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Abstract 

Background:  Meaningfully interpreting patient-reported outcomes (PRO) results from randomized clinical trials 
requires that the PRO scores obtained in the trial have the same meaning across patients and previous applications of 
the PRO instrument. Calibration of PRO instruments warrants this property. In the Rasch measurement theory (RMT) 
framework, calibration is performed by fixing the item parameter estimates when measuring the targeted concept for 
each individual of the trial. The item parameter estimates used for this purpose are typically obtained from a previous 
“calibration” study. But imposing this constraint on item parameters, instead of freely estimating them directly in the 
specific sample of the trial, may hamper the ability to detect a treatment effect. The objective of this simulation study 
was to explore the potential negative impact of calibration of PRO instruments that were developed using RMT on 
the comparison of results between treatment groups, using different analysis methods.

Methods:  PRO results were simulated following a polytomous Rasch model, for a calibration and a trial sample. 
Scenarios included varying sample sizes, with instrument of varying number of items and modalities, and varying 
item parameters distributions. Different treatment effect sizes and distributions of the two patient samples were 
also explored. Cross-sectional comparison of treatment groups was performed using different methods based on a 
random effect Rasch model. Calibrated and non-calibrated approaches were compared based on type-I error, power, 
bias, and variance of the estimates for the difference between groups.

Results:  There was no impact of the calibration approach on type-I error, power, bias, and dispersion of the esti‑
mates. Among other findings, mistargeting between the PRO instrument and patients from the trial sample (regard‑
ing the level of measured concept) resulted in a lower power and higher position bias than appropriate targeting.

Conclusions:  Calibration does not compromise the ability to accurately assess a treatment effect using a PRO instru‑
ment developed within the RMT paradigm in randomized clinical trials. Thus, given its essential role in producing 
interpretable results, calibration should always be performed when using a PRO instrument developed using RMT as 
an endpoint in a randomized clinical trial.
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Background
Patient-Reported Outcomes (PRO) are defined as “any 
report of the status of a patient’s health condition that 
comes directly from the patient” [1]. PRO instruments 
are typically questionnaires for which the responses of 
patients to a set of items (questions) lead to the calcula-
tion of scores that are used to measure unobservable var-
iables (also known as latent traits), such as pain, fatigue 
or anxiety. PRO scores are increasingly used as key end-
points to demonstrate the efficacy of new treatments in 
randomized clinical trials [2]..

PRO scores are produced based on a scoring algorithm, 
or scoring rules. The “scoring” typically has a range, and 
defines what is assumed to be a metric or unit (e.g., the 
European Organization for Research and Treatment of 
Cancer Quality of Life Questionnaire 30-item [EORTC 
QLQ-C30] Physical Functioning score ranges, after trans-
formation, from 0 to 100, with increments of 6.67, based 
on the number of items and response categories [3]). In 
order to interpret these scores and a clinical trial result, it 
is necessary that scores have the same meaning between 
patients and samples, at the individual and at the group 
level [4–6]. For example, a score of “50” should express 
the same level of latent construct in all patients, for all 
applications. In metrology (i.e., the science of measure-
ment), preserving of the same unit through different uses 
of an instrument is referred to as “traceability” [7]. Trace-
ability is obtained through calibration of the instrument 
[7]. While calibration is primarily used for the measure-
ment of physical quantities, it also plays an important 
role in other human sciences. For example, in education 
science, calibration ensures that scores from major edu-
cational tests, such as the Scholastic Aptitude Test (SAT), 
are calculated the same way and lead to comparable 
scores between each student [8]. In practice, calibration 
for PRO instruments can be based on the results of a ref-
erence application of the PRO instrument in a sample of 
reference, either from a dedicated calibration study or a 
psychometric “validation study” of the instrument.

The question of calibration of PRO instruments 
became more critical with the growing use of recent psy-
chometric methods. PRO instruments used in clinical 
trials were initially developed in the classical test theory 
(CTT) paradigm [9], where the measurement result was 
obtained by a raw sum score. Raw scores do not need 
estimates from any specific sample to be calculated, so 
they are calibrated by construction. But, as this approach 
presents several theoretical limitations [10], alterna-
tive psychometric approaches (“modern psychometric 

methods”) are increasingly being preferred over CTT 
for the evaluation of PROs. Rasch Measurement Theory 
(RMT) is one such approach. Based on the Rasch model, 
it offers a different framework for calibration. The Rasch 
model separates the parameters of interest in the process 
of measurement of latent traits: item parameters (“diffi-
culty” of the items, i.e., whether they discriminate more 
or less severe patients regarding their latent trait) and 
person parameters (measurements of the patient latent 
traits) [11–13]. This property ensures independence 
between the sample and the instrument (“specific objec-
tivity”), and thus, allows proper calibration (i.e., estima-
tion of item parameters that are independent from the 
samples on which they have been obtained).

Considering the RMT framework, calibration of PRO 
instruments first requires performing an RMT analysis 
on data from a “calibration” sample of patients. Obtained 
estimates of item parameters are then set to fixed in a 
formal RMT analysis of the clinical trial. Per its defini-
tion, this process allows making sure that obtained PRO 
scores are in the same unit, which is essential for their 
interpretation. Several PRO instruments developed in 
the RMT paradigm are used in clinical trials, with exist-
ing calibration solutions, such as the BREAST-Q [14] and 
the Rasch-built Overall Disability Scale (R-ODS) [15].

Calibration thus provide, per definition, some desir-
able properties for interpretability of the PRO results. But 
this major advantage could have a cost: it might in some 
cases negatively impact the detection of treatment effect 
by the clinical trial. In particular, if the sample size and 
heterogeneity of the calibration sample is not sufficient, 
with patients very different from those expected from 
the clinical trial regarding the concept of interest (e.g., 
more severe symptoms), some item parameters values 
to be used for calibration might be misspecified. In such 
cases, directly running the Rasch model on the trial sam-
ple (without a preliminary calibration step, i.e., non-cal-
ibration) could lead to more precise estimations of item 
parameters that are specifically targeted to the patients 
included. This in turn might lead to better conditions for 
evaluating treatment effect, despite putting the results 
at risk of being less interpretable. In a comparative, ran-
domized trial, the impact of calibration might also dif-
fer depending on the method used for comparison of 
treatment groups. A possibility is to use a random effect 
Rasch model, directly including a covariate for group 
effect or first estimating the latent traits of the patients 
before performing a t-test, [16, 17] and the best approach 
still needs to be identified.
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Previous simulation studies explored to some extent 
the impact of calibration on clinical trial results [18, 19]. 
However, calibration was not the main focus of these 
studies, and the impact of the characteristics of the cali-
bration sample and its differences with the clinical trial 
sample were not evaluated. Also, these studies only 
explored the case where PRO instruments included only 
dichotomous items (with only two possible response 
options), which is not the most common structure for a 
PRO instrument in health studies.

The objective of this research was to further explore the 
potential negative impact of calibration on the statistical 
comparison of PRO measurements between treatment 
groups from a randomized clinical trial. Considering that 
calibration represent a benefit in itself for interpretabil-
ity of the results, this research examined to which extent 
calibration can perform as good as non-calibration in the 
demonstration of treatment effect in randomized clinical 
trials. The research focused on calibration of PRO instru-
ments that were developed and analysed in the RMT 
framework. For this purpose, we conducted a simulation 
study aiming to compare the use of calibrated and non-
calibrated approaches on simulated polytomous PRO data 
from a randomized clinical trial, in the specific case of a 
cross-sectional endpoint. The impact of calibration was 
assessed for two different cross-sectional analysis methods 
and for different characteristics of the PRO instrument and 
of the samples of patients used in the calibration process.

Methods
The Rasch model
The Rasch model is a measurement, probabilistic model 
used to measure unobserved latent traits based on 
observed responses to items from a questionnaire (PRO 
instrument) [20]. The polytomous Rasch model (Partial 
Credit Model, PCM) is the generalization of the origi-
nal Rasch model for ordered polytomous data (i.e. with 
more than 2, ordered, response options, of the Likert-
scale type) [21]. Considering a PRO instrument includ-
ing J items with the same number of response options M 
(modalities, coded from 0 to M-1) the model can be writ-
ten as follows:

Where k is the response to patient i (i = 1,  ...,  N) to 
item j (j = 1,  ...,  J), realization of the random variable Xij 
(k ∈ {0, …, M − 1}), θi the latent trait for patient i, and δj 
the vector of dimension M-1 containing all category 
thresholds parameters δjl associated to categories l (l = 1, 
…, M − 1) of items j.

(1)P
(

Xij = k|θi, δj
)

=
exp

(

kθi −
∑k

l=1 δjl

)

∑M−1
r=0 exp

(

rθi −
∑r

l=1 δjl
)

Considering the patient latent traits as realizations of 
a random variable assumed to be normally distributed 
results in a random effect PCM. Since the objective of 
a clinical trial is to compare treatments, a correspond-
ing group covariate for treatment effect can be added to 
the model [16]. Denoting γ the parameter for the treat-
ment effect (mean difference in latent trait between pla-
cebo and treated groups), patient latent traits are thus 
decomposed into a group effect (μ0 + giγ) and an individ-
ual effect ( θresi ). The random effect PCM with treatment 
group effect can then be written as: 

With gi =  0 if patient i is in the placebo group, and 
gi = 1 in the treated group, and thus μ0 corresponding to 
the mean of latent traits in the placebo group.

Simulation of PRO data
Patient responses to multi-item PRO instruments with pol-
ytomous responses were generated using Monte Carlo sim-
ulations with a random effect PCM [21]. This assumes that 
the simulated PRO instrument was previously validated 
with RMT. For each iteration, we generated two samples:

•	 One for a calibration (or validation) study of the PRO 
instrument.

•	 One for a two parallel groups (treatment vs. placebo 
group) randomized clinical trial, at a post treatment 
occasion (cross-sectional data).

Calibration and trial samples shared the same PRO 
instrument characteristics, which varied based on several 
parameters between different scenarios:

•	 The number of items J from the PRO instrument var-
ied between 4 and 10, in accordance with the size of 
the subscales of PRO instruments that are commonly 
used in clinical research.

•	 The number of response categories M was of 3 or 5, 
in accordance with commonly encountered number 
of possible response options in PRO instruments 
with items of the Likert-scale type (ordered response 
options). Response categories were coded from 0 to 
M-1.

•	 Distribution of the thresholds, δjl (which corresponds 
to the level of latent trait for which an patient has the 
same probability to endorse one or the other of two 
subsequent ordered response categories, with l the 
response option, from 1 to M − 1, of the item j) and 
associated item locations δj (which corresponds to 

(2)P Xij = k|µ0, γ , θresi , δj =
exp k µ0+giγ+θresi −δjl

M
r=0 exp r µ0+giγ+θresi −

r
l=1 δjl
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the mean of the category thresholds for each given 
item) was designed to reflect two typical archetypes 
of PRO instruments encountered in practice (see 
Fig. 1 for an illustration of the two cases):

•	A first archetype where the item locations δj had 
a low dispersion on the continuum measured by 
the instrument (δj regularly spaced from − 0.25 to 
0.25), with highly dispersed category thresholds δjl 
regularly spaced for one given item, based on the 
percentiles of a normal distribution (if the items 
have 3 response categories, thresholds were set to 

the 33rd and 66th percentiles of the distribution; 
If the items have 5 response categories, thresh-
olds were set to the 20th, 40th, 60th and 80th per-
centiles) centered on δj with a standard deviation 
(SD) of 2.5. This is typically observed with instru-
ments in which the variability over the latent trait 
is supposed to be captured by varying levels of 
the response scale. Such item distributions can be 
observed with instruments developed using CTT 
methods, as “redundancy” of the items on the con-
tinuum (items with very close category thresholds 
δjl) is not identified as problematic using CTT 

Fig. 1  Illustration of the archetypes of items distribution, for different scenarios. Legend: Vertical dashed lines represent the item response category 
thresholds (δjl, with each color corresponding to a different item) in different scenarios, and the probability density function curve represents the 
distribution of the latent trait in the calibration sample (case with a variance = 1). The left part of the figure includes cases where the item locations 
δj have a low dispersion (range = 0.5) and the δjl have a high dispersion (SD = 2.5). The right part of the figure includes cases where the item 
locations δj have a high dispersion (range = 2) and the δjl have a low dispersion (SD = 1.5). Each line corresponds to different scenarios regarding 
the number of item and modalities: A) J = 4 items, M = 3 modalities. B) J = 4 items, M = 5 modalities. C) J = 10 items, M = 5 modalities. Full values for 
the response category thresholds δjl are provided in supplementary materials (Additional file 1)
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methods [22] (in fact this pattern reflects the theo-
retical notion of “parallel items sets” of the CTT 
paradigm [23]).

•	A second archetype where the item locations δj 
were highly dispersed on the continuum measured 
by the instrument (δj regularly spaced from − 1 to 
1), with response category thresholds δjl with low 
dispersion, regularly spaced for one given item, 
based on the percentiles of a normal distribution 
centered on δj with a SD of 1.5. This corresponds 
to PRO instruments in which the variability over 
the latent trait is supposed to be captured with 
items representing different levels on the contin-
uum (“item hierarchy”). It is commonly observed 
with instrument developed using RMT [14, 15].

•	 The mean of item parameters was set to 0 (following 
the specified distribution for item parameters).

Calibration samples varied between scenarios based on 
several parameters:

•	 The full sample size of the calibration sample Ncalibra-

tion varied between 100 and 500. Values were selected 
to reflect the range of sample sizes that can be 
encountered in clinical research studies for validation 
of PRO instruments [14, 15, 24].

•	 The latent trait distribution was defined as normal, in 
line with the hypothesis underlying the use of a ran-
dom effect PCM model.

•	 The mean of the latent trait distribution was set to 0 
in the calibration sample, to reflect a perfect targeting 
between the sample and the PRO instrument.

•	 Variance of the latent trait distribution was set to 1 
or 2, to explore different cases of heterogeneity of the 
calibration population.

Trial samples varied between scenarios based on sev-
eral parameters:

•	 The sample size within each treatment group, Ntrial, 
varied between 50 and 500 (equal size between the 
two groups). Values were selected to reflect the range 
of sample sizes that can be encountered in clinical 
trials.

•	 The effect size of the treatment (standardized mean 
difference of patients’ latent traits between treat-
ment groups), γ, varied between 0 and 0.8 to explore 
various scenarios from no to large difference between 
treatment groups.

•	 The mean μ of the latent traits varied from 0 to 
2.5 to explore cases where the trial sample and the 
PRO instrument showed perfect targeting to high 

mistargeting. Mistargeting may typically occur 
in practice when the trial population differs from 
the population of the validation study of the PRO 
instrument used for calibration (e.g., more or less 
severe sample with regards to the disease). Within 
treatment groups, the mean of latent traits was thus 
respectively μ0 for placebo and μ0 + γ for treatment 
group.

•	 Variance within each treatment group was set to 1.

Each simulation scenario resulted in a set of PRO 
responses for a calibration sample and a trial sample and 
was replicated 500 times. Details of all simulation param-
eters with their possible values are described in Table 1. 
Data were simulated using the -simirt- module from 
STATA software [25].

Estimation
Simulated PRO data from each sample (calibration and 
trial) and within each scenario were analysed using a 
random effect PCM. A treatment group covariate (fixed 
effect) was also included in the model for the analysis 
of the trial samples (Eq.  2). Treatment effect param-
eter (γ) and difficulties associated to category thresh-
olds of each item (δjl) were estimated by maximizing 
the marginal likelihood (MML) [26]. In the trial sam-
ples, the estimators of each patient latent trait were 
also obtained using expected a posteriori Bayesian esti-
mates [17].

Calibration
The calibrated and non-calibrated approaches were 
used, for each scenario. In the calibrated approach, item 
parameters were estimated based on the calibration sam-
ple. The obtained values for δ̂jl were then assumed to 
be known without error and considered as fixed for the 
analysis of the trial sample.

In the non-calibrated approach, the calibration sample 
was not considered, and the estimation of item param-
eters was directly conducted on the trial sample.

Comparison of treatment groups
Two methods were used to compare treatment groups in 
the trial sample, for each simulated scenario, and for cali-
brated and non-calibrated approaches:

•	 Direct estimation of treatment group effect γ̂ , and 
testing of the nullity of the parameter using a Wald 
test.

•	 Comparison of expected a posteriori Bayesian patient 
latent trait parameter θ̂i between the treatment 
groups using a t-test.
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Criteria for comparison of approaches
The calibrated and non-calibrated approaches were 
compared along with the method used for comparing 
treatment groups based on the following criteria:

•	 Type-I error (α risk), which was obtained by com-
puting the proportion of rejection of the null 
hypothesis among the 500 replications of each sce-
nario with no simulated a priori difference between 
treatment groups (γ = 0).

•	 Power (1-β), which was obtained by computing the 
proportion of rejection of the null hypothesis among 
the 500 replications of each scenario with simulated 
a priori difference between treatment groups (γ ≠ 0).

•	 Position bias on the estimation of the treatment 
effect, which was obtained by computing the mean 
of the observed differences between γ̂ and γ based 
on the 500 replications of each scenario.

•	 Standard deviation of the estimate of treatment 
effect, which was obtained by computing the stand-
ard deviation of the obtained γ̂ from the 500 repli-
cations of each scenario.

Analyses were performed using STATA software, ver-
sion 14.

Results
Table 2 displays, for selected scenarios of interest, the 
results of the simulation study: type-I error, power, 
position bias and SD of the estimates for the differ-
ence between treatment groups. The scenarios were 

selected to focus on the parameters that showed an 
impact on any of these criteria, and to retain medium 
values for power, for a better interpretability of the 
results (to avoid a ceiling effect, i.e., a power of 100%). 
The following 36 scenarios are presented: J of 4, 7 or 
10, M of 3 or 5, distribution of item parameters corre-
sponding to the second archetype (SD = 1.5, range = 2), 
Ncalibration of 250, variance of 1, Ntrial of 200 or 500, μ 
of 0, 0.5 or 2, γ of 0.2 (0 for the calculation of type-
I error). Comprehensive results for other scenarios 
can be found in supplementary materials (Additional 
file  2). Overall, the type-I error was well controlled 
and remained unchanged for all explored scenarios, 
i.e. calibration approaches and comparison of groups 
methods.

Impact of calibration
The simulations did not show any impact of the use of 
the calibration approach on the type-I error, power, posi-
tion bias and SD of the estimates (Table 2). In particular, 
there was no impact even in the most disadvantageous 
cases for the calibration approach as compared to non-
calibration (cases where the item parameters estimated 
from the calibration sample are expected to be less pre-
cise than the ones estimated from the trial): high mistar-
geting μ, small Ncalibration and large Ntrial, small variance of 
the calibration sample. There was thus no impact of the 
calibration sample parameters (Ncalibration and variance 
of the sample) on any criteria. The absence of impact of 
the calibration approach is visible in the example sce-
nario presented in Fig.  2, as the power was similar for 

Table 1  Values of simulation parameters

Characteristics Parameter Values

PRO instrument Number of items J 4, 7, 10

Number of response categories M (response options from 0 to M-1) 3, 5

Item locations (δj) and category thresholds (δjl)  distribution First archetype:
δj = −0.25+ 0.5

J−1
(j − 1), j = 1 . . . J 

(Regularly spaced between − 0.25 + 0.25)
δjl defined as the percentiles from a nor‑
mal distribution with SD of 2.5
Second archetype:
δj = −1+ 2

J−1
(j − 1), j = 1 . . . J (Regu‑

larly spaced between −1 + 1),
δjl defined as the percentiles from a nor‑
mal distribution with SD of 1.5

Calibration sample Sample size Nvalidation 100, 250, 500

Variance 1, 2

Mean of latent trait 0

Trial sample Sample size Ntrial 50, 100, 200, 500 (per group)

Effect size (Standardized mean difference between groups) γ 0, 0.2, 0.5

Mean of latent trait μ 0, 0.5, 2

Variance within each group 1
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the calibrated and non-calibrated approaches (the curves 
overlap), for all levels of mistargeting.

Impact of comparison of treatment groups method
The simulations did not show any impact of the compari-
son of treatment groups method on the power and type-I 
error (Table 2). There was no position bias when estimat-
ing the treatment effect using a group covariate. How-
ever, a position bias was found when using patient latent 
trait estimates, the difference between groups being all 
the more underestimated as the number of items J was 
small and mistargeting was large. Of note, the SD of the 
estimates was higher when using a direct estimation of 
treatment group effect as compared to using a posteriori 
Bayesian patient latent trait estimates.

Impact of trial sample characteristics
As expected, an increase of the power with the sample 
size of the trial (Ntrial, see Table 2) and the effect size (γ, 
data not shown) was observed. Results with a small mis-
targeting (μ = 0.5) or optimal targeting (μ = 0) resulted 
in comparable power. A large mistargeting of the sample 
(μ = 2) resulted in a lower power (Fig. 2 and Table 2).

Impact of PRO instrument characteristics
Increased number of items and response categories 
resulted in increased power (Fig. 2 and Table 2). Also, the 
position bias observed using a posteriori Bayesian patient 
latent trait estimates was reduced when the number of 

items and response categories increased (Table  2). The 
number of item and response categories did not show 
any impact on the type-I error and the SD of the estimate 
of treatment effect (Table 2). The distribution of the item 
and response categories did not show any clear impact on 
any criteria.

Discussion
This simulation study explored the impact of calibra-
tion of polytomous PRO instruments on the compari-
son of treatment groups in a randomized clinical trial. 
This impact was evaluated within the RMT framework, 
considering different methods for comparison of treat-
ment groups, and various settings (characteristics of the 
PRO instrument, calibration and trial samples). The lack 
of impact of calibration observed in the study showed 
that the benefit in terms of interpretability, brought by 
the traceability property warranted by calibration, is not 
obtained at the expense of the ability to show a true dif-
ference between treatment groups or in terms of proper 
control of the type-I error. Given its important added 
value in terms of interpretability of the results, cali-
bration should thus always be performed when a PRO 
instrument developed and analysed in the RMT frame-
work is used as an endpoint in a randomized clinical trial.

The simulations consistently showed that the type-
I error, power of test for the comparison of the two 
groups, bias, and dispersion of the estimated difference 
between treatment groups were similar for calibrated and 

Fig. 2  Power using calibrated and non-calibrated approaches, depending on mistargeting of the trial sample μ. Legend: power is presented for 
instruments with varying number of items J and modalities M. Presented results are for comparison of treatment groups based on γ̂ , for scenarios 
with the distribution of the item parameters = second archetype with SD of 1.5 and range of 2, γ = 0.2, Ntrial = 500, Ncalibration = 250, variance of the 
calibration sample = 1
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non-calibrated approaches. Calibration did not have any 
impact even in the most favorable cases for the use of 
non-calibrated estimates, i.e., when the calibration sam-
ple size was small with low variance and when the trial 
sample size was large with high mistargeting. The pre-
sent results also confirmed previous simulation studies. 
Blanchin et al. explored the impact of misspecification of 
dichotomous item parameters at the design stage, while 
attempting to estimate the power of a clinical trial [19]. 
They showed that such misspecification had no impact 
on power, which indirectly support calibration: errors in 
the item parameters used for calibration would not likely 
impact power [19]. Findings were also consistent with 
simulation studies from Sébille et  al. and Hamel et  al., 
which included comparison of cases where the dichoto-
mous item parameters were considered as known (i.e., 
use of calibration) or unknown and estimated from the 
trial data (non-calibration) [18, 27].

Regardless of the calibration situation, mistargeting of 
the PRO instrument to the clinical trial sample impacted 
the ability to detect a treatment effect in the clinical trial. 
Indeed, a large mistargeting of the sample resulted in 
lower power and higher dispersion of the estimates of the 
treatment effect. This is consistent with the findings from 
a previous simulation study, where mistargeting between 
the PRO instrument (with dichotomous items) and the 
sample was associated to lower power [28]. This confirms 
that PRO instruments should be properly targeted to the 
level of severity of the patient population included in the 
trial, to be able to effectively detect treatment effect. This 
is especially true when the mistargeting results in floor 
or ceiling effect (i.e., when no items are included to cap-
ture low or high level of the measured concept), as it was 
the case in this work for the scenarios with large mis-
targeting. A small mistargeting did not seem to impact 
the results, but this should be interpreted cautiously, as 
it may be affected by the exact distribution of the items 
and patients over the continuum: lower levels of mistar-
geting might still show an impact when item distribution 
is very uneven or associated to less homogenous or non-
normally distributed patient samples.

Additionally, and as already flagged by multiple stud-
ies, higher number of items and response categories 
resulted in higher power [18, 27]. This impact on power 
can be compared to the one, well known, of the number 
of patients included in the trial. Considering the case of a 
trial with 200 patients with an effect size of 0.2, our simu-
lations showed that shifting from 4 items with 3 response 
categories to 10 items with 5 response categories repre-
sented an increase of power from 30 to 45%. Considering 
the same example case and the simulation results, this is 
approximately similar to the impact on power that would 
be observed from adding 100 patients to the trial. This 

confirms the importance of using PRO instruments that 
include enough items in small sample studies. This aspect 
should be carefully considered when shorter instru-
ments are recommended, typically to “minimize patients’ 
response burden” [29]. Also, interestingly, the decrease 
of power due to a high mistargeting was lower when the 
PRO instruments included a large number of items and 
response categories (note that, as noted above, this find-
ing may be somewhat dependent on the specific distribu-
tion of items and patients used in our simulations).

This study came with several limitations and further 
necessary developments can be underlined. First, the 
calibration process only investigated the case where 
patients only differed based on their level of latent trait 
between the calibration and the trial sample. But in 
real-life studies, patients can differ on other character-
istics, such as their demographics, etc. In some cases, 
these characteristics impact the way patients respond to 
the items, despite having the same level of latent trait: 
item parameter values may differ depending on these 
characteristics, which is known as differential item 
functioning (DIF) [30]. If patients from the calibration 
and the trial sample differ based on a characteristic that 
creates DIF (e.g., they have different disease subtypes, 
or different countries imply cultural differences despite 
having the same language, etc.), the item parameter 
values used from the calibration sample will not be 
fully adequate for the clinical trial. A solution may be 
to obtain different sets of item parameters values from 
different calibration samples, to be used alternatively to 
calibrate the measure depending on the population of 
the trial. For example, different sets of calibration are 
proposed to calculate PROMIS scores [6]. But in many 
cases when conducting a clinical trial, there is no avail-
able calibration set perfectly suited to the population 
of interest. In this situation, it is possible that calibra-
tion with wrongly specified parameters would hinder 
the ability of the trial to accurately assess an effect of 
the treatment. A previous simulation study showed that 
DIF, if ignored in the analysis, could result in biased 
estimates of the difference between groups [31, 32]. 
The impact of calibration in the presence of DIF should 
thus be further explored. Another limitation stands in 
the approaches for comparison of treatment groups 
that were explored in this study. Our simulations only 
considered results from a random effect PCM. Consid-
ering statistical methods that compare individual PRO 
measures in a different estimation context would be 
informative. Typically, investigating the implication of 
using statistical methods that compare PRO estimates 
from a fixed effect PCM with pairwise conditional 
maximum likelihood (as performed in RUMM, one of 
the currently most commonly used software for RMT 
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analysis [33]) would allow gaining a better understand-
ing of the various options for the analysis of PRO meas-
ures resulting from a RMT paradigm in a clinical trial, 
and the relative impact of calibration in these various 
cases. Of note, our between-group comparisons were 
based on cross-sectional comparison of treatment 
group at a given timepoint. It may not be the method 
of choice in other longitudinal designs (especially in 
non-randomized clinical trials). Other methods such 
as comparison of patient trajectories over time using a 
repeated measurement model may also be encountered. 
We do not know whether the use of these other meth-
ods would result in different conclusions regarding 
the impact of calibration, in particular as randomiza-
tion allows for controlling differences of baseline levels 
between treatment groups. Another limitation stands 
in the distributions that were used within this simula-
tion study, which were normal and with the patient 
data showing an optimal fit to the model. While this 
represents a theoretically ideal case, this might have 
resulted in an overestimated performance of a random 
effect PCM as compared to analysis on real observed 
data. Based on simulations, further studies using non-
normal PRO data, or with a non-perfect (yet, “good 
enough”) fit to the Rasch model would also be of inter-
est. An illustrative example of the use of calibration and 
non-calibration approaches on real clinical trial data 
might also be of interest for future research. Finally, 
we deliberately restricted the scope of these analyses to 
the RMT framework and did not address the question 
in the context of the competing modern psychometric 
paradigm, Item-Response Theory (IRT). While a similar 
process as the one used here for RMT can be used for 
calibration based on IRT models, different findings and 
recommendations may be obtained. Previous research 
has already suggested that larger calibration sample 
is needed in order to obtain reliable estimates of indi-
vidual patient latent traits for IRT models [34]. Addi-
tionally, the “specific objectivity” property of the Rasch 
model, resulting from the separation of the item and 
person parameters in the model, is central in the cali-
bration process. Further research should be conducted 
to explore whether our conclusions are confirmed using 
data generated and analysed with an IRT model.

This work showed that calibration was always an 
appropriate option when analysing PRO endpoints from 
a randomized clinical trial, in PRO instruments devel-
oped in an RMT framework. For calibration to be possi-
ble, the PRO instrument must have previously undergone 
RMT analysis, with a set of item parameters available in 
the literature (set of values to be re-used in different tri-
als). Some instruments developed in the RMT paradigm 

provide the possibility to calibrate the estimates in other 
studies, such as the BREAST-Q [14], FACE-Q [35] and 
other instruments from the “Q-portfolio”, the R-ODS 
[15], the StomaQoL [36] or the 88-item Multiple Sclero-
sis Spasticity Scale (MSSS-88) [37]. The benefit of new 
treatments in terms of PROs using these RMT-calibrated 
instruments has been investigated in randomized clinical 
trials [38–41] and non-comparative trials [42, 43]. Simi-
larly, the PROMIS or the EORTC QLQ-C30 computer-
ized adaptative testing (CAT) also use calibration, but in 
an IRT paradigm [44, 45]. However, it does not seem to 
be systematically the case [46, 47]. Based on the findings 
of our simulations, we would recommend that calibra-
tion is consistently considered by developers of new PRO 
instruments using the RMT framework, and by clini-
cal trial statisticians who are analysing data from these 
instruments. Using a formal RMT analysis, the treatment 
groups can be compared by including a covariate in a 
random effect Rasch model. Patient latent traits can also 
be estimated, based on a random or fixed effect Rasch 
model, before comparing the groups (e.g., using a t-test). 
Another, simpler option to obtain calibrated measures of 
patient latent traits is to use conversion tables that allows 
transforming raw scores to approximated measurements 
from the Rasch model. Shortcomings of this approach 
include that patient measurements cannot be assessed 
in the presence of missing item. While these different 
methods allowing for calibration seem to perform differ-
ently (e.g., performing a t-test on patient estimated latent 
traits from a random effect Rasch model showed to be 
biased, as observed in the current study [18]), there is no 
definitive consensus on the method to be preferred. The 
methods used will also have to be carefully considered to 
appropriately take benefit of the metrological advantages 
of the PRO measures underpinned by the Rasch model 
(i.e., possibility of having interval-level scales and meas-
urement uncertainty at the individual level).

Conclusions
The RMT framework allows for proper calibration of 
PRO instruments in randomized clinical trials. In such 
context, our simulation study showed that calibra-
tion of the PRO instruments resulted in similar ability 
of the trial to demonstrate treatment effect as com-
pared to non-calibration. As a consequence, calibration 
should be consistently performed since it guarantees 
per definition expressing PRO results in the same unit 
(traceability), which is an important added value for 
interpretability. For calibration to be possible, proper 
sets of item parameters values or conversion tables 
obtained from calibration samples should be provided 
for the PRO instruments developed with RMT.
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