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Abstract

Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for

generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport.

Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo

a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can

result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral

edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology

of cerebral edema.
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Introduction

Historically, the goal of brain protection following
injury has been to reduce neuronal damage. Edema,
the inevitable accompaniment, was considered a sec-
ondary event. A renewed interest in edema, its molecu-
lar antecedents and its importance in all but the
smallest ischemic insults has shifted this paradigm.
Strikingly, recent advancements in understanding
molecular mechanisms of edema formation suggest
that the translation of novel treatments for edema
may be closer at hand than the translation of treat-
ments for neuronal demise.

Cerebral edema is a pressing clinical problem.
Cerebral edema and brain swelling inevitably accom-
pany ischemic infarcts and intracerebral hemorrhages
and, when severe, may increase mortality to nearly
80%.1 Even in non-life-threatening stroke, the magni-
tude of brain swelling is strongly predictive of patients’
functional outcome.2 Cerebral edema and brain swelling
occur in 20–30% of patients with acute liver failure, and
increase mortality to �55%.3 Cerebral edema and brain
swelling after traumatic brain injury are estimated to
account for up to 50% of patient mortality.4

Currently approved treatments for cerebral ede-
ma—decompressive craniectomy and osmotherapy—
were developed prior to any knowledge of modern
cerebral edema pathophysiology. These therapies

attempt to manage downstream end-stage events
without directly attenuating the underlying molecular
mechanisms of cerebral edema. New advances have
shed light on heretofore poorly understood cellular
and molecular pathophysiology of cerebral edema,
and have led to clinical trials of antagonists of key
molecular events in cerebral edema formation. It is
now understood that cerebral edema evolves in stages,
where each stage is characterized by distinct morpho-
logical and molecular changes. Cytotoxic edema, or
cellular swelling, manifests minutes after acute central
nervous system (CNS) injuries. Ionic edema, an extra-
cellular edema that occurs in the presence of an intact
blood brain barrier (BBB), forms immediately follow-
ing cytotoxic edema. Vasogenic edema, an extracellular
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edema that includes extravasation of plasma proteins,
manifests hours after the initial insult.

This review is intended to serve as a foundation and
a reference from which researchers and clinicians might
extend their molecular understanding of cerebral edema
formation and clearance. Here, the most current cellu-
lar and molecular models of cerebral edema formation,
transport, and clearance are discussed.

Models of the cerebral vasculature

The blood–brain barrier

The term BBB refers to a complex of cells that separates
the brain interstitium from the luminal contents of the
cerebral vasculature (Figure 1). In addition, the term
can be used to describe the functional consequence of
these cells, namely, the relative independence of brain
interstitial fluid (ISF) composition from that of blood
plasma, an arrangement that was likely evolved to
tightly regulate perisynaptic electrolyte homeostasis,
thereby ensuring accurate synaptic integration.5 Brain
ISF, which freely communicates with cerebrospinal
fluid (CSF), is optimized for neuronal activity and dif-
fers from blood serum in that it contains higher con-
centrations of Cl– and Mg2þ and lower concentrations
of Kþ, Ca2þ, and HCO3

– (Table 1).6 The solute com-
position of plasma and brain ISF in adult humans is
shown in Table 1.

Various aspects of the BBB functionality are distrib-
uted among its constituent cell types. The innermost
layer of the BBB is comprised of a monolayer of endo-
thelial cells that directly contacts the circulating blood.
Excepting select fenestrated capillary beds in the cir-
cumventricular organs,7 vertebrate cerebral endothelial
cells are interconnected by tight junctions that collect-
ively form the ‘‘physical barrier’’ of the BBB. Notably,
interendothelial tight junctions physically divide the
brain endothelium plasmalemma into luminal and
abluminal membrane faces, which allows for polarized
localization of transporters and channels8 akin to secre-
tory epithelium.9

External to the endothelium is a layer of basement
membrane, a connective tissue composed of extracellu-
lar matrix proteins including collagens, laminins,
heparin sulfate proteoglycans, fibronectin, vitronectin,
nidogens, perlecan, and agrin.10 Pericytes, a mesenchy-
mal cell type that contributes to cerebral blood flow
regulation,11 and increases BBB ‘‘tightness’’,12,13 are
embedded within the endothelial basement membrane
at varying intervals along the vessel.

In vessels larger than capillaries, the endothelial
basement membrane is bounded externally by the peri-
vascular Virchow Robin space. The Virchow Robin
space is a CSF filled extension of the subarachnoid

space that is internally bounded by the endothelial
basement membrane and externally bounded by a
second, glial, basement membrane. The Virchow
Robin space follows penetrating arterioles into the
brain parenchyma, becomes fenestrated close to the
capillary bed, and eventually disappears at the level of
brain capillaries, where astrocyte endfeet directly con-
tact the vessel wall.14,15

Astrocyte endfeet, the terminal pads of large astro-
cyte processes, comprise the outermost layer of the
BBB at all levels of the vasculature, including capil-
laries. Astrocytes are supportive cells that completely
fill the brain parenchyma, and in grey matter, are
arranged in a three-dimensional matrix with nonover-
lapping spatial domains.16 Nearly all astrocytes extend
at least one process that contacts a vessel with an astro-
cyte endfoot.16 The parenchymal surface of cerebral
vessels are completely covered by a mosaic of astrocyte
endfeet that are separated by gaps of approximately 20
mm.17 The astrocyte endfoot is a specialized membrane
domain that is enriched in transporters and channels
involved with brain ISF homeostasis.

Recently, the Virchow Robin spaces and the astrocyte
endfeet were identified as key anatomical components of
the so-called ‘‘cerebral glymphatic system’’.18 This
system was conceived to account for CSF movements
observed in the healthy brain that may function to
clear solutes such as amyloid b from the parenchyma
and facilitate transport of small lipophilic molecules,
particularly during sleep.18–20 While some controversy
exists regarding details of this model,21 these observa-
tions are clearly impactful, in that they give potential
insight into the function of the astrocyte endfoot syncyt-
ium with regards to brain fluid movements.

The neurovascular unit

The BBB is not a static barrier, but rather it dynamic-
ally alters its properties in response to neuronal activity.
The term ‘‘neurovascular unit’’ is used to reflect the
communication between components of the BBB and
cells in the greater brain parenchyma.22 The neurovas-
cular unit is a system composed of neurons, glia, endo-
thelial cells, vascular smooth muscle, and immune cells
that functions in part to trigger the hemodynamic
responses to neuronal activity,23,24 regulate nutrient
influx to support neuronal metabolism,25 and modulate
neuronal remodeling.

The term ‘‘neurovascular unit’’ highlights the depend-
ence of neurons upon other central CNS cell types. One
example of this dependency is the astrocyte-neuron
lactate shuttle.25 Neurons also rely on astrocytes for
neurotransmitter recycling26 and maintenance of neu-
rons’ antioxidant capabilities through the production
of ascorbic acid.27
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Historical perspectives

Historical models of cerebral edema

In the mid-to-late 1700s, cerebral edema was beginning
to be recognized as an entity distinct from acute hydro-
cephalus, which theretofore was believed to etiologic-
ally underlie all cases of excess intracranial water.

This recognition was driven by the observations of
Robert Whytt (1714–1766) and George Cheyne
(1671–1743) that excess intracranial fluid can occur
without enlarged ventricles, a presentation typically
accompanied by a ‘‘soft’’ appearing brain.28,29 Some
observers speculated that the brain itself held the
excess fluid.

Figure 1. Anatomy of cerebral arterioles (top) and capillary (bottom). The innermost layer of arterioles and capillaries is composed

of a continuous layer of endothelial cells, linked by tight junctions, and bounded externally by a layer of basement membrane that

contains pericytes; arterioles, but not capillaries, travel inside the perivascular Virchow Robin Space (VRS); the outermost layer of the

blood brain barrier is composed of astrocyte endfeet, the terminal pads of large astrocyte processes.
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Soon after these observations, writings and experi-
ments by Alexander Monro (1733–1817), George Kellie
(1720–1779), and John Abercrombie (1780–1844) led to
the formation and rise in popularity of the Monro-
Kellie axiom, which states that during health, the
volume occupied by the contents of the cranium must
remain in dynamic equilibrium, the implication being
that the fluid influx rate must equal the efflux rate.30,31

This axiom was an important precursor to models of
brain swelling. Unfortunately, excepting a few articles
describing brains with a soggy gross appearance, inter-
est in cerebral edema waned until the late 1800s.32

Interest in cerebral edema was renewed due to Paul
Ehrlich’s (1854–1915) identification of the BBB with
aniline dyes in 1886, and the revival of the Monro-
Kellie axiom. The latter was partially driven by the
writings of Harvey Cushing (1869–1939).33 The
growing popularity of these concepts drew attention
to the unique anatomy and physiology of cerebral cir-
culation and indicated to contemporaneous researchers
that mechanisms of cerebral edema formation were
unique from those that drive edema formation in
other body regions.

Based upon the gross appearance of brain tissue and
data from a newly developed technique to quantify
brain swelling, in the late 1910s and early 1920s cerebral
edema was subdivided into ‘‘brain swelling’’ and ‘‘cere-
bral edema’’, characterized by wet and dry tissue,
respectively.34,35 While debate arose regarding the
exclusivity of these subtypes, the controversy remained
unresolved until the advent and optimization of elec-
tron microscopy techniques.

In 1965, Bakay and Lee applied electron microscopy
to describe two different types of cerebral edema in
their text Cerebral Edema.36 In 1967, Igor Klatzo
(1916–2007) termed these subtypes ‘‘cytotoxic’’ and

‘‘vasogenic’’.37 Vasogenic edema was defined by
extravasation of fluid that contained plasma proteins
and was attributed to vascular injury. In contrast, cyto-
toxic edema was characterized by cellular swelling and
was attributed to inhibited cell volume regulation.
While the latter edema subtype was termed cytotoxic
to reflect its occurrence following toxicant exposure,
such as triethyltin (TET) poisoning, water intoxication,
or cyanide poisoning, cytotoxic edema was also known
to occur following ischemia. Importantly, in Klatzo’s
schema, cytotoxic edema could include extravasation of
ions and water, but by definition did not include
extravasation of plasma protein.

While reviewing these historical models, it is import-
ant to note that they are purely phenomenological and
offer little in terms of mechanistic explanation. The
development of molecular biology in the 1950s and
1960s allowed researchers to probe the molecular dri-
vers of edema formation. Findings from studies utiliz-
ing these techniques indicated that all subtypes of
cerebral edema, as well as hemorrhagic transformation,
share common molecular antecedents.38 Thus, subtypes
of cerebral edema are best viewed as the manifestations
of a program of pre- and post-transcriptional molecular
events that is ultimately triggered by a brain insult.38

Historical approaches to post-ischemic
therapeutic intervention

Excepting neurons in specialized regions, neurons in the
adult mammalian brain are arrested in the G0-phase of
cell-cycle and can be considered to be essentially irre-
placeable. Therefore, over the past few decades, acute
CNS research has attempted to mediate direct neuro-
protection through strategies such as attenuation of
excitotoxicity, apoptosis, or oxidative stress. During
this time, preclinical work in animal models of acute
CNS injury led to the identification of over 1000 new
potential neuroprotectants.39,40 However, this great
expenditure of effort, time, and money has essentially
failed, as none of these agents has shown effectiveness
in clinical trials.39

Possible explanations have been offered for the fail-
ure to translate promising preclinical findings into the
clinic. Some have criticized the commonly used animal
models of acute CNS injury, arguing that they do not
accurately reflect human disease.41 Others find fault
with the experimental design used in many preclinical
studies, arguing that methods like blinding would have
prevented many of said false positives.42 Yet others
point out that clinical trials often do not replicate the
experimental preclinical studies that appeared so
promising.

While model validity and experimental design are
clearly important, a more fundamental issue might be

Table 1. Mean concentrations of select solutes in plasma and

CSF of healthy adult humans.

Blood

plasma a,b

Interstitial

fluid/CSFa,b

Naþ 150 147

Cl– 99 113

Kþ 4.63 2.86

Mg2þ 1.61 2.23

Ca2þ 2.25 1.25

HCO3
– 26.8 23.3

Total protein (mg/dL) 6987.2 39.2

Osmolality (mosm/kg) 289 289

pH 7.397 7.3

pCO2 41.1 50.5

aUnless otherwise specified, concentrations are shown as mEq/kg.
bAdapted from Irani.261
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that agents designed to specifically salvage neurons may
not abort the death or dysregulation of other compo-
nents of the neurovascular unit. Neurons are fragile
cells and cannot survive without the support of other
cell types. Therefore, in addition to direct neuroprotec-
tion, a new goal for acute brain injury research is to
investigate and attenuate mechanisms of endothelial,
astrocytic, and microglial dysfunction and, thereby,
create an environment permissible to neuronal survival.
It follows that cerebral edema, a phenomenon that
arises from dysfunction of astrocytes and endothelium,
represents an important target for basic research and
therapeutic intervention.

Core concepts of cerebral edema

Cerebral edema and swelling

The cranial contents are divided into a series of
fluid compartments, which are spaces separated by
barriers that are relatively impermeable to water and
are maintained at homeostatic volumes. Examples of
fluid compartments include the vasculature
(�100 mL), CSF (�100 mL), brain interstitial space
(�100 mL), and brain intracellular space (�1.1 L) (vol-
umes refer to the human brain).43 The water masses
contained by these compartments are dynamic during
health; for example, neuronal activity precipitates an
increase in the intracellular water mass of local
astrocytes.44,45

Cerebral edema is a pathological increase in the
water mass contained by the brain interstitial space.
Incidentally, although cytotoxic edema (oncotic cell
swelling) is referred to as ‘‘edema’’ for purely historical
reasons, it results in intracellular, rather than extracel-
lular, fluid accumulation, it does not include a swelling
component, and it is best regarded as a premorbid
precursor to extracellular ionic edema. Transvascular
cerebral edema (ionic edema and vasogenic edema) is
detrimental because it manifests as brain tissue swel-
ling. Swelling refers to a volumetric expansion of a
given mass of tissue and can be generated by the accu-
mulation of tumor, edema, or blood, although here, the
focus is on edema.

Brain swelling causes a mass effect that exerts pres-
sure on the surrounding shell of tissue. This pressure
increase is magnified by the rigid enclosure of the skull,
which places an upper limit on the volume that the
brain might expand to. As the brain swells, it exerts
mechanical forces on the skull interior, thereby increas-
ing intracranial tissue pressure. When tissue pressure
exceeds capillary pressure, capillary lumens collapse,
precipitating a feedforward process wherein ischemia
of the surrounding shell triggers further edema forma-
tion and further swelling in the next shell.46

Cerebral edema requires perfusion

For cerebral edema and swelling to occur, the brain
tissue must be perfused by an external fluid source.
To illustrate this concept, imagine that a fresh biopsy
of brain tissue is placed upon a dry surface. As the
tissue is completely ischemic, cytotoxic edema will
form and water will redistributed from the interstitium
to the intracellular compartment. However, as the
tissue is isolated from any possible source of new ions
or water mass, the tissue will not become heavier and
will not swell. For in vivo brain tissue, blood or CSF
might serve as the source of this new water, although
the relative contributions of these sources are in debate,
as is described in the next section.

Water sources of ionic cerebral edema

While the water that drives ionic edema originates
ultimately from the vasculature, there exist two major
hypotheses regarding the immediate source of the new
water mass that is required for brain swelling. In one
hypothesis, water moves from the capillary lumen into
the parenchyma, driven by osmotic forces, and is con-
veyed across capillary endothelial cells by mechanisms
discussed in later sections of this review. In the context
of ischemic stroke, the requirement for perfusion by an
outside water source is fulfilled by post-ischemic reper-
fusion of the core and/or the ischemic penumbra.

The recent description of the glymphatic system led
to the formulation of a second hypothesis, whereby
CSF serves as the immediate source of ions and
water. In this hypothesis, swelling occurs when influx
of CSF into the parenchyma is enhanced and/or efflux
of ISF is impaired, a situation that precipitates relative
accumulation of ISF within the parenchyma.47

Interestingly, both of these major hypotheses were
alluded to in an essay on cerebral edema published in
1894.32

In support of the first hypothesis, ionic edema for-
mation is intimately associated with the local blood
perfusion status. The post-ischemic reperfusion flow
magnitude is positively correlated with edema load.48

Furthermore, regional brain perfusion is correlated
with the spatial magnitude of edema influx: In a rat
model of malignant cerebral edema 8 h after permanent
middle cerebral artery occlusion, edema fluid is located
mostly in peri-infarct regions, with minimal edema fluid
in the poorly-perfused core.49 In human stroke, mag-
netic resonance imaging (MRI) shows that edema is
first found in peri-infarct regions that are actively per-
fused.50 In addition, following acute liver failure, cere-
bral blood flow is positively associated with edema
load.51 However, acceptance of this hypothesis is not
universal, as there are uncertainties regarding the
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expression level of commonly cited molecular
mechanisms for ion and water influx across brain
endothelium.47

As the second hypothesis was only recently formu-
lated, relatively little literature exists to support or
refute it. However, as acute CNS injury does appear
to trigger chronic dysregulation of glymphatic clear-
ance of interstitial solutes, this hypothesis merits add-
itional scrutiny.52

Two salient features of the BBB indicate that these
hypotheses need not be mutually exclusive. Firstly,
since brain endothelial cells in the healthy brain medi-
ate high rates of water flux between the vascular com-
partment and interstitium without net water
movements,53 and thus exhibit high water permeability,
the two aforementioned hypotheses could represent
steps in a sequential process of water movements
from blood to parenchyma. Secondly, the absence of
a perivascular CSF-filled space surrounding brain capil-
laries suggests that their contribution to the glymphatic
system may be minimal.14,15 Thus, these two hypoth-
eses could explain ionic edema formation at different
levels of the vascular tree.

Interestingly, the absence of a perivascular CSF-
filled space surrounding brain capillaries does not pre-
vent intracisternally-delivered fluorescent tracers from
appearing in the capillary basement membrane.18 In the
glymphatic hypothesis, this presumably occurs due to
the marker migrating first along the periarteriolar
Virchow Robin spaces and then ostensibly by migrating
longitudinally through the capillary basement mem-
brane itself. However, it is unclear how the relatively
dense pericapillary basement membrane is able to serve
as a high-capacity channel for CSF flux, especially since
the basement membrane is usually thought to serve as a
physical barrier to solute movements.54 It has been sug-
gested that nonspecific binding of the fluorescent dex-
tran tracer to the capillary basement membrane could
underlie the pericapillary fluorescence reported in the
abovementioned study.21

Importantly, although the aforementioned points
accurately reflect our current understanding of the for-
mation of ionic edema, the two hypotheses do not
account as equally well for the formation of vasogenic
edema, which is best understood as reflecting the trans-
capillary flow of plasma proteins.

Diffusion versus bulk flow

The phenomenon of diffusion, namely, the tendency for
molecules to spread from a point of high concentration
to surrounding points of lower concentration, arises
from random Brownian motions exhibited by particles
when suspended in fluid. One property of diffusion is
that the probability of finding a molecule at a given

distance from its starting position within a given
period of time, essentially the molecule’s speed of dif-
fusion, is inversely proportional to the hydrodynamic
radius of the molecule. Larger molecules will diffuse
more slowly than smaller molecules.

Solutes may also move by bulk flow. In contrast to
diffusion, where molecular migration is driven by
movement of the molecule within a static substrate,
bulk flow migration is driven by the movement of the
fluid substrate itself, which in turn is driven by hydro-
dynamic or osmotic forces. Essentially, suspended
particles are ‘‘swept along’’ by the fluid substrate. An
important property of bulk flow is that the speed of
migration of a suspended particle is dictated solely by
the forces driving the migration of the fluid substrate
and is therefore independent of the solute’s hydro-
dynamic radius. This property can be exploited to
probe whether observed movements are due to diffu-
sion or bulk flow. Parenthetically, bulk flow is utilized
in convection-enhanced delivery, an intraparenchymal
drug delivery technique that allows for much wider dis-
tribution of a given agent than diffusion-driven
delivery.55

Cerebral edema moves by bulk flow

The movement of ISF through the brain parenchyma
was recognized as early as 1865, when His observed
that material injected into the brain parenchyma
spreads from the initial point of delivery.56 In the
early 1980s, Cserr et al. observed that radiotracers of
varying molecular weights were cleared from the par-
enchyma with identical rates, indicating that brain ISF
in the healthy brain moves by bulk flow rather than
diffusion, with white matter tracts exhibiting higher
fluid transport.57,58 Experiments using a cold lesion
model of extracellular edema indicated that edema
fluid also spreads through the parenchyma through
bulk flow rather than diffusion.59 Interestingly, extra-
cellular fluid appears to take both pericellular and
transcellular routes through the parenchyma.60 Bulk
flow of edema fluid is driven by hydrostatic and osmo-
tic forces, produced by mass effect and derangements in
ion transport, respectively. Better models of how these
forces are generated in vivo are needed to improve our
understanding of directional flux of ISF and cerebral
edema in vivo.

Clearance of cerebral edema

The clearance routes of extracellular edema are incom-
pletely understood. Studies examining clearance of ISF
indicate that a sizable portion is removed from the
parenchyma along perivascular spaces and is deposited
into the subarachnoid space, whereupon it is cleared by
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mechanisms of CSF absorption, a topic that itself is
not without controversy.18,21,61,62 Historically, the
arachnoid villi were considered to mediate most of
the absorption of CSF. However, a significant portion
of CSF might be cleared through the cervical lymph-
atics, either through the perineuronal subarachnoid
spaces that surround cranial nerves or by passage
through the olfactory submucosa.63 In addition to
efflux into the subarachnoid space, a portion of brain
ISF is cleared by cerebral capillaries, though their pre-
cise contribution remains controversial.

The clearance pathway taken by ISF depends upon
its location in the brain: In rats, CSF in the cisterna
magna accounts for efflux of 60–70% of midbrain ISF
but only 10–15% of caudate nucleus ISF.64

The transcapillary mechanism and Starling’s principle

In the late 1800s, Starling formulated the basic model
for the transcapillary driving forces during edema for-
mation.65 In his model, edema formation requires two
factors: (i) a driving force that either ‘‘pushes’’ or
‘‘pulls’’ substances into or out of tissues; (ii) a ‘‘perme-
ability pore’’ that mediates the transcapillary flux of
these substances. In its original formulation, Starling’s
principle stated that the transendothelial flux of fluid
depends upon the net osmotic and hydrostatic pressure
and a single permeability coefficient, K. To reflect
mechanisms of cerebral edema formation, Starling’s
principle was reformulated in 2007, and the permeabil-
ity coefficient K, was separated into two constants, the
net hydraulic conductivity, KO, and the net osmotic
conductivity, KH, to account for the transcapillary
efflux of water (Jv).

38

Jv ¼ KO �i � �cð Þ þ KH Pc � Pið Þ

Starling’s principle states that the driving force is the
sum of the hydrostatic and osmotic pressure gradients.
Capillary hydrostatic pressure (Pc) is dictated by the
precapillary arteriolar pressure, the postcapillary venu-
lar pressure, and the capillary resistance, while the tissue
pressure (Pi) is a function of the volume of the ISF and
the tissue compliance. The osmotic pressures of blood
(�c) and of ISF (�i) are a function of the number of
particles suspended in each. The ability of the driving
forces to actually produce fluid flux then depends on
the net hydraulic (KH) and net osmotic (KO) conductiv-
ities of the BBB, i.e. the ‘‘permeability pores’’.

In healthy tissues, both the osmotic term
[KO �i � �cð Þ] and hydrostatic term [KH Pc � Pið Þ] are
near zero and net water flux is minimal. For the
osmotic term, although KO is nonzero due to passive
endothelial water transport, the vascular and interstitial
compartments normally exhibit equal osmolality

(Table 1). For the hydrostatic term, while the
hydrostatic gradient is nonzero (for example, in
rats, the brain interstitial pressure is approximately
3.43� 0.65 mmHg while the brain capillary pressure
is approximately 20 mmHg, resulting in a hydrostatic
gradient of approximately 16.57 mmHg),66 KH is near
zero due to brain endothelium tight junctions.

Driving forces for cerebral edema
formation

Cytotoxic edema

Cytotoxic edema (oncotic cell swelling) is a premorbid
process whereby cells swell due to influx of osmolites
(mainly Naþ and Cl–) and water from the interstitial
spaces into the intracellular compartment. This process
takes place in all CNS cell types following CNS injury,
and is particularly prominent in astrocytes. Astrocyte
swelling appears to be a general response of astrocytes
to injury and occurs quickly following a variety of types
of CNS injury, including ischemia, trauma, hypogly-
cemia, status epilepticus, and fulminant hepatic failure,
though importantly, the mechanisms driving the
swelling may differ among etiologies.67 Importantly,
cytotoxic (cellular) edema does not generate tissue swel-
ling, as it simply represents a rearrangement of paren-
chymal water mass and does not involve the addition of
new water mass to the brain. Nevertheless, cytotoxic
edema is an important initial step in the formation of
cerebral edema and swelling, as it generates the driving
force for influx of ionic and vasogenic edema, which do
cause swelling.

Cellular influx of osmolites may occur due to pri-
mary active transport or secondary active transport.
Primary active transport requires a continuous supply
of adenosine triphosphate (ATP) to provide energy for
‘‘pumps’’ such as the Naþ/Kþ-ATPase and Ca2þ-
ATPase. Secondary active transport harnesses the
potential energy stored in transmembrane ionic
gradients previously generated through primary active
transport. Examples of secondary active transporters
include ion channels and cotransporters such as the
Naþ/ Kþ/ Cl– co-transporter (NKCC1) and the Naþ/
Ca2þ exchanger. Following many types of CNS injury,
intracellular ATP becomes depleted and thus,
mechanisms that are independent of intracellular
ATP, like secondary active transport, are more likely
to be relevant to the formation of ionic edema.

Ions involved in cytotoxic edema can be conceptu-
ally divided into primary drivers and secondary partici-
pants. Primary drivers are substances that, through
extrusion by primary active transport, are more con-
centrated outside of the cell than inside. Secondary par-
ticipants exhibit no pre-existing electrochemical
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gradient. However, rearrangement of primary drivers
stimulates secondary participants to flux. For example,
if Naþ is the primary driver, Cl– and water are second-
ary participants that move in order to maintain
electrical and osmotic neutrality.

Per its namesake, astrocytic cytotoxic edema is
usually triggered by exposure to endogenous toxins
(Kþ, glutamate, Hþ), exogenous toxins (ammonia,
TET, cyanide)68,69 or, unique to the Sur1-Trpm4 (sul-
fonylurea receptor 1 – transient receptor potential
melastatin 4) channel, intracellular ATP depletion.
Maladaptive ion influx may ensue, generating a trans-
membrane osmotic gradient that drives water influx
and causes cell swelling. Cytotoxic edema is one
instance of the more general category of astrocyte swel-
ling; the latter includes forms of astrocyte swelling that
are not strictly pathological. For example, while hypo-
tonicity, i.e. water intoxication, may trigger astrocyte
swelling, this swelling is a purely osmotic phenomenon
and lacks the maladaptive ion transport characteristic
of cytotoxic edema.

Constitutively expressed drivers of cytotoxic edema

Swelling due to endogenous brain toxin exposure
occurs because astrocytes possess strong homeostatic
mechanisms that evolved to maintain the extracellular
fluid composition within a range of acceptable values.
Following injury, certain molecules normally present in
ISF greatly increase in concentration, whereupon astro-
cytes attempt to maintain ISF homeostasis by activat-
ing a variety of normally beneficial secondary active
transporters that drive solute transport. In extreme
conditions, excessive activation of these secondary
active transport mechanisms occurs, leading to massive
Naþ and water influx and cytotoxic edema (Figure 2).70

All mechanisms of cytotoxic edema involve Naþ over-
load which, interestingly, is sufficient to impair astro-
cyte volume regulation71 perhaps indicative of why
astrocytes normally exhibit relatively strong volume
regulation,47,72–74 yet swell so markedly following
injury.

The normal ISF Kþ concentration ranges between
2.7 and 3.5 mM and is maintained by astrocytic Naþ/
Kþ-ATPase, NKCC1, and Kir4.1.44,75,76 Following
many types of CNS injury, extracellular Kþ accumu-
lates to dangerous levels, sometimes in excess of
60 mM, due to energy depletion and Naþ/Kþ-ATPase
failure, cell membrane rupture, or as a byproduct of
glutamate excitotoxicity.77 In the healthy brain, astro-
cytes function to clear excess extracellular Kþ, a func-
tion that is associated with benign astrocyte
swelling.44,45,78 However, in conditions of greatly
increased extracellular Kþ, Kþ clearance triggers cyto-
toxic edema formation. In the range of 25–117 mM, the

magnitude of astrocyte swelling becomes linearly
related to extracellular [Kþ].79 The bumetanide-sensi-
tive electroneutral NKCC1 transporter, a member of
the Naþ/Kþ/2Cl– transporter family, is particularly
important to Kþ-induced astrocyte swelling. NKCC1
is constitutively expressed by astrocytes in all regions
of the adult brain and its activity is enhanced after
ischemia and acute liver failure due to increased protein
expression and phosphorylation.80–82 NKCC1 carries a
net of four osmolites inward per turnover and is cap-
able of water co-transport.83 In vitro experiments using
cultured primary astrocytes demonstrated that NKCC1
contributes to cell swelling in conditions of high extra-
cellular potassium.84–86 In vivo, swelling is attenuated
with bumetanide, an NKCC1 inhibitor, following
trauma and ischemia.87–90

ISF glutamate in the healthy brain is typically main-
tained around 10 mM, depending on the region
sampled. Following CNS injury such as stroke or
trauma, extracellular glutamate can accumulate to
greater than 200 mM due to spreading depolarization,
synaptic release, or neuronal lysis.91–93 Astrocyte swel-
ling occurs when extracellular glutamate ranges
between 50 mM and 5 mM.94 Parenthetically, while
brain extracellular glutamate is increased after acute
liver failure,95 glutamate is thought to play a minor
role in astrocyte swelling after acute liver failure, a pro-
cess that is driven primarily by ammonia. Glutamate
can induce astrocyte swelling through two mechanisms.
Firstly, the human excitatory amino acid transporter

Figure 2. Major routes for influx of ions and water in astrocytic

cytotoxic edema. Schematic depiction of the major astrocytic

transporters and channels that are implicated in the formation of

cytotoxic edema; in regards to water transport, single-headed

arrows denote water co-transport, while double-headed arrows

denote passive water transport.
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(EAAT) glia-specific family members EAAT1 (a.k.a.
GLAST in rat) and EAAT2 (a.k.a. Glt-1 in rat) medi-
ate influx of glutamate with co-transport of Naþ and
water.96 Both transporters are constitutively expressed
by astrocytes in the adult brain.97 EAAT2 is the major
(>90%) contributor to CNS glutamate uptake and
homeostasis during health, and forms a multiprotein
complex with aquaporin-4.98–100 Secondly, the metabo-
tropic glutamate receptor 5 (mGluR5),101 which forms
a multiprotein complex with Naþ/Kþ-ATPase and
aquaporin-4, also has been implicated in glutamate-
induced astrocyte swelling.102,103 Notably, mGluR5 is
minimally expressed by resting (nonreactive) adult
astrocytes.104 In line with the notion that many of the
mechanisms that drive cytotoxic edema were evolved
due to their beneficial actions, if glutamate uptake
and glial swelling are inhibited, glutamate mediated
neurotoxicity is worsened.105

ISF pH is also tightly regulated by astrocytes.
Many types of CNS injury interrupt oxygen delivery
and lead to ATP depletion, triggering anaerobic
metabolism and lactic acid generation that can pre-
cipitate a drop in extracellular pH. If ISF pH drops
below 6.8, compensatory ion fluxes in astrocytes are
sufficient to induce cytotoxic edema.106,107 Two gen-
eral classes of astrocyte transporters are involved in
pH homeostasis and acidosis-induced astrocyte
swelling. Firstly, the constitutively expressed bicarbo-
nate-independent and amiloride sensitive Naþ/Hþ

exchanger (NHE),108 which facilitates a 1:1 exchange
of intracellular Hþ for extracellular Naþ, mediates
acidosis-induced astrocyte swelling in vitro and
in vivo.109–116 Secondly, the constitutively expressed
bicarbonate dependent Naþ/HCO3– transporter
family (NBC) may also contribute to acid-induced
swelling.107,108,117 However, compared to the NHE
family, the contribution of the NBC family to cyto-
toxic edema in vivo is less well understood.

Brain interstitial ammonia is normally �100 mM,118

and can rise above 5 mM during acute liver fail-
ure.119 Astrocyte swelling occurs when cells are
exposed to millimolar concentrations of ammonia.120

Ammonia is internalized by astrocytes and converted
to glutamine via glutamine synthetase. It has been
hypothesized that glutamine is shuttled to the mito-
chondria, whereupon mitochondrial phosphate-acti-
vated glutaminase (PAG) converts glutamine to
glutamate and ammonia, which can trigger produc-
tion of reactive oxygen species (ROS) and activation
of the mitochondrial permeability transition, culmi-
nating in astrocyte swelling, i.e. the ‘‘Trojan horse
hypothesis’’.121 Treatment of astrocytes with ammo-
nia also triggers upregulation and phosphorylation of
NKCC1, which mediates ammonia-induced osmolite
influx and astrocyte swelling.122

De novo expressed drivers of cytotoxic edema

In contrast to constitutively expressed mechanisms of
cytotoxic edema, which can be viewed as maladaptive
versions of normally beneficial processes, the Sur1-
Trpm4 channel is expressed in the CNS only following
injury, and is absent from healthy brain. Trpm4, a con-
stitutively expressed monovalent cation channel that
opens in response to intracellular Ca2þ, is the pore
forming subunit of Sur1-Trpm4.123–125 In all CNS
cells, CNS injury triggers activation of the hypoxia-indu-
cible factor 1 (HIF1) transcription factor, which induces
de novo expression of Sur1,126 an ATP-binding cassette,
which associates with Trpm4 and doubles its Ca2þ sen-
sitivity and sensitizes the channel to ATP deple-
tion.123,125,127 It is hypothesized that this channel
evolved to protect cells against Ca2þinflux in less
extreme types of CNS injury by allowing Naþ influx,
membrane depolarization, and thus a reduction of the
inward driving force for Ca2þ. However, in the context
of severe CNS injury and ATP depletion, excessive influx
of Naþ through Sur1-Trpm4 drives maladaptive cell
swelling and cytotoxic edema (Figure 2). Inhibition of
Sur1-Trpm4 with sulfonylurea drugs prevents cytotoxic
edema in vitro and reduces edema in vivo following
ischemia and trauma.49,123,128,129 Evidence also suggests
that the Sur1-Trpm4 channel contributes to ammonia-
induced astrocyte swelling in vitro and in vivo.130

Routes for transmembrane water flow during
cytotoxic edema

The influx of ions generates a transmembrane osmotic
gradient that favors the influx of water. Water might
flow into astrocytes through three routes. Firstly,
simple diffusion through the lipid bilayer can account
for significant water influx; however, this route is
low capacity and not thermodynamically favored.
Secondly, transmembrane water channels, including
the aquaporin family as well as certain astrocytic trans-
porters such as SGLT1, GLUT1, and GLUT2 possess
passive water permeable pores, where water flux is
driven by an osmotic gradient.83 Thirdly, certain ion
transporters expressed by astrocytes that drive ion
fluxes during cytotoxic edema also mediate secondary
water co-transport by carrying a fixed number of water
molecules with their ionic cargo per turnover. Examples
of these transporters include NKCC1 and the glutam-
ate transporters EAAT1 and EAAT2.83

Aquaporin channels in the CNS

Recently, aquaporin channels have been recognized as
important mediators of plasmalemmal water fluxes in
cerebral edema. In 1992, Peter Agre described a novel
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molecular conduit for bulk water flow through the
plasma membrane, a protein later christened aqua-
porin-1.131 Aquaporin monomers constitute the func-
tional water channel subunit of aquaporin channels and
are exquisitely selective to water by virtue of a dumb-
bell-shaped pore with an amphipathic bottleneck.132

Aquaporin water transport is passive and bidirectional;
the rate and directionality of aquaporin mediated water
flux is determined exclusively by the transmembrane
osmotic pressure gradient.

While there are 14 known aquaporin channels, only
aquaporin-1, aquaporin-4, aquaporin-9, and aquaporin-
11 are expressed in the CNS.133,134 Of these, aquaporin-4
is the major aquaporin expressed by astrocytes, and is the
dominant contributor to cerebral edema formation and
clearance. In the prefrontal cerebrum under normal con-
ditions, aquaporin-4 expression is strongly localized to
the perivascular astrocyte endfoot; astrocyte soma and
main processes do not exhibit notable aquaporin-4 immu-
noreactivity.135 Aquaporin-4 also is localized to the sub-
meningeal astrocyte endfeet and in the leading
lamellipodia of migrating astrocytes.136 While aqua-
porin-4 is mostly astrocyte-specific, it has been reported
to be upregulated inmicroglia following LPS injection.137

Aquaporin-4 is expressed in two major N-terminal
splice variants, the M1 (323 amino acids) and M23 (301
amino acids), as well as four other alternative isoforms
whose functional significance is still being investi-
gated.138–141 The M23 isoform is able to multimerize
on the plasmalemma into large complexes called
orthogonal arrays of intramembraneous particles
(OAPs) that, on the luminal face of the astrocyte end-
foot, exhibit a density of 500–600/mm2 and occupy
approximately 50% of its surface area.135,142,143

The precise contribution of the astrocyte endfeet and
aquaporin-4 to brain ISF during health is currently
being investigated. Aquaporin-4 represents a high cap-
acity route of water flux past the astrocyte endfoot
layer of the BBB; other routes include paracellular
water flux, co-transport of water, or simple diffusion.70

Aquaporin-4 may then be necessary to rapidly neutral-
ize osmotic gradients that are generated during ion
transport, akin to its role in skeletal muscle during con-
traction.144 This might explain the dependence of the
aforementioned glymphatic system on aquaporin-4.18

In addition, aquaporin-4 knockout animals exhibit
CNS abnormalities linked with altered ion transport,
such as expansion of the extracellular space, increased
brain water content, cochlear deafness, and increased
seizure threshold.145–148

Aquaporin channels rely on ion transport

As passive channels, aquaporins are completely
dependent upon the activity of ion transporters for

water flux. Therefore, the study of aquaporin-
dependent cerebral edema is essentially the study of
ion transport.70 While aquaporins alone are undoubt-
edly important in the generation of cerebral edema,
future work will address the interaction between ion
transport and aquaporin water flux.149

Role of aquaporin-4 in cytotoxic edema

Aquaporin-4 worsens subtypes of cerebral edema that
form in the context of an intact BBB.150–154 Mice with
aquaporin-4 knockout or mislocalized aquaporin-4
exhibit reduced astrocyte swelling during water intoxi-
cation, suggesting a role for aquaporin-4 in cytotoxic
edema of astrocytes.153,155,156 Notably, the alternative
routes of astrocyte plasmalemma water influx are
physiologically and pathologically important, as even
with knockout of aquaporin-4, astrocytes still swell
quickly in response to hypoosmotic challenge.157

Cytotoxic edema generates driving forces

The influx of primary drivers like Naþ and secondary
participants like Cl– and water into cells during cyto-
toxic edema depletes these constituents from the extra-
cellular space.158,159 Sequestration of these constituents
is possible because the intracellular compartment is
much larger than the extracellular compartment,
which only comprises 12–19% of total brain
volume.160 Cytotoxic edema thereby generates a new
Naþ gradient across the BBB, where Naþ concentra-
tion becomes higher in the vascular compartment com-
pared to the interstitial compartment. For example, in
one study that used a rat model of global ischemia,
extracellular [Naþ] declined from a baseline of 141
mM to 74 mM; as plasma [Naþ] was 134 mM, cytotoxic
edema generated a transendothelial Naþ concentration
differential of approximately 60 mM.158

This newly formed Naþ gradient is preserved even if
cells lyse and release their intracellular contents because
the extracellular space is much smaller than the intra-
cellular space and because Kþ will remain mostly
bound to intracellular proteins and macromolecules.161

The Naþ gradient generated by cytotoxic edema serves
as a source of potential energy that drives subsequent
influx of ionic edema fluid.

Endothelial dysfunction

The endothelial permeability pore

Acute CNS injury triggers a program of pre- and post-
transcriptional molecular changes in the neurovascular
unit that results in the formation of endothelial ‘‘per-
meability pores’’ and subsequent loss of BBB integrity.
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Progressive endothelial dysfunction can be organized
into three phases (ionic edema, vasogenic edema, and
hemorrhagic transformation), based upon the principle
substances that undergo transcapillary movement
(Figure 3).

The three phases of endothelial dysregulation are
thought to occur sequentially, although the rapidity
of transition between phases probably depends on
injury type and severity. Furthermore, as many etiolo-
gies of brain endothelial dysregulation and cerebral
edema are focal in nature, brain tissue usually exhibits
a complex spatiotemporal pattern of the different
phases of endothelial dysregulation.

First phase: Ionic edema

During ionic edema, the potential energy contained in
the transendothelial Naþ gradient generated by cyto-
toxic edema drives extravasation of osmolites and
water. Naþ is transported inward along its concentration
gradient by brain endothelial cells, resulting in the accu-
mulation of Naþ in the brain parenchyma and the gen-
eration of a nonzero osmotic driving force (the �c � �ið Þ

term in Starling’s principle).162 This influx of Naþ

requires blood perfusion, supportive of the hypothesis
that the vascular compartment serves as the source of
ionic edema.163 As secondary participants, Cl– and water
follow Naþ inward to maintain electrical and osmotic
neutrality, resulting in the formation of ionic edema.164

While the relative contributions of brain arterioles, ven-
ules, and capillaries to ionic edema formation has not
been experimentally tested, ionic edema may form

primarily at the capillary level due to the relatively thin
walls and large surface area of the capillary bed.

Ionic edema and vasogenic edema are forms of
extracellular edema that differ in an important way.
Vasogenic edema, but not ionic edema, includes extra-
vasated serum proteins. The preservation of BBB integ-
rity has two important implications for mechanisms of
ionic edema. Firstly, ion influx during ionic edema is
exclusively mediated by endothelial ion channels and
transporters; physical disruptions to the BBB, such as
occurs with reverse pinocytosis or degradation of tight
junctions, do not represent viable pathways for ion
flow, as they would inevitably include plasma proteins.
Secondly, preservation of the BBB integrity implies that
KH remains zero. The dynamics of ionic edema are gov-
erned only by the osmotic term in Starling’s principle.

Parenthetically, while a subtype of extracellular
edema that lacked serum protein extravasation has
long been recognized, ionic edema was only recently
defined as a distinct cerebral edema subtype.38 Prior
to this distinction, all edema subtypes not involving
serum protein extravasation were grouped under the
common term ‘‘cytotoxic edema’’, which therefore
encompassed cytotoxic edema, as the term is used pres-
ently, as well as ionic edema.

For ionic edema to form, Naþ, Cl–, and water must
first be transported inward through the luminal mem-
brane and then transported through the abluminal
membrane of brain capillary endothelial cells
(Figure 4). Therefore, ionic edema is essentially a
two-step transport process. Given that many brain
endothelial channels and transporters exhibit a

Figure 3. Phases and select mechanisms of endothelial dysfunction. In ionic edema, water flux (blue arrows) and ion flux (grey

arrows) are mediated by plasmalemma channels and transporters; vasogenic edema, which includes extravasation of plasma proteins,

but not erythrocytes, is mediated by transcellular channels, MMP degradation of tight junctions, and endothelial retraction, phenomena

that are, in part, triggered by VEGF, Ang2, and CCL2 signaling; hemorrhagic transformation occurs due to structural failure of the

vessel, driven by either complete degradation of tight junctions or Sur1-Trpm4-mediated oncotic cell death of endothelial cells.
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polarized distribution at these membrane faces, the
transmembrane routes taken by ions and water differ
between the luminal and abluminal membrane. Similar
to cytotoxic edema, ion flux is driven by either primary
active transport or secondary active transport.

As ionic edema involves, in part, the uptake of ions
and water by brain endothelial cells, it is analogous to
cytotoxic edema, but differs in that the ion and water
fluxes are polarized. Specifically, channels on the lumi-
nal membrane of brain endothelial cells drive the cellu-
lar uptake of vascular ions and water, which may
manifest as endothelial cell swelling. Endothelial swel-
ling is then ‘‘relieved’’ by channels on the abluminal
membrane, which permit efflux of ions and water into
the brain interstitium, thereby completing the transca-
pillary flux of ions and water.

Constitutively expressed drivers of ionic edema

The sodium-hydrogen antiporter (NHE) family mem-
bers, NHE1 and NHE2, are constitutively expressed on
both luminal and abluminal membranes of brain endo-
thelium. During ionic edema, NHE family members
contribute to Naþ influx across the luminal mem-
brane.165 Naþ/Hþ exchange in vitro is stimulated by
hypoxia and hypoglycemia, conditions that occur fol-
lowing cerebral ischemia.165 Intravenous delivery of
Naþ/Hþ exchange inhibitors reduce cerebral edema
formation in a rat stroke model, putatively by attenu-
ating luminal NHE activity.113,166,167

The cation-chloride transport family member,
NKCC1, is constitutively expressed on the luminal

membrane of brain endothelium, is upregulated and
activated via phosphorylation in response to ischemia,
and contributes to Naþ influx across the luminal
membrane during ionic edema formation.90,168 In add-
ition to mediating solute influx that osmotically drives
water influx, NKCC1 also mediates secondary active
transport of water at 590 molecules of H2O per trans-
porter turnover, thereby allowing it to pump water up an
osmotic gradient.83 Influx of ionic edema is attenuated
with intravenous delivery of bumetanide, an NKCC1
inhibitor, thus supporting the role of NKCC1 in ionic
edema formation.87,88

Under conditions of adequate energy, Naþ efflux
across the abluminal membrane is primarily mediated
by the Naþ-Kþ-ATPase, a primary active transporter
that is selectively expressed on the abluminal membrane
of brain endothelial cells.9 Notably, as this efflux route
depends on ATP, its contribution is likely minimal
during severe energy depletion such as during ischemia,
although it may become relevant with timely reperfu-
sion. In addition, the Naþ/Ca2þ exchanger exists on the
abluminal membrane and might contribute to Naþ

efflux by virtue of its ability to operate in reverse-
mode where Naþ is expelled in exchange for Ca2þ

influx.169,170 As this efflux route is ATP-independent,
Naþ/Ca2þ mediated Naþ efflux might be particularly
relevant during total ischemia.

De novo expressed drivers of ionic edema

The Sur1-Trpm4 channel is upregulated by capillary,
arteriole, and venule endothelial cells in response to

Figure 4. Major routes for influx of ions and water in ionic edema. Schematic depiction of the major endothelial transporters and

channels that have been implicated in the formation of ionic edema; in regards to water transport, single-headed arrows denote water

co-transport, while double-headed arrows denote passive water transport.
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CNS injury,127 and contributes to the formation of
ionic edema by mediating Naþ influx at the luminal
membrane and Naþ efflux at the abluminal membrane.
Post-ischemic blockade of the channel by glibencla-
mide, a potent Sur1 antagonist,171–173 reduces edema
formation by 50%, indicating that Sur-Trpm4 plays a
key role in transcapillary Naþ influx that occurs during
ionic edema. Parenthetically, as glybenclamide pene-
trates the BBB in ischemic brain tissue,49 and Sur1 is
expressed after injury by all CNS cells, its effects upon
edema formation may not be solely due to inhibition of
luminal endothelial Sur1.174 As Sur1 is not constitu-
tively expressed, this mechanism is injury-specific.
Furthermore, as this mechanism relies on transcrip-
tional gene expression and hence ATP, it is most rele-
vant in ischemic, but still perfused vessels.

A disease-specific molecular driver of cytotoxic and
ionic edema, the Sur1-Trpm4 channel is a highly pro-
mising target for pharmacological inhibition. Notably,
the glyburide advantage in malignant edema and stroke
(GAMES-RP) trial, a randomized phase II trial that
evaluated the efficacy of an intravenous formulation
of glybenclamide (CIRARA or RP-1127) in patients
with large territory ischemic stroke,175 was recently
concluded. Adverse drug reactions are most commonly
due to unwanted effects upon normal function that are
mediated by the drug’s primary pharmacological mech-
anism. For example, inhibition of the N-methyl-D-
aspartate receptor (NMDAR), a protein that is consti-
tutively expressed throughout the brain, is associated
with adverse CNS drug effects such as dizziness, sed-
ation, agitation, hallucination, and confusion.176 These
adverse effects have led many researchers to abandon
NMDAR antagonism as a strategy to combat excito-
toxic injury following ischemia. However, as Sur1-
Trpm4 is only expressed in the injured brain, CNS
effects resulting from the drug’s primary pharmacology
will be specific to injured brain tissue, and adverse drug
effects will be minimized.

Transendothelial routes for Cl– and water during
ionic edema

Naþ, the primary driver of ionic edema, drives the
influx of secondary participants like Cl– and water in
order to equalize electrical and osmotic gradients.
Transendothelial Cl– flux is likely mediated by Cl–

channels and Cl– co-transporters such as NKCC1 and
KCC.177

As during cytotoxic edema, there are three possible
routes for water transport across the plasmalemma;
however, some of the molecular details are specific to
brain endothelium (Table 2). Firstly, simple diffusion
can occur across the endothelial plasma membrane.
While the water permeability of a small patch of

endothelium is low, the surface area of the brain capil-
lary bed is quite large, and could permit nontrivial net
flux. Secondly, secondary co-transport of water can be
mediated by NKCC1 at the luminal face,83,84 and by
the Kþ/Cl– co-transporter KCC at the abluminal
face.178 In addition to NKCC1 and KCC, all solute
transporters that co-transport water can be driven to
operate in response to an osmotic gradient. Thus, endo-
thelial transporters such as MCT1, GAT-1 and EAAT-
1, which, unlike NKCC1, do not contribute to ionic
edema related Naþ influx, are able to contribute to
water influx during ionic edema.83 Thirdly, brain endo-
thelial cells express certain membrane proteins that can
mediate passive water transport. Some studies report
that brain endothelial cells weakly express certain mem-
bers of the aquaporin family such as aquaporin-1.179

However, given their low abundance in endothelial
cells, aquaporins are unlikely to mediate the bulk of
endothelial water transport across the endothelium.
Rather, the highly abundant glucose transporters,
sodium-glucose linked transporter 1 (SGLT1) and glu-
cose transporter 1 (GLUT1) might represent a major
route for transendothelial water flux, as they have the
ability to passively transport water independently of
glucose, analogously to aquaporin channels.83,180,181

While the single protein water permeability of
GLUT1 is less than 1% than that of aquaporin-4,83

GLUT1 is highly expressed by brain endothelium.
Interestingly, the estimated net contribution of
GLUT1 to passive water permeability of endothelium
(0.5� 10-3 cm/s) is remarkably close to the measured
total passive water permeability of the BBB (1� 10-3

cm/s).83,182 GLUT1 and GLUT2 are expressed at both
luminal and abluminal faces, while SGLT1 is expressed
at the luminal face.180,181

Role of the astrocyte endfoot and aquaporin-4
in ionic edema

Aquaporin-4 worsens ionic edema, a subtype of cere-
bral edema that occurs in the context of an intact
BBB.150–154 Conversely, overexpression of aquaporin-
4 enhances ionic edema formation.183 Interestingly, fol-
lowing cerebral ischemia, aquaporin-4 is upregulated
primarily by white matter astrocytes.184 Given that
white matter can exhibit greater swelling after ischemia
than grey matter,184–186 these data indicate that white
matter may play an underappreciated role in ionic
edema formation and brain swelling.

Recently, it was postulated that a primary function
of the astrocyte endfoot syncytium, and of aquaporin-
4, is to mediate transglial water flux.18 It was suggested
that dysregulation of this function occurs following
CNS injury, and results in reduced glymphatic flow,
which is thought to represent a primary mechanism
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driving ionic edema formation.47 While this hypothesis
might account in part for ionic edema, a strict adher-
ence to this model would imply that the brain endothe-
lium has little, if any, contribution to cerebral edema
formation. Omitting a key role for endothelium is
implausible, given the many endothelial transporters
and channels implicated in the formation of edema. It
is more likely that, in addition to its hypothesized role
in glymphatic-mediated edema, aquaporin-4 interacts
with and potentiates the endothelial water fluxes that
drive ionic edema formation. Unfortunately, without a
greater understanding of how aquaporin-4 controls
water and solute flux through the endfoot layer of the
BBB, it is unclear how aquaporin-4 water transport
might affect endothelial ion transport.

Second phase: Vasogenic edema

Vasogenic edema is a form of extracellular edema char-
acterized by breakdown of the BBB, wherein a trans-
endothelial permeability pore forms that permits
extravasation of water and plasma proteins such as
albumin and IgG into the brain interstitial compart-
ment. Unlike hemorrhage, capillary structural integrity
is maintained during vasogenic edema such that pas-
sage of erythrocytes is prohibited. Therefore, vasogenic
edema is best viewed as a cell-free blood ultrafiltrate,
i.e. plasma.37,187 The permeability pore that allows the
passage of solutes during vasogenic edema likely has
contributions from more than one mechanism (see
below). While all levels of the vascular tree contribute

Table 2. Routes for transendothelial water influx during cerebral edema formation.a

Endothelial

dysfunction

phase Route Mediator

Single-

channel Lp
b Oocyte Pf

c

Water co-

transport

per turnoverd

Ionic edema Transmembrane diffusion Lipid bilayer –e
�1� 10-4 262 –

Channel mediated passive

diffusion and water

co-transport

Aquaporin-1f

Aquaporin-4f
4.9� 10-14 263 1.9� 10-2 264 –

1.5� 10-13 263 2.9� 10-2 264

SGLT1 1.5� 10-15 265 1.6� 10-4 265 260 266

GLUT1 2� 10-15 83 2.8� 10-3 267 40 83

GLUT2 NDg 4.8� 10-4 268 35 268

GAT-1 1.4� 10-14 269 1.002� 10-4 270 330 271

EAAT1 7� 10-15 272 1.006� 10-4 272 436 272

NKCC1 – – 590 273

KCC4 – – 500 178

MCT1 – – 500 83

Vasogenic

edema

Uncoupling of

tight junctions

Claudins,

Occludins, Zo-1, Actin

Endothelial retraction Actin

Pinocytic vesicle fusion ND

Hemorrhagic

conversion

Endothelial oncotic

cell death

Sur1-Trpm4

Reactive oxygen species

Leukocyte transmigration

Endothelial activation

Tight junction

degradation

MMPs

aPortions of Table 2 are adapted from MacAulay and Zeuthen.83 bExpressed as the hydraulic permeability coefficient (Lp with units of cm3/s). cExpressed

as the diffusive water permeability coefficient (Pf with units of cm sec-1) of unmodified Xenopus oocytes (first row), or Xenopus oocytes expressing a

particular water-permeable channel. Note that Pf is dependent upon the abundance of the expressed water channel and thus measurements of single-

channel Lp is not directly translatable to plasmalemma Pf measurements. In addition, note that Pf is surface-area independent and is related to Lp

through the equation:

Pf ¼
LpRT

�VwA

where A is the membrane area, �Vw is the partial molar volume of water, R is the gas constant, and T is the temperature.274 dExpressed as number of

water molecules co-transported per transporter turnover. eNot applicable (–). fAquaporin channels are minimally expressed by brain endothelium.
gNot determined (ND).
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to vasogenic edema formation, brain capillaries are a
particularly major contributor.188

Once physical communication between the vascular
and interstitial compartments is established, microves-
sels behave like fenestrated capillaries and therefore
both hydrostatic and osmotic pressure gradients can
affect edema formation, although hydrostatic pressure
represents the primary driving force for vasogenic
edema formation.189 Determinants of the hydrostatic
pressure gradient, such as intracranial pressure, sys-
temic blood pressure, capillary occlusion, and vaso-
spasm, are important to vasogenic edema dynamics.
Determinants of the osmotic pressure gradient, which
now include all osmotically active molecules such as
Naþ and proteins, also can influence water flux.

The influence of hydrostatic pressure on vasogenic
edema has direct clinical implications. For example,
systemic blood pressure must be kept high enough to
maintain brain perfusion, but in excess will promote
edema formation.189,190 In addition, intracranial pres-
sure must be kept low enough to maintain tissue perfu-
sion, but high enough to counteract edema influx.189

Optimization of these parameters is a difficult, multi-
factorial problem.

The concept that only the osmotic forces influence
ionic edema, while both osmotic and hydrostatic gradi-
ents influence vasogenic edema may help to explain the
mixed outcomes that occur following decompressive
craniectomy, a procedure that abruptly lowers intra-
parenchymal pressure.191,192 Decompression is safe if
done early, during the ionic edema stage, as it aids in
the restoration of tissue perfusion. However, if done
later during vasogenic edema, decompression will
decrease tissue pressure, thereby increasing the hydro-
static gradient and driving edema influx.193,194

Mechanisms of vasogenic edema

Protein and water may passage from the vascular
compartment to the interstitial compart through trans-
endothelial channels formed by dysregulation of pino-
cytosis. Pinocytosis, a process whereby blood solutes
are enveloped by luminal endothelial membrane ruf-
fles,195 are transported across the cytoplasm, and are
released at the abluminal membrane.196 Following
CNS injury, pinocytic vesicles that are capable of car-
rying solutes and water have been observed to fuse and
form transendothelial channels that span from the
luminal to the abluminal membrane.197,198

Controversy still exists regarding this mechanism.199

It is generally agreed that vasogenic edema can form
via paracellular transport past endothelial cells.
Inflammation and cerebral ischemia can trigger actin-
dependent endothelial cell rounding or retraction and
increased endothelial permeability.200 Endothelial

retraction is an ATP-dependent process that can be
triggered by thrombin,200–203 a protease that is upregu-
lated following ischemia and is highly abundant in the
brain parenchyma following intracerebral hemorrhage.
However, as some evidence suggests that in lieu of tight
junction disruption, endothelial retraction is not suffi-
cient to impair barrier resistance,204 this mechanism
might serve to enhance rather than initiate vasogenic
edema formation. It has been speculated that endothe-
lial cell retraction might have been evolved to facilitate
transmigration of leukocytes that contribute to the
beneficial clearance of necrotic debris produced by
many types of CNS injury.205

Paracellular permeability pores also can be gener-
ated by vascular endothelial growth factor (VEGF) sig-
naling. Brain injury triggers expression of VEGF,206–208

which triggers decreased expression of tight junction
proteins,209,210 uncoupling of interendothelial tight
junctions, increased hydraulic permeability of vessels211

and promotes edema formation.212 Inhibition of VEGF
reduces edema associated with post-ischemia reperfu-
sion and brain tumors.213,214 Like many mechanisms
that produce cerebral edema, VEGF signaling is not
purely maladaptive, but rather is linked to angiogen-
esis. If administered early following experimental
stroke in rats, recombinant VEGF increases edema for-
mation, but if given at later times, VEGF stimulates
angiogenesis in the penumbra and improves neuro-
logical recovery.215 As some studies have shown that
the extent of angiogenesis is correlated with survival
following ischemic stroke, angiogenesis might be an
important factor in recovery following ischemia.216 In
addition to VEGF, a host of signaling molecules
including CCL2, angiopoietin 2 (Ang2), and nitric
oxide are released following injury, and can inhibit
expression of tight junction proteins and thereby
exacerbate vasogenic edema formation.217–221

Endothelial basement membrane proteins and tight
junction proteins also can be lost following CNS injury
through protease degradation. Following injury, matrix
metalloproteinase (MMP) activity increases through de
novo expression and activation of latent MMPs, result-
ing in degradation of basement membrane and tight
junction proteins.222–227 MMP inhibitors reduce ische-
mia- and reperfusion-associated cerebral
edema,36,228,229 partially by preventing degradation of
tight junction proteins.230

Role of the astrocyte endfoot and aquaporin-4 in
vasogenic edema

In contrast to its role in cytotoxic edema or ionic
edema, knockout of aquaporin-4 is associated with
worsened edema following injuries that precipitate vaso-
genic edema formation, such as trauma or cold
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lesion.148 These data suggest that the astrocyte endfoot
and aquaporin-4 contributes to the clearance of vaso-
genic edema, and likely mediates the clearance of other
forms of extracellular edema, such as ionic edema.

Third phase: Intracerebral hemorrhage

Intracerebral hemorrhage can occur as a primary
injury, as in the context of traumatic brain injury, or
as secondary injury, where its formation is due to
downstream injury-related mechanisms. The latter,
also referred to as hemorrhagic conversion or hemor-
rhagic transformation, represents the third and final
phase of endothelial dysfunction, where the structural
integrity of the capillary is lost, allowing extravasation
of all constituents of blood, including erythrocytes and
other cells. Up to 30–40% of ischemic strokes undergo
hemorrhagic transformation, a phenomenon that
accounts for approximately 26–154 additional deaths
per 1000 patients.231–233

Like vasogenic edema, hydrostatic pressure is the
primary driving force for hemorrhagic transformation.
Interestingly, extravasated blood increases the local
tissue hydrostatic pressure and should thus impair fur-
ther hemorrhage. However, this meager benefit is out-
weighed by the mass effect and tissue distortion created,
as well as the robust inflammatory response triggered
by blood products such as methemoglobin.
Implications for clinical management of hemorrhage
are similar to vasogenic edema, but this challenge is
much more difficult, given the inflammatory milieu cre-
ated by hemorrhage.

Mechanisms of hemorrhagic transformation

Mechanisms that drive hemorrhagic transformation
are complicated, multifactorial, and incompletely
understood. The aforementioned mechanisms of
vasogenic edema formation are likely also relevant
to hemorrhagic transformation. For example, exogen-
ous VEGF administration following reperfusion
worsens hemorrhagic transformation. MMP-driven
extracellular proteolysis appears to play a major role
in hemorrhagic transformation as its inhibition
reduces hemorrhage.224,234–237 In addition to these
shared mechanisms, there exist several mechanisms
that are specific to hemorrhagic transformation.
Oncotic death of endothelial cells mediated by
Sur1-Trpm4 is likely an important factor in hemor-
rhagic transformation after a variety of CNS inju-
ries.49,238,239 Other mechanisms might include
damage mediated by ROS, basement membrane deg-
radation, endothelial cell activation, and transmigra-
tion of leukocytes.231,235

Perihematomal cerebral edema

As blood is exquisitely toxic to brain tissue, hemor-
rhage by itself is a form of focal CNS injury that trig-
gers formation of cerebral edema in the shell of tissue
immediately surrounding the hemorrhage, i.e. the peri-
hematomal space, a phenomenon referred to as perihe-
matomal edema.240 Perihematomal edema occurs in
three stages: ionic edema, vasogenic edema, and
delayed vasogenic edema. While the aforementioned
core concepts that govern the formation of edema
during phases of endothelial dysregulation (e.g.
Starling’s principle) apply also to perihematomal
edema, some mechanistic details are unique to the
latter.

Perihematomal ionic edema, the first stage of peri-
hematomal edema, is driven by transendothelial osmo-
tic forces generated by two processes. Firstly, cytotoxic
edema forms in the perihematoma space, putatively
because glutamate tends to accumulate in this
region.241,242 As described above, cytotoxic edema gen-
erates a strong driving force for the influx of ionic
edema. Secondly, a hemorrhage-specific phenomenon
called clot retraction, where activation of the coagula-
tion cascade in the hematoma results in exudation of
serum proteins and increased colloidal pressure of the
perihematomal space, drives influx of water.243,244

Perihematomal vasogenic edema, the second stage of
perihematomal edema, occurs when extravasation of
blood products triggers changes in brain endothelium
that manifest as extravasation of serum proteins with-
out extravasation of erythrocytes. Thrombin, a protein
that is extravasated with hemorrhaged blood and is
produced at the site of injury, is a major contributor
to the formation of perihematomal vasogenic edema.240

Thrombin activates microglia primarily through PAR-1
receptors,245–247 resulting in secretion of tumor necrosis
factor (TNF) and IL-1b,246,248,249 cytokines that elicits
downregulation of tight-junction proteins in endothe-
lial cells and BBB opening.250,251 In addition, thrombin
enables the transmigration of circulating leukocytes by
triggering endothelial retraction (as discussed above)
and endothelial upregulation of chemokines and adhe-
sion molecules,246,252 Infiltrating leukocytes contribute
to perihematomal edema through the secretion of
mediators such as ROS. In addition to thrombin, the
compliment cascade is an important mediator of peri-
hematomal vasogenic edema. Activation of the compli-
ment cascade results in the production of
anaphylatoxins, membrane attack complex (MAC)-
mediated lysis of red blood cells and iron-induced
edema, as well as infiltration of neutrophils.253

The third and final stage of perihematomal edema,
delayed vasogenic edema, is principally mediated by
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hemoglobin degradation products that originate from
extravasated and lysed erythrocytes. In the interstitium,
hemoglobin is quickly oxidized to methemoglobin; the
latter can spontaneously release its heme moiety, which
may be further degraded by heme oxygenase enzymes to
free iron.254 Erythrocyte lysis and hemoglobin degrad-
ation is apparently a relatively slow process, as free iron
reaches maximal tissue levels at approximately 3 days
following a hemorrhage event.246,255 Perihematomal
delayed vasogenic edema exhibits similar temporality:
Infusion of free iron increases brain water content by
24 h, whereas infusion of packed red blood cells
increases brain water content only after 3 days.255,256

Many hemoglobin degradation products can independ-
ently contribute to perihematomal delayed vasogenic
edema. Free iron triggers ROS generation, MMP-9 acti-
vation, and BBB breakdown, while iron chelation
reduces edema influx in models of intracerebral hemor-
rhage.257–259 In addition, extracellular methemoglobin is
a potent TLR-4 ligand that can trigger microglial TNF
secretion and neuroinflammation.260

Conclusions

While historical models have focused on the gross or
ultrastructural appearance of edematous brain tissue,
cerebral edema is better understood in a cellular and
molecular context. The water movements involved in
cerebral edema are dependent upon ionic fluxes,
which are ultimately mediated by individual channels
and transporters. The study of cerebral edema is essen-
tially the study of maladaptive ion transport. While
significant gaps still remain in our understanding of
how specific proteins contribute to cerebral edema,
the fields of cerebral edema and brain ISF dynamics
are robust and productive. Doubtlessly, the next few
years will yield new knowledge of how particular pro-
teins drive edema influx, paving the way for rationally
designed therapeutics that directly target key steps in
cerebral edema formation, thereby achieving what cur-
rently approved therapies do not.
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Appendix

Anatomical abbreviations

BBB blood–brain barrier
CSF cerebrospinal fluid
ISF interstitial fluid
CNS central nervous system

Protein abbreviations

Pfkfb3 6-phosphofructose-2-kinase/fructose-

2,6-biphosphatese-3 ()
NKCC1 Naþ/ Kþ/ Cl– co-transporter

Sur1-Trpm4 sulfonylurea receptor 1 – transient

receptor potential melastatin 4 ()
EAAT excitatory amino acid transporter

mGluR5 metabotropic glutamate receptor 5
NHE Naþ/ Hþ exchanger
NCX Naþ/Ca2þ exchanger
KCC Kþ/Cl– co-transporter
NBC bicarbonate dependent Naþ/HCO3–

transporter family
PAG phosphate-activated glutaminase
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HIF1 hypoxia-inducible factor 1
SGLT-1 sodium-glucose linked transporter 1
VEGF vascular endothelial growth factor
Ang2 angiopoietin 2
MMP matrix metalloproteinase
ROS reactive oxygen species
TNF tumor necrosis factor
MAC membrane attack complex
Aqp4 aquaporin-4
OAPs orthogonal arrays of intramembra-

neous particles

Small molecule abbreviations

ATP adenosine triphosphate
TET triethyltin

Physiological term abbreviations

Pc capillary hydrostatic pressure ()
Pi tissue hydrostatic pressure ()
�c blood osmotic pressure
�i interstitial osmotic pressure

KH BBB net hydraulic conductivity
KO BBB net osmotic conductivity

Miscellaneous abbreviations

MRI magnetic resonance imaging
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