risk factors for several substances
of abuse, and the ones that are specific to cocaine, reporting a
high percentage of 92–93% of common factors with other drugs
[28, 29].

Genetic architecture of cocaine addiction
Although the contribution of genetic risk factors to cocaine
addiction is very high, as described before, identifying the specific
factors that underlie addiction is challenging due to the high
polygenicity and complexity of this disorder. The contribution of
common variants through association studies, as well as rare
variants, has been investigated for cocaine dependence. Some
relevant variants and genes have been highlighted, but most
genetic risk factors are still largely unknown.

Common variants. Candidate gene association studies (CGAS)
have focused on specific sets of genes based on a priori
assumptions about their role in the mechanism of action of
cocaine and in the development of addiction, including dopamine
and serotonin neurotransmission (Supplementary Table S1).
Although transgenic mice for some of these genes showed
alterations in cocaine-seeking behavior, particularly those encod-
ing the monoamine transporters [31], no robust associations have
been found in CGAS. These association studies are typically
underpowered and the significant associations identified so far
have not been successfully replicated, except for the SNPs
rs806368 in the CNR1 gene [32–34] and rs16969968 in the
CHRNA5-CHRNA3-CHRNB4 gene cluster [35–37], found significantly
associated with cocaine dependence in several studies with
limited sample sizes (Supplementary Table S1).
So far, only one copy number variant (CNV) has been found

associated with cocaine dependence, a large polymorphic CNV
that partially spans the NSF gene, involved in synaptic vesicle
turnover [38]. In this study, individuals with a low number of
copies showed a quicker transition from cocaine use to
dependence than individuals with a high number of copies.
The first genome-wide association study (GWAS) on cocaine

dependence with positive findings was published in 2014 [39].
The authors developed a model (Sympcountadj) to remove the
effect attributable to other substances (alcohol, opioids and
nicotine), thus facilitating the identification of genetic risk variants
for cocaine addiction. In addition, they used cocaine-exposed
controls that did not develop addiction. In the
European–American (EA) discovery sample (1809 cases and 292
controls), a genome-wide significant (GWS) association was found
between cocaine dependence and rs150954431 (Table 3), located
in the NCOR2 gene (nuclear receptor corepressor 2) that regulates
gene expression by activating histone deacetylase 3, and has been
involved in memory [40]. However, this finding could not be
replicated in two follow-up samples (including 4063 and
2549 subjects, respectively). The metanalysis of AA–EA samples

revealed a different GWS hit on the FAM53B gene (family with
sequence similarity 53 member B), rs2629540 (Table 3), that was
almost GWS in the discovery sample. Although genetic variants in
this gene have been related to changes in brain volumes [41], very
little is known about FAM53B function and, more importantly,
about its contribution to cocaine addiction susceptibility. Never-
theless, this association could not be replicated in a Spanish
cohort of cocaine dependence (1011 cases and 1719 controls)
[42]. Recently, a transcriptome-wide association study (TWAS) was
performed using these data in several brain regions, although no
significant associations were found in any tissue for cocaine
dependence [43].
A GWAS metanalysis of four samples of subjects with European

ancestry (2085 cocaine-dependent patients and 4293 controls)
found suggestive associations (P < 1E−05) of several SNPs with
cocaine dependence, being rs3075660 in the NRG3 gene the most
significant one (Table 3) [44]. This gene, encoding a signaling
protein involved in neurodevelopmental processes, had previously
been associated with several psychiatric conditions, including
schizophrenia (SCZ) [45]. In addition, at gene level, HIST1H2BD,
encoding a histone protein, was found significantly associated
with cocaine dependence [44]. Interestingly, this study estimated
a SNP-based heritability (h2SNP) for cocaine dependence around
0.27–0.30 using two different approaches, and very similar results
were obtained using GWAS data from Gelernter et al.
(h2SNP= 0.28; Table 3) [46].
Two GWAS on CUD have been recently published, one

accounting for gene–environment interactions [6], and another
one evaluating time to develop dependence [47] (Table 3). In the
first one, two GWS hits were found associated with DSM-5
diagnostic criterion counts in AA individuals (N= 2998) [6], only
when the interactive effect of childhood environmental risk
factors were considered: change in residence for rs10188036 in
TRAK2 and household drinking and illicit drug use for del-
13:61274071 in LINC00378 (Table 3). In addition, a cluster analysis
was performed to divide the sample in five CUD groups. For the
subtypes 4 (N= 3258) and 5 (N= 1916; the highest heritable and
heavy-cocaine-use clusters) they identified 11 additional GWS loci
for which the effect on CUD was moderated by environmental
factors (Table 3), highlighting the importance of considering
environmental interactions in the statistical models [6]. In addition,
this study supports the idea that CUD subjects can be decom-
posed into different subgroups, as previously mentioned, and the
study of more homogeneous subgroups may result in more
powerful genetic analyses [5]. The second one identified two GWS
hits associated with time from cocaine use to dependence onset,
rs61835088 identified in the meta-analysis of EA–AA individuals,
and located in the gene FAM78B, and rs2825295 in AA individuals
[47]. This approach highlights the importance of investigating
addiction-related phenotypes to uncover genetic risk factors
involved in the development of dependence.
Today, the most important limitation for the association studies

on cocaine addiction is the sample size. Hypothesis-free associa-
tion studies, in the form of GWAS, have taken over from the old
CGAS, allowing identification of new, unexpected associations that
would have never been explored in hypothesis-driven studies.
Nonetheless, a GWAS involves testing millions of genetic variants,
which imposes a highly astringent statistical price. This, together
with the fact that psychiatric disorders are highly polygenic, with
each variant contributing individually to a small amount of the risk
(odds ratios typically < 1.3), makes it necessary to gather tens of
thousands of patients and controls to achieve appropriate
statistical power [48]. Compared to other substances misuse, the
sample sizes of GWASs of CUD are substantially smaller. For
example, GWAS on problematic alcohol use (about 435 K
participants) [49], opioid use disorder (~80 K) [50], cannabis
lifetime use (~180 K) [51], and several stages of tobacco and
alcohol use (~1.2 M individuals) [52], have been performed so far.
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When we look at other psychiatric conditions, we find that the
most recent GWAS on attention-deficit/hyperactivity disorder
(ADHD, 20 K cases) and autism spectrum disorders (ASD, 19 K
cases) yielded only 12 and 5 independent GWS hits, respectively
[53, 54]. Currently available GWAS for cocaine phenotypes are all
below 11 K samples, and therefore larger sample sizes are needed
for robust findings.
Due to the difficulty in recruiting patients that are dependent

only on cocaine, some authors have studied the general genetic
liability of several illicit drugs of abuse (e.g., cocaine, cannabis, and
opioids) by combining individuals addicted to any of them [55–
59]. These studies identified several SNPs that show a significant
association with the phenotype, with subsequent replication in
independent samples. However, the sample size of these studies is
still limited and further studies are needed.
Another important and controversial consideration in associa-

tion studies for SUD is the selection of the control sample. Some
studies use control individuals that have been exposed to the
drug at least once in their life [39], hence excluding the genetic
risk factors related to impulsivity or risk-taking behavior, which are
very important in this disorder, as they facilitate the first contact
with the drug. Indeed, genetic correlation analyses have recently
shown the existence of shared genetic factors between cocaine
addiction and risk-taking behavior [44]. For that reason, other
studies used screened controls that do not meet the DSM criteria
for addiction or unselected controls from the general population
[44, 57, 60]. The last approach could eventually dilute positive
findings due to the presence of some cases among the controls;
however, based on the prevalence of cocaine dependence in the
general population (about 1.1%), the occurrence of false-negative
results due to this effect is likely to be neglectable.
As previously mentioned, the prevalence of CUD varies among

ethnicities. Two of the three GWAS performed on CUD [6, 39]
included both AA and EA individuals, and their results, as well as
those from other SUD [57], suggest that some genetic risk variants
can be associated with the phenotype only in a particular
population. Although this could be due to limited sample size,
further studies in larger samples and considering different
ethnicities are warranted.

While GWAS have begun to identify genes that underlie several
traits relevant to drug abuse, they still explain only a small fraction
of the heritability of this disorder. One of the most important
limitations of these studies is the intrinsic difficulty in obtaining
large and homogeneous human samples. This has fostered the
emergence of a new project (www.ratgenes.org) that will perform
GWAS on different behavioral traits relevant to drug abuse using
thousands of male and female outbred rats (heterogeneous stock
rats). A similar approach has already been taken on obesity‐
relevant traits [61]. In addition, expression data of several brain
regions relevant to the addiction process will be analyzed to
identify expression QTLs (eQTLs). This approach can help to
identify new genes that influence drug abuse-related behaviors in
rats, providing potential candidates for the genetic susceptibility
to drug addiction in humans.

Rare variants. Only two studies have explored the contribution of
rare (Minor Allele Frequency, MAF<1%) and low-frequency
variants (1%<MAF<5%) to cocaine addiction. The first one, with
focus on the family of acetylcholine receptors, found increased
DSM-IV cocaine dependence symptoms among carriers of rare
missense variants in CHRNB3, coding for the β3 nicotinic
acetylcholine receptor [62]. The other one, focusing on the gene
encoding the μ-opioid receptor (OPRM1), revealed an association
between rs62638690 and cocaine addiction [63]. Further studies
with larger samples sizes that use methodological approaches
other than GWAS are needed to dissect the role of rare genetic
risk variants on cocaine dependence.

Shared genetics of CUD with other psychiatric conditions and
traits
Recognition of co-occurring psychiatric disorders among people
with SUD has been growing in recent years. Several studies have
shown that SUD is highly comorbid with other psychiatric
disorders such as SCZ, major depressive disorder (MDD), or ADHD
[64–67], and traits like aggressive, antisocial, or risk-taking
behaviors [68, 69]. For example, about 81% of SUD patients have
at least one comorbid mental disorder: 33% MDD, 11% SCZ, and
9% personality disorders [64]. Conversely, the occurrence of

Table 3. Top findings on GWAS performed on cocaine use disorders.

rs ID P value Gene Childhood environmental
factors

Association Sample SNP heritability Ref.

rs2629540 4.28E−08* FAM53B – Dependence (DSM-IV) 2668 AA,
2101 EA

0.28 [39]

rs150954431 1.19E−09 NCOR2

rs3075660 3.83E−07 NRG3 – Dependence (DSM-IV) 6378 EA 0.27–0.30 [44]

rs10188036 1.77E−08 TRAK2 Change in residence Dependence (DSM-5) 2998 AA – [6]

del-13:61274071 4.94E−08 LINC00378 Household drinking and illicit
drug use

del-1:15511771 3.61E−10 TMEM51 Nontraditional parental care Subtype 5a 1916

rs149843442 3.92E−08 LPHN2 Household tobacco use

rs114492924 1.23E-08 LINC01411 Change in residence

rs139389287 3.51E−08 RP13–20L14.1 Household tobacco use

rs148834561 4.71E−08 SLC7A13 Household drinking and illicit
drug use

del-17:80342628 1.54E−08 TRDN Change in residence

rs75591854 3.91E−08 SOGA2 Household tobacco use/Change
in residence

rs75414569 9.73E−09 RN7SL609P Household tobacco use

rs148009780 4.74E−08 SYNGR1 Change in residence

rs71428385 3.99E−08 FN1 Household tobacco use Subtype 4a 3258

rs56337958 3.07E−08 TENM3 Traumatic experience

rs61835088
rs2825295

3.79E−09 2.57E
−08

FAM78B
AL157359.3-AP000431.1

– Time to dependence
(DSM-IV)

11,026 AA+EA
5020 AA

– [47]

EA European–Americans, AA African–Americans.
*P value results from the combination of other replica samples used in the study.
aSubtypes 4 and 5 of cocaine use disorders resulting from cluster analysis.
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lifetime SUD in patients with SCZ is 70–80%, 39.2% for ADHD, and
16.1% for MDD [65–67]. The pattern is similar with cocaine: 73.4%
of cocaine abuse/dependence patients have comorbid mental
disorders (49.7% personality disorders, 23.4% MDD, and 20.5%
anxiety), and 94.9% have other SUD [70]. Such comorbidities
determine a worse lifetime trajectory in patients, lower rates of
treatment success, and a higher prevalence of suicide. Several
studies have started to investigate whether shared genetics is
behind these comorbid patterns using different statistical tools,
such as the estimation of genetic correlation between pheno-
types, polygenic risk score (PRS) analysis to quantify the fraction of
the genetics of a given phenotype that predicts a second
condition, and Mendelian Randomization or Latent Causal Variable
model to infer causal relationships. These analyses support the
genetic overlap between different SUD and other mental
disorders, including SCZ, ADHD, MDD, bipolar disorder (BD),
eating disorders, or insomnia, among others [71–80]. However,
studies focusing particularly on cocaine are still scarce due to the
limited availability of properly sized GWAS.
A recent GWAS metanalysis on cocaine dependence [44]

explored genetic correlations between this phenotype and six
previously described comorbid conditions and found significant
results for SCZ (rg= 0.2 ± 0.05), ADHD (0.5 ± 0.08), MDD (0.4 ±
0.08), and risk taking (0.35 ± 0.06). Testing 690 traits from LDHub
[44] yielded 109 significant findings, including negative correla-
tions with cognitive phenotypes (e.g., college completion) or
reproductive traits (e.g., age at first child) and positive correlations
with several psychological or psychiatric phenotypes like neuroti-
cism, depressive symptoms, or loneliness. Also, PRS for SCZ, ADHD,
antisocial behavior, MDD, risk-taking and children’s aggressive
behavior were found associated with cocaine dependence
(pseudo-R2= 2.28%, 1.39%, 1.33%, 1.21%, 0.60%, and 0.30%,
respectively) [44]. Several other PRS studies with focus on SUD
included also analyses of a cocaine sub-sample: PRS for SCZ (but
not for BIP) associated with CUD in a study of Icelandic subjects
(R2= 0.62%) [75], and PRS for SCZ associated with stimulant use
disorders in subjects from the Family Study of Cocaine Depen-
dence (FSCD) (pseudo-R2= 1.7–3.5%) [73]. Finally, PRS for five
psychiatric disorders (SCZ, ASD, ADHD, MDD, and BD) were tested
in different cocaine phenotypes from the FSCD, the Collaborative
Study of the Genetics of Nicotine Dependence (COGEND), and
the Collaborative Study of the Genetics of Alcohol Dependence
(COGA) samples. Most associations found were driven by general
substance liability, but some substance-specific associations were
also identified between MDD, BD, and SCZ PRSs and severe
cocaine dependence [71].
Pleiotropy has also been reported at the level of single genes:

For example, a missense polymorphic variant (rs16969968:G>A, p.
Asp398Asn) at CHRNA5, encoding the α5 nicotinic acetylcholine
receptor, leads to hypofunction of the protein and is likely the
most robust and replicated association with risk for nicotine
addiction [81]. This SNP has also been found associated with
cocaine addiction in several studies [35–37], but the direction of
the effect is opposite, with allele A being a risk factor for nicotine
addiction but protective for cocaine addiction [35]. The molecular
basis of this distinction is not clear but seems to be related with
the localization of this receptor in the mesolimbic dopamine
system (both in excitatory dopaminergic and in inhibitory
GABAergic neurons) and the mechanism of action of nicotine
and cocaine [35]. Interestingly, antagonists of the receptor
decrease the reinforcing effects of cocaine, whereas Chrna5
knock-out mice have an increased intake of nicotine [82, 83].
To summarize, we know that CUD is highly comorbid with other

psychiatric disorders and cognitive or personality traits, but the
role of shared genetics on these co-occurrences has been poorly
studied. Thus, we do not know whether risk alleles are acting
independently on CUD and on its comorbid phenotypes (i.e.,
horizontal pleiotropy, also known as biological pleiotropy) or

whether one phenotype is causally related to the other one, so
that the variants associated with one condition are indirectly
associated with the second one (i.e., vertical pleiotropy, also
known as mediated pleiotropy). The latter may be exemplified by
genetic risk factors contributing to ADHD, which in turn would
lead to the onset of CUD under the hypothesis that subjects with
ADHD use cocaine to reduce symptomatology (“self-medication”
model of comorbidity) [84]. Using analytical tools that investigate
causal relationships is needed to clarify this issue.
Another relevant issue is whether the different SUD share

genetic risk factors or if substance-specific factors are predomi-
nant. In this regard, the fact that heritability estimates for
substance-related phenotypes significantly differ depending on
the drug of abuse supports the view that at least certain risk
factors may be substance-specific [85]. However, there is evidence
from twin studies that a large proportion of genetic liability is
shared across substances [29, 86], and molecular studies show that
increased cross-disorder polygenic risk (e.g. from psychopatholo-
gical conditions) would be associated with greater general
substance involvement [71].

CHANGES IN GENE EXPRESSION INDUCED BY COCAINE
Cocaine use induces changes in the structure and function of the
brain, such as neuronal connectivity and synaptic plasticity [87–
90]. Some of these changes may become stable, contributing to
addiction and relapse in cocaine use. Epigenetic and gene
expression changes underlie these neuroadaptations induced by
the drug and help to explain functional alterations [91, 92].

Transcriptomic studies
Several studies have assessed gene expression alterations in
postmortem brain samples from cocaine abusers or in neuronal
cells in vitro, the vast majority using microarrays (Table 4). It
should be mentioned that these studies are based on few
individuals due to the inherent difficulty in obtaining these
samples. Across the different studies, some functions are
recurrently identified among the genes that are differentially
expressed, such as transcription regulation [93–99] and signal
transduction [93–96, 99–101], but certain functions and pathways
have been identified only in some particular studies.
Alteration of gene expression in the prefrontal cortex of cocaine

abusers was assessed in two studies, using postmortem samples of
dorsolateral and anterior prefrontal cortex (dlPFC and aPFC,
respectively). The first study focused on expression alterations in
aPFC shared in cocaine, cannabis, and phencyclidine abuse,
highlighting genes related to calmodulin signaling, Golgi and
endoplasmic reticulum [100]. In dlPFC, expression changes
identified in cocaine abusers involved genes implicated in
mitochondrial and oligodendrocyte function, among others [93].
Interestingly, in the NAc of cocaine abusers, myelin-related genes
and genes involved in glial function were also found altered,
consistent with a loss of MBP-positive oligodendrocytes [94], and
alterations in the expression of PLP1, encoding a major constituent
of myelin, were identified [93–95].
Furthermore, expression changes in neurotransmission-related

genes were identified in dlPFC and NAc [93–95], in particular
genes involved in synaptic function or cell adhesion [94, 95]. In
hippocampus of cocaine abusers, two different studies detected
alterations in the expression of genes involved in the regulation of
the extracellular matrix [96, 97], and also in cell adhesion,
neurogenesis and axon guidance [96], or mitochondrial function,
oxidative phosphorylation and long-term potentiation [97].
Another study using postmortem brain samples assessed the
expression in midbrain of dopamine cell-enriched regions
identifying alterations in expression related to dopamine meta-
bolic process and neuronal differentiation [98] (Table 4). Remark-
ably, the first study also assessed the substance-specific and
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shared gene expression changes between cocaine and alcohol in
hippocampus, observing that cocaine induced many more
transcriptomic alterations than alcohol, but also identifying
common changes in the same direction for both drugs that were
related to neuroadaptations [97].
The effects of cocaine on human gene expression have also

been evaluated in human cells in vitro. Human neuronal
progenitor cells showed alterations in the expression of genes
mainly involved in immune and inflammatory processes and cell
death when exposed to cocaine [101], in line with several studies
mentioned above [94–96, 98]. In a dopaminergic neuron-like
model, changes in gene expression involved chromatin modifica-
tion [99], also occurring in dopamine cell-enriched regions and
hippocampus [97, 98]. Other functions were also identified such as
cell cycle, adhesion, cell projection and neuroadaptations [99], and
epigenetic regulation by several miRNAs could explain, at least
partially, the expression changes induced by cocaine [102]
(Table 4).
Gene expression changes induced by cocaine have been widely

investigated in animal models, adding valuable information to
human studies and contributing to the understanding of the
molecular changes involved in the development of CUD.
Convergent gene expression changes between animal and human
studies have highlighted pathways and biological processes that
may be relevant for CUD, including the ERK/MAPK signaling
pathway, long-term potentiation, synaptic plasticity (synucleins),
and mitochondrial function [103]. Other studies have used the
data generated by the above-mentioned studies in humans to
assess convergence of gene expression mechanisms with rodents,
highlighting genes involved in dopamine and serotonin function
such as SLC1A2, CALM3, ALDOA, ALDOC, and ENO2 [104] and in
brain plasticity like APP, GRIN2A, GRIN2B, KCNA2, MAP4, PCDH10,
PPP3CA, SNCB, and SV2C [105].
It should be mentioned that several of the studies previously

performed in humans did not apply multiple testing corrections, a
relevant statistical filter when thousands of transcripts are
interrogated. Nevertheless, all of them validated expression
differences of selected genes by quantitative real-time PCR
(Table 4). It is important to note that biological samples from
cocaine-addict individuals are difficult to obtain and involve a
wide range of variables that cannot be controlled and add
heterogeneity, such as dose and frequency of use, time of last
exposure, use of other drugs or cause of death. In contrast, in vitro
experiments evaluating cocaine effect on cell lines allow to control
for variables such as cocaine concentration and time of exposure,
but they cannot mimic the effect of chronic cocaine use in the
brain of an addicted individual and the effect of the crosstalk with
other cell types and remodeling of circuits. By the use of novel
techniques, such as single-cell RNA-sequencing, postmortem brain
regions could be used to dissect which cell types show more
relevant expression changes in each area and, then, study in vitro
the effect of cocaine in a controlled environment using specific
iPSCs-derived models. Moreover, the information that can be
obtained from a few human samples is limited, making it difficult
to fully understand the changes in gene expression and in the
biological processes that occur in the brain of cocaine users.
Larger biorepositories are needed that gather postmortem brain
samples for CUD (and other drugs of abuse) with properly
phenotyped individuals, similar to other initiatives, such as
PsychEncode or GTEx (http://resource.psychencode.org/ and
https://gtexportal.org, respectively). Due to the intrinsic difficulties
in obtaining expression data from the brain of patients, several
tools have been developed to use transcriptomic imputation to
integrate genotype and expression data from large consortia, like
GTEx, through machine learning. These TWAS approaches allow
identification of regulatory variants associated with a given
disorder, such as CUD.

Epigenetics
As mentioned above, cocaine addiction is a maladaptive neural
plasticity process that occurs in response to repeated drug
exposure in vulnerable individuals, depending on the genetic and
environmental risk factors, and their interaction. Epigenetics is a
vehicle through which environment, including the effects of drugs
of abuse, interacts with an individual’s genome to reversibly
regulate gene expression independently of the DNA sequence,
and determine aspects of function, in health and disease,
including addiction. Several studies have demonstrated cocaine-
induced changes in epigenetic mechanisms like histone modifica-
tions, DNA methylation, and microRNAs, all of them recently
reviewed [92, 106–111]. However, only a few studies have been
conducted in human samples. Regarding histone posttranslational
modifications, we found only one study that inspected genome-
wide changes in H3K4Me3 in postmortem hippocampus of
individuals with chronic exposure to cocaine, revealing changes
in promoters of 1115 genes, although only five of them overcame
multiple testing corrections [97]. On the other hand, a recent
study examined DNA methylation profiles in the peripheral blood
of CUD patients and found 186 differentially methylated positions,
proposing these regions as potential biomarkers [112]. Finally, two
studies investigated changes in the expression of microRNAs
induced by cocaine in human cultured cells [102, 113] and two
others in peripheral blood and in postmortem brains of cocaine
abusers [114, 115]. Interestingly, all of them found alterations in
the expression of miR-124, a miRNA that has also been related to
cocaine effects in rodents [116, 117]. Further studies are needed to
explore the epigenetic mechanisms that underlie cocaine addic-
tion and identify potential biomarkers and therapeutic targets.

CONVERGENCE OF EXPRESSION AND GENETIC STUDIES
Genes which expression is altered by cocaine, and that possibly
mediate its effects and neuroadaptations induced in the brain,
could hold genetic risk variants that contribute to the suscept-
ibility to cocaine addiction. These risk variants may have an impact
on the expression or function of these genes prior to the use of
the drug and/or confer a differential response to cocaine that
could be relevant for the establishment of changes in neuronal
circuits, necessary for the development of addiction. Under this
hypothesis, some recent studies have pinpointed genes that show
altered expression and bear genetic risk variants.
Expression of NFAT5 was found increased in dopaminergic

neuron-like cells upon acute exposure to cocaine and, additionally,
five SNPs in this gene were associated with cocaine dependence
[99]. NFAT5 (TonEBP) is a transcription factor, and previous
evidence suggests that cocaine-induced activation of gene
expression may be mediated, in part, by NFAT-dependent
transcription [118].
Three miRNAs, miR-9, miR-153, and miR-124, were down-

regulated by cocaine in the above-mentioned dopaminergic
model, possibly regulating expression changes observed in the
previous study. Interestingly, these miRNAs were found associated
with cocaine dependence in a gene-based association study [102].
PLCB1, Phospholipase C beta 1 protein, carry genetic variants

associated with both cocaine dependence [119] and drug
dependence [119, 120]. Increased expression of PLCB1 is found
in both the NAc of human cocaine abusers and in cultured
dopaminergic-like human neurons treated with cocaine [119].
Increased expression has been also found in the NAc of mice self-
administering cocaine and during withdrawal [121], and a recent
study in mice suggests that this gene may play an important role
in relapse to cocaine consumption [122].
KCTD20, a regulator of AKT signaling, was identified in a recent

study that combined genomic and transcriptomic data to detect
candidates for cocaine addiction. This gene was one of the three
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GWS findings in a GWAS of cocaine dependence [39], and altered
expression was found in hippocampus of cocaine abusers, being a
key node in a gene network associated with human cocaine use
[46]. This gene is a member of the KCTD family, which is involved
in a wide range of processes, including proteasome function,
GABA signaling, and regulation of transcription responses.
These studies seem to support the hypothesis that genes

mediating cocaine’s effect can also participate in the vulnerability
to addiction. But the number of works is still limited and further
studies are needed to investigate the convergence between
expression and genetic studies. Research in the field would benefit
from large GWAS and transcriptomic studies and the use of
integrative analyses (e.g., TWAS) to get more insight on the
genetic basis of this disorder.

TREATMENT AND PHARMACOGENETICS
Currently, there is no government-approved medication available
to treat CUD. The medications tested in clinical trials target
multiple systems altered by cocaine, including (1) dopamine
agonists, as releasers or uptake inhibitors; (2) antagonists/blockers,
as antipsychotics, cocaine vaccine, GABA modulators, noradrener-
gic agents (e.g., disulfiram, doxazosin); (3) other approaches (e.g.,
cholinesterase inhibitor and N‐methyl‐D‐aspartate receptor
antagonist); and (4) combination of medications (reviewed by
[123, 124]). However, the efficacy of these treatments requires
further exploration [125].
Pharmacogenetic approaches investigate the genetic factors

responsible for the inter-individual medication response varia-
bility. The final aim of pharmacogenetics is to identify the most
effective “personal therapy” based on the genetic individual
background, minimizing medical side effects, ensuring compli-
ance, and adjusting dosage [86, 126]. This core element of
personalized medicine is a reality in the oncology field. Patient’s
specific cancer driver genes can be used as biomarkers to select
the best-suited therapy in terms of response to treatment and
prognosis [127]. The identification of these correlations has been
possible thanks to huge consortiums, such as the Pan-Cancer
Atlas, studying thousands of samples in depth [128].
The influence of genetic variants in treatment response in SUD

is still at an early stage. An illustrative example is the study of the
interaction genotype-treatment in smokers [129]. In African
Americans, smokers with the GG genotype at the missense SNP
variant rs16969968 in CHRNA5 responded better to a combination
nicotine replacement therapy, whereas for A carriers the efficacy
of varenicline was higher [130]. Although these findings require
additional replications, selection of medication based on geno-
type could lead to higher rates of smoking cessation.
Early CUD pharmacogenetic studies focused on mouse models

(reviewed by [131]). Now, some double-blind randomized
placebo-control trials in humans have been performed to analyze
cocaine drug treatment response based on the genotypes of
specific functional variants on ten genes (ADRA1A, ADRA1D,
ANKK1, DRD2, DBH, MTHFR, OPRK1, THP2, SLC6A4, and SLC6A3)
related with cocaine physiological mechanisms [132–143]. The
medications assessed include doxazosin, an α1A adrenergic
antagonist that decreases noradrenergic activity; levodopa, a
dopamine precursor; cocaine vaccine, succinylnorcocaine cova-
lently linked to cholera B [137]; and disulfiram, a cooper chelator
that inhibits noradrenergic synthesis. The results of these studies
are summarized in Table 5. Extensive reviews of cocaine
medication pharmacogenetics have been published [123, 144–
146]. However, the knowledge in the field is still in its early stages.
Interestingly, the SNP rs161115 (-1021C>T) in the dopamine β-

hydroxylase gene (DBH), responsible for up to 50% of plasma activity
variation of the enzyme, has been analyzed in multiple studies.
Different clinical responses for each allele (C/T) were observed when
distinct treatments were used [134–138], suggesting that the

individual’s genotype could help to make treatment choices. For
instance, individuals with the CC genotype, associated with normal
DBH levels, presented significant cocaine-positive urine reduction
rates on disulfiram treatment in one study [136], although the results
were not supported by another study [135]. Contrarily, T-allele
carriers (CT and TT genotypes), associated with lower levels of
circulating DBH, seem to respond better to doxazosin, levodopa, or
cocaine vaccine medications [134, 137, 138].
The responses to treatments considering multiple polymorphic

variants in different genes at the same time are of particular
interest. These interactions were tested in two studies [139, 142].
The analysis of genotype combinations at ANKK1 rs1800497 and
DRD2 rs2283265, in low linkage disequilibrium (R2= 0.57), showed
that carrying at least one minor allele in one of these SNPs is
associated with better response to disulfiram [139]. In the other
study, carriers of the S′ allele at the serotonin transporter (SLC6A4)
5-HTTLPR polymorphic variant and the A allele at the rs4290270
SNP of tryptophan hydroxylase (THP2), both corresponding to the
low activity variants, presented significant reduction in cocaine
urine levels (71–53%) on disulfiram treatment [142].
Pharmacogenetic studies published until now present some

limitations. (1) The samples sizes are very limited, particularly
when compared to GWAS. This is due both to the cost of the
clinical trials, and to the limited adherence/abandonment of
participants. (2) Multiple testing corrections are not systematically
applied as each study focus on one or two functional variants. (3)
Only for DBH more than one article has studied the gene/variant.
Therefore, replication of the other results in independent samples
is needed to confirm the participation of these polymorphisms in
differential drug response. (4) The populations studied are
ethnically diverse but the groups are not similarly represented.
However, population stratification has been assessed and taken
into consideration in statistical analyses. Larger samples repre-
senting the multiple ethnic groups are warranted to extract
generalizable conclusions. (5) Incomplete knowledge on the effect
of gene variants, and on the physiopathology of cocaine use
dependence. (6) The drug may not be selective for a specific
target, making the individual genetic variant approach insufficient.
In addition, in some studies, multiple drugs were given (e.g.,
disulfiram and methadone). (7) Finally, individuals participating in
the study present comorbidities with additional SUD (alcohol,
opioids, etc.), although comorbid psychiatric disorders have been
specifically excluded. Larger and more comprehensive studies are
needed to be able to move toward personalized medicine in
cocaine use disorder therapy.

CONCLUDING REMARKS
In the last decades, GWAS have been extensively used to study
complex disorders such as cocaine dependence; however,
common variants identified so far by this approach only explain
a fraction of its genetic liability, probably around 30% [44, 46]. To
identify the molecular components that underlie the “missing
heritability” of cocaine dependence we need to (1) significantly
increase the sample size of GWAS, (2) consider other types of
genetic variation that cannot be properly addressed in those
studies, including structural variants (e.g., CNVs) and rare variants
that have been poorly investigated so far, (3) explore epistasis, i.e.,
interaction among genes, (4) investigate epigenetic mechanisms,
as well as gene-environment interactions, (5) combine GWAS
results with functional data such as expression data, 3D chromatin
interaction and/or regulatory histone marks to identify most likely
causal variants, (6) improve the classification of cases in different
subgroups (e.g., using cluster analysis rather than DSM-5 criteria)
to have more homogeneous groups and increase the statistical
power of genetic studies and (7) use new reference imputation
panels for GWAS, such as the Haplotype Reference Consortium
[147] or TOPMed [148], that improve the quality of the imputation
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of common genetic variants and provide a better coverage of rare
variants. On the other hand, further transcriptomic studies are
warranted to improve the understanding of cocaine effects on the
brain and the molecular basis of the neuroadaptations that
underlie compulsive drug seeking, even after long periods of
abstinence. Interestingly, several studies support the idea that
genes mediating cocaine’s effect can participate in the predis-
position to addiction (e.g., NFAT5, PLCB1, KCTD20), highlighting
potential therapeutic targets. However, we need more studies that
investigate the convergence between altered expression and
genetic variation in CUD. We have learned from twin studies and
from molecular genetics research that there is a common genetic
architecture across different SUDs, but they also reveal some
genetic risk factors that are substance-specific. Understanding the
weight and nature of each of these components is an important
challenge in addiction research. For some drugs of abuse with
considerable larger samples sizes, GWAS have started to reveal
genetic risk variants in few genes that have been consistently
associated and replicated, for instance SNPs in the ADH1B gene for
alcohol dependence and CHRNA5 gene for nicotine dependence
(recently reviewed [149]). Importantly, a SNP in CHRNA5 has been
associated with differential success rate of treatments in smoking
cessation [130]. Despite significant advances in the study of the
molecular underpinnings of CUD during the last decade, we are
still far from individual genetic prediction to aid prevention,
diagnostics or to anticipate disease course and therapeutic
response. However, there are promising venues in cocaine
research, especially those related to GWAS data: On one hand,
we know that PRSs have already been able to identify individuals
with risk equivalent to monogenic mutations in several somatic
conditions [150, 151] and this is currently being explored also in
psychiatric conditions. On the other hand, the relevance of the
supporting genetic evidence in the selection of candidates for
drug development has been demonstrated across human
diseases, increasing by twofold the drug success rate in clinical
trials compared to non-genetically selected targets [152, 153].
However, advancing toward more comprehensive pharmacoge-
netic studies will only be possible once our knowledge on the
genetic bases of CUD is wider and more precise.
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