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Abstract

Background: Simulating genome sequence data with variant features facilitates the development and benchmarking of
structural variant analysis programs. However, there are only a few data simulators that provide structural variants in silico
and even fewer that provide variants with different allelic fraction and haplotypes. Findings: We developed SVEngine, an
open-source tool to address this need. SVEngine simulates next-generation sequencing data with embedded structural
variations. As input, SVEngine takes template haploid sequences (FASTA) and an external variant file, a variant distribution
file, and/or a clonal phylogeny tree file (NEWICK) as input. Subsequently, it simulates and outputs sequence contigs
(FASTAs), sequence reads (FASTQs), and/or post-alignment files (BAMs). All of the files contain the desired variants, along
with BED files containing the ground truth. SVEngine’s flexible design process enables one to specify size, position, and
allelic fraction for deletions, insertions, duplications, inversions, and translocations. Finally, SVEngine simulates sequence
data that replicate the characteristics of a sequencing library with mixed sizes of DNA insert molecules. To improve the
compute speed, SVEngine is highly parallelized to reduce the simulation time. Conclusions: We demonstrated the versatile
features of SVEngine and its improved runtime comparisons with other available simulators. SVEngine’s features include
the simulation of locus-specific variant frequency designed to mimic the phylogeny of cancer clonal evolution. We
validated SVEngine’s accuracy by simulating genome-wide structural variants of NA12878 and a heterogeneous cancer
genome. Our evaluation included checking various sequencing mapping features such as coverage change, read clipping,
insert size shift, and neighboring hanging read pairs for representative variant types. Structural variant callers Lumpy and
Manta and tumor heterogeneity estimator THetA2 were able to perform realistically on the simulated data. SVEngine is
implemented as a standard Python package and is freely available for academic use .
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Background

Next-generation sequencing (NGS) has enabled researchers to
detect and resolve complex genomic structural features at base-
pair resolution. One can detect a variety of structural variations
(SVs) including deletions, insertions, inversions, tandem dupli-
cations, and translocations based on NGS whole-genome se-
quence data [1]. A variety of algorithms have been developed for
structural variant calling from NGS data. This includes programs
such as Breakdancer, CNVnator, Delly, Haplotype Caller, Manta,
Lumpy, SWAN, and Pindel, among others [2-10]. Even with these
programs, accurate SV detection remains a significant challenge.
For example, some SVs occur in lower allelic fractions as seen in
tumors with intratumoral heterogeneity [11]. This is frequently
the case as seen in genome sequencing of tumor samples, where
cancer starts from a seeding clone and, through clonal evolution,
successively acquires additional rearrangements at lower allelic
fractions.

Benchmarking structural variant callers with available
ground truth datasets is critical for software tool development,
bioinformatics pipeline testing, and objective assessment of de-
tection accuracy [12]. Whole-genome datasets are available from
high sequencing coverage with Illumina or Pacific Bioscience
systems [13]. However, for those users who wish to generate new
sequencing datasets with specific features, identification and
generation of ground truth datasets are laborious and cost pro-
hibitive. Moreover, it is extremely difficult to empirically deter-
mine the analytical consequences of different sample process-
ing methods, experimental variability in library preparation, and
issues of sequencing bias in analysis [14].

Simulating NGS data provides an inexpensive alternative for
assessing new algorithms in the context of sequencing data vari-
ation as noted in [15]. With simulated datasets, one can start re-
fining analysis procedures in silico. Simulated NGS datasets can
incorporate the variability associated with NGS sequence data,
including sequencing coverage, number of libraries and insert
size, base error rates, and tool parameters at the data analy-
sis level. For in silico NGS data, a large number of SV character-
istics can be readily designed, including the number, category,
size, breakpoint sequence, variant fraction, and haplotype for
any given locus. As a result, investigators can use this simulated
data to assess the potential performance and make the trade-off
between analysis cost and sensitivity before even carrying out
the experiment.

Several programs generate NGS read sets to simulate
metagenomics, or single nucleotide polymorphisms are avail-
able [16-22]. Only recently have we seen the development and
release of structural variant simulators. An early example is
RSVSim [23], an R package that amends template sequence files
with structural variant changes. However, this program requires
an interactive R session and, as a result, does not support batch
processing. SCNVSim [24] improves on RSVSim by providing
a command line interface. It simulates somatic copy number
variants given a number of desired SV events and/or contigs.
Nonetheless, both SCNVSim and RSVSim produce very limited
variant-containing contig files (FASTA), which require external
steps to simulate sequence reads (FASTQ) and output result-
ing alignments (BAM). VarSim [14] improves on RSVSim and SC-
NVSim with integrated read simulation using read simulators
such as ART [25]. Instead of using a template sequence file, BAM-
Surgeon [26] patches an existing alignment file to embed struc-
tural variants. However, this application requires a high depth of

coverage in the existing BAM file to successfully assemble a local
contig for sequence patching. Moreover, the resulting structural
variant may not have the exact breakpoints for the intended
simulation. Overall, none of the listed tools provide a straight-
forward, joint control of an individual variant, including its ex-
act breakpoints, ploidy, and locus-specific allelic fraction. These
more complex features are particularly useful in simulating the
clonal expansion of somatic structural variants, as seen in tu-
mors.

As a solution to the limitations of current structural vari-
ant simulators, we designed and implemented SVEngine, a full-
featured simulation program suite. SVEngine is capable of gener-
ating short sequence read sets, such as produced by an Illumina
system, for thousands of spike-in variants that cover different
types, sizes, haplotypes, and allelic fractions. Our application
produces these simulated NGS datasets in a fraction of the time
of other similar tools. SVEngine’s flexibility for accepting differ-
ent formats enables a user to generate whole-genome or tar-
geted sequencing data that mimic germ-line, somatic, and com-
plex clonal structured genomes with ease. It offers a high degree
of allelic control through its parallelized divide-and-conquer
planning scheme. In the simplest mode, users only need to pro-
vide the template (reference) sequences and a desired meta-
distribution of type, size, and variant frequency in order to re-
ceive a full set of resulting FASTA, FASTQ, and BAM outputs
along with the ground truth BED file.

SVEngine features and simulation performance

We compare the available features of SVEngine with other sim-
ulators that include RSVsim [23], SCNVsim [24], VarSim [14],
and BAMsurgeon [26], as shown in Table 1. SVEngine and the
other tools can simulate common types of copy number events,
e.g., deletions and tandem duplications. All simulators except
SCNVsim simulate copy number neutral events, including in-
sertions, inversions, and translocations. SVEngine improves the
simulation of more complex SV events; it incorporates a variety
of additional structural variant types originating from a combi-
nation of changes, such as inverted translocations, inverted du-
plications, duplicated translocation, and foreign sequence inser-
tions. Users directly specify these events while preparing their
input parameters; this process is more streamlined compared
to other tools. For example, viral genome sequence insertion,
which is a hallmark of the genomes of infected cells as seen in
viral diseases and cancers [27], is easily achieved with SVEngine
but not available with other simulation software except for BAM-
Surgeon.

In terms of input/output flexibility and ease of use, SVEngine
provides automation of template sequence modification, read
simulation, and read mapping steps. These features are not
found in other simulators of SV events. Also, SVEngine is the
only tool that outputs a full set of simulation results in standard
formats, including altered contig sequence (FASTA), simulated
short reads (FASTQ), and alignment (BAM) files (Fig. 1). At the in-
put step, all tools take in template sequences in FASTA format as
the starting material, while BAMsurgeon additionally requires
a pre-existing alignment file in BAM format as input. Overall,
read coverage of this BAM file has to be large (typically >30x)
in order to successfully assemble local contigs. Such require-
ments preclude the use of BAMSurgeon in applications gener-
ating low coverage and consequently limit its users to mim-
icking conditions based on available high-coverage BAMs. The
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Table 1: Available features of structural variant simulators

Use cases SVEngine RSVsim SCNVsim VarSim BAMsurgeon

Copy number events: deletions, tandem duplications � � � � �
Copy number neutral events: inversions, insertions,
translocations

� � � � �

Phylogenetic clonal structure: cancer clonal evolution tree
model

� � � � �

Foreign sequence insertion: virus integration � � � � �
Non-human genome: variable haploid template and
ploidy

� � � � �

Not requiring pre-existing alignment: without BAM input � � � � �

Generate simulated contig: with FASTA output � � � � �
Generate simulated reads: with FASTQ output � � � � �

Generate simulated alignment: with BAM output � � � � �
Locus-specific variant ploidy: allelic imbalance � � � � �

Locus-specific variant frequency: variable somatic allele
frequency

� � � � �

Exact breakpoint: specifiable at base pair resolution � � � � �
Multiple sequencing libraries: e.g., multiple insert size,
read length

� � � � �

Figure 1: Inputs, outputs, and execution components of SVEngine. The flow of data is marked by gray arrows. The input, SVEngine functioning, and output data spaces

are color shaded. ∗New file formats VAR, META, and PAR were introduced by SVEngine for specifying specific variants (VAR) or variants’ meta-distribution (META) to
be simulated, or for specifying parameters for sequencing library and run (PAR). Please see the online manual for detailed explanations.

VarSim tool needs structural variant prototypes from DGV [28],
making it only applicable to the human genome. At the output
step, RSVsim and SCNVSim provide modified sequence contigs
in FASTA files. BAMsurgeon mainly outputs modified alignment
in BAM files. The associated contigs need to be extracted from
log files. VarSim provides both contigs containing a variant and
simulated short reads, but it still requires additional user effort
to generate alignment files.

With regard to precise and versatile control of individual vari-
ants, SVEngine enables one to easily specify variant type, size,
exact breakpoint, ploidy, and allelic fraction for individual loci.
Additionally, SVEngine simulates a full spectrum of germline,
somatic, and clonal structural variations by the specified meta-
distribution. In comparison, RSVSim does not support loci-level

control, as it only patches template sequence on demand. With
SCNVsim and VarSim, one only controls a meta-distribution of
structural variants, such as the total number for each variant
type and minimum and maximum variant size. SCNVsim allows
the specification of ploidy, number, and type of clones but does
not have the capability to specify exact breakpoints. VarSim ran-
domly resamples breakpoint and other variant information from
a DGV database dump. Only BAMsurgeon and SVEngine sup-
port locus-specific variant fractions, i.e., allowing different allele
fractions for individual variants. Moreover, only SVEngine sup-
ports locus-specific ploidy, i.e., allowing a different ploidy state
for individual variants. Both BAMsurgeon and SVEngine also
support exact breakpoints for individual variants. However, in
practice, the actual breakpoints generated by BAMsurgeon may
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differ from input as a result of improvised local contig assembly.
Another unique feature of SVEngine is the ability to specify mul-
tiple sequencing libraries, which can each have different insert
size mean and standard deviation, intended coverage depth, and
read length.

In addition to the features listed in Table 1, SVEngine allows
users to designate some regions while avoiding others. Exam-
ples of such applications include simulating exome or targeted
sequencing datasets. This feature enables one to avoid complex
regions such as telomeres and centromeres. SVEngine also fea-
tures parallelized simulation by dividing a genome into pieces,
embedding variants into each piece, and then stitching them to-
gether. Therefore, its performance can be boosted using the mul-
ticore processors.

Table 2 lists the runtime on a test set of 15,000 SV events
into a 30x coverage whole-genome sequencing simulation, in-
cluding 2,500 that consist of deletions, tandem duplications, in-
versions, translocations, and domestic or foreign sequence in-
sertions. In multiprocessor mode, SVEngine has the shortest
runtime in all three levels of simulation, i.e., obtaining altered
contigs, simulated reads, and alignments in FASTA, FASTQ, and
BAM formats in less than 10 minutes, 20 minutes, and 3 hours,
respectively. Overall, SVEngine is 1x, 15x, and 48x times faster
than the single-process SVEngine run. The performance scales
almost linearly with the added central processing unit (CPU)
power in generating the alignment output, because the read
mapping time cost dominates other time costs, including data
serializing time. Finally, even the single-process SVEngine (SVE-
single) is more efficient than its other counterparts. For example,
it took only 10 minutes for SVE-single to generate all altered con-
tigs, while RSVSim and SCNVSim took several hours. SVE-single
required half the time BAMSurgeon needs to generate all read
alignments. All runtimes were measured on a computer server
with four Intel Xeon E7-4850 CPUs (16 cores for each CPU) and
with 256 GB shared random access memory (RAM).

Simulating cancer genome evolution

SVEngine provides a high degree of control over SV events with
variable allelic fractions. This feature enables one to simulate
heterogeneous cancer genomes undergoing a phylogeny tree-
structured clonal evolutionary process. As a demonstration, we
present an example simulated with SVEngine (Fig. 2). To simplify
the description of the phylogenetic process of cancer evolution,
we use a binary tree representation of phylogeny. This binary
tree is easily converted to a typical phylogeny tree by merging
all nodes of identical cell subpopulations.

One example is a binary tree shown in Fig. 2A, where each of
the five ( internal tree nodes denotes a bifurcation event when
part of the parental cell population is gaining an additional mu-
tation (Vj , j = 1 . . . m). The root node represents the lowest com-
mon ancestor cells of all subpopulations of cancer cells. These
are typically normal cells that carry a genome that matches a
germline genome, subsequently from which somatic genetic al-
terations accrue as part of cancer development. The root cell
populations are split by the next immediate event, i.e., gaining
the mutation V1, resulting in two daughter cell populations de-
pending on a cell’s status of carrying V1 or not, as represented
by its two daughter cellular node. We denote the conditional cell
fraction of gaining V1 as f (V1), which is 50% or 0.5, in this case,
and is denoted at the root. The mutational process goes on for
subsequent internal nodes and until all variants (a total of five in
this example) are represented by their bifurcation internal node.
The resulting binary tree has six (n = 6) leaf nodes (Ci , i = 1 . . . n),

which represent all possible somatic genotypes of the terminal
cell subpopulations.

As we can see, any terminal somatic genotype is completely
determined by following the mutational path from the root
down to a leaf node. We use a tertiary vector Ci = (ci,1 . . . ci,m) to
indicate such a path, where

ci, j =

⎧⎪⎨
⎪⎩

0, if Vj is not in the mutation path to Ci

1, if Vj is in the mutation path to Ci but Ci doesn’t carry Vj

2, if Vj is in the mutation path to Ci and Ci does carry Vj

In addition, we define the conditional frequency f (Vi ), which
is the fraction of cells derived from a parent population carry-
ing event Vi as: f (Vi ) = # Child cells Gains Vi

# Parent cells at the verge of gaining Vi
. Therefore,

the final population frequency F (Ci ) of cell subpopulations Ci is
expressed as:

F (Ci ) =
∏

j:ci, j >0

[(ci, j − 1) ∗ f (Vi ) + (2 − ci, j ) (1 − f (Vi ))] (1)

With I (.) as the indicator function, the concurrent proportion
F (Vj ) of all extant cells is simply the marginal sum of all cells
carrying Vj :

F (Vj ) =
n∑

i=1

I (ci, j = 2)F (Ci ) (2)

Fig. 2B shows the derivation of the above quantities for the
example binary tree. The sequence of events ensures a partial or-
der that the mutant allele frequency is always higher for events
occurring upstream, as compared to events occurring down-
stream on the same lineage. It is possible that terminal geno-
types may not all coexist in extant populations. The proposed
binary tree representation accommodates a deceased popula-
tion by having zero proportion for such a leaf node. SVEngine
allows the user to input a binary tree with relevant bifurcation
fractions to structure the variant fractions that fall along the line
of the evolutionary tree. For designating this feature, the input
to SVEngine is in standard NEWICK format, which is a widely
accepted format that uses parentheses to encode nested tree
structures [29]. Each internal node is labeled by the population
splitting variant and weighted by the conditional splitting frac-
tion. Each leaf node is labeled by associated terminal genotype
and weighted by the subpopulation fraction as an optional fea-
ture. For instance, the NEWICK string for the example binary tree
is: ((C1, C2) V5: 0.8, ((C3, C4) V4:0.8, (C5, C6) V3: 0.9) V2:0.6) V1:0.5.

Fig. 2C shows the Integrative Genomics Viewer view of
SVEngine simulated BAM alignments of five equal-size deletions
following the mutational process as represented by the exam-
ple binary tree. The read depth shows the difference of allelic
fractions corresponding to the computed final variant fractions
based on the tree. We display an example of monoclonal cancer
evolution, assuming that all cellular subpopulations start from
a set of common ancestor cells (as denoted by the root node in
the tree). In addition, simulations of multiclonal evolution are
also possible with SVEngine. For example, one simply assigns
an empty event to V1 and then sets the conditional fractions of
the two child events V1 and V5 to 100% to simulate a two-clonal
origin evolution. With SVEngine’s high efficiency, the simulation
is easily scaled to tens of thousands of variants, with a tree hav-
ing a more complex structure.
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Table 2: Runtime performance comparison

15,000 events at
30x coverage

SVEngine (64
cores) SVEngine (1 core) RSVSim SCNVSim VarSim BAMSurgeon

FASTA output <10 minutes <10 minutes 10 hours 2 hours Not available Not available
FASTQ output <20 minutes 5 hours External External 6 hours Not available
BAM output 2 hours 5 days External External External >10 days

Not available: output format is not available.
External: output format is only available through additional external software, thus not tested.

Figure 2: Simulating cancer evolution. (A) An example cancer evolution tree. The conditional fraction in each internal node represents the fraction of cell population
gaining the next structural variation, which is represented by the label of the internal node. (B) An example computation table to determine final variant frequency

of each variation and cell population frequency of each terminal genotypes. (C) Integrative Genomics Viewer view of SVEngine simulated BAM data of five deletions
following clonal structure in the example binary tree.

Simulating the multitude of structural variations

Current structural variation detection methods mostly rely
on detecting altered read mapping features to identify struc-
ture changes [30]. The most important features are read
depth/coverage, read pair insert size, single-ended read pairs
(hanging reads), soft-clipped reads, and split reads (clip/split
reads). It is essential for structural variant simulators to cor-
rectly produce such feature changes corresponding to the causal
event. In Fig. 3, we comprehensively illustrate the expected
changes in mapping that result from different types of structural
variants.

In the scenario of a deletion (Fig. 3, first row), all the map-
ping features such as coverage, insert size, hanging read and
soft-clip/split read are expected to change, as illustrated in the
Coverage, InsertSize, HangingRead and ClipSplitRead columns, re-
spectively. First, there is a reduction of read coverage over the
deleted region because no reads are present. Second, for those
read pairs that are mapped straddling the breakpoints, the insert
size is expected to increase as inferred by alignment to the ref-

erence. This extended insert size is possible because the deleted
region is not present in the real DNA molecules where these read
pairs originate from. Third, a fraction of read pairs aligning to the
left of the left breakpoint lack a mapped mate read; this gener-
ates a right mate hanging read pair. This phenomenon is also
called a right hang. This phenomenon occurs because the left
breakpoint has interrupted the mate mapping by reducing sim-
ilarity between the read and the reference. Due to symmetry,
left mate hanging read pairs (left hang) form to the right of the
deletion. Finally, when the breakpoint interruption in the mate
is limited to the end of the read, it is possible that the mate read
can still partially map. The noncontiguous part of the mate is
either clipped or, if it is long enough, mapped to near the other
end of the deletion. Such resulting read pairs are what we refer
to as left or right soft-clipped (or split mapped) reads, depending
on which side of the reads were split or clipped. These read pairs
are expected to map right next to both breakpoints with the clip-
ping (or splitting site) aligned to the exact breakpoint location,
as shown.
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Figure 3: Expected read mapping features of structural variant prototypes. Rows—variant prototypes: 1) Deletion, 2) Insertion, 3) Duplication, 4) Inversion. Columns—
mapping features: 1) Read coverage, 2) Read pair insert size, 3) Single end mapped read (HangingRead), 4) Soft clipped read or split mapped read (ClipSplitRead). The
x-axis is genomic coordinates. The y-axis is feature value/counts. Dashed orange line stands for expected feature value without alteration. Solid blue line stands for

expected feature value with alteration. Dotted green bar denotes the breakpoint(s).

For an insertion (Fig. 3, second row), the most noticeable
change is the clustering of both the right- and left-hanging read
pairs centering over the breakpoint. One observes a similar clus-
tering for the left and right clip/split reads. As shown in Fig. 3, an
insertion exhibits fewer changes than other types of structural
variants, and so insertions are generally the most difficult to de-
tect. In the scenario of a tandem duplication (Fig. 3, third row),
the read coverage is expected to increase within the duplicated
region. The insert size of reads mapping to the left of the right
breakpoint is expected to decrease or even produce a negative
value based on the duplication’s position in the chromosome.
This is the case because the mate is likely to have the same se-
quence as the segment preceding the read. Then, when the mate
is mapped upstream of the current read, it causes a reversal of
normal read strand order and introduces a negative insert size
in the read mapping. By the same reasoning, the right-hanging,
clipped, and split reads are clustered upstream next to the right
breakpoint. Similarly, the left-hanging, clipped, and split reads
are clustered downstream next to the left breakpoint, making
the tandem duplication almost a mirror image of deletion.

In the scenario of an inversion (Fig. 3, fourth row), the cover-
age shows almost no change. The insert size near the left break-
point is similar to the deletion scenario, which has an increase.
This occurs as a result of the mate from the reverse comple-
ment of the other end of the inverted segment. This scenario
creates an inflated insert estimate and an abnormal forward-
forward strand read pair. Similarly, the insert size near the right
breakpoint is decreased and forms an abnormal reverse-reverse
strand read pair. When these abnormal pairs are interrupted
by the breakpoints, it creates corresponding hanging read and

clipped/split read clusters around both breakpoints. Citing an-
other example, a chromosomal translocation is simply a combi-
nation of features at the region deleted by the translocation and
insertion features at the region inserted.

Simulation benchmark with NA12878

We additionally validated SVEngine’s simulated data by ap-
plying popular structural variant callers and a tumor hetero-
geneity estimating tool to SVEngine-generated whole genome
sequencing (WGS) data and benchmarked their performance
with SVEngine’s input ground truth. For our initial benchmark,
we simulated WGS data for a well-studied individual NA12878
based on her known variants [31]. We applied the commonly
used SV callers Lumpy [2] and Manta [10] and computed perfor-
mance metrics such as the true-positive rate (TPR or sensitivity)
and false discovery rate (FDR) for the callers at different sim-
ulated coverages. We simulated 20,759 structural variants for
NA12878 with exact genotype and breakpoint information. The
set included 19,034 deletions, 1,150 duplications, 328 inversions,
and 247 insertions. These insertions included 91 LINE1, 58 ALU,
and 9 SVA mobile element insertions, for which we determined
the exact inserted sequence using RepBase [32].

As shown in Fig. 4A and Fig. 4B, both SV callers performed
well on the SVEngine simulated data. For Manta, the overall TPR
ranges from 60% at 10x coverage to 98% at 100x. For Lumpy,
the TPR is 40% at 10x coverage and rises to 88% at 100x. There
seems to be a critical coverage value at around 25x, above which
both callers can reach >80% sensitivity. This is in agreement
with the widely accepted empirical coverage choice at 30x for
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WGS. The overall FDR for Manta was consistently within the
2%–3% range for average coverage, ranging from 10x to 100x.
The FDR for Lumpy was considerably higher, from <1% at 10x
to 23% at 100x. This is counterintuitive since we generally as-
sume that higher coverage leads to improved performance and
not the other way around. Why is this so for Lumpy? The de-
viation of the two tools in FDR may result from their different
calling strategies. Manta likely has a dynamic coverage-based
threshold. Lumpy’s default parameter (as provided in its online
manual) is likely tuned for <50x coverage for optimal perfor-
mance. For higher coverage data, Lumpy may need to be cali-
brated, and this can be done using SVEngine’s simulated data.
As SV typing is still challenging for SV callers, to compute these
overall TPR and FDR, we required only an adjacent match of pre-
dicted breakpoint and the ground truth.

If one considers the SV type (see Supplementary Table S1),
deletions are the least challenging SV type for all callers. Manta
TPR ranged from 60% to 99% as the coverage increased from 10x
to 100x. Its FDR was consistently low at <1.2%. The same was
true for Lumpy, which had a TPR increase from 42% to 88% with
a consistently low FDR at <2%. Calling inversions were also well
achieved by the callers. Manta and Lumpy TPR ranged from 83%
to 100% and 66% to 97.3%, respectively, with increasing cover-
age. Both maintained an FDR that was approximately zero. Their
performance diverged when it came to calling duplications and
insertions. Manta maintained good performance at calling du-
plications, with TPR increasing from 47.5% to 90.6% with cover-
age and the FDR maintained close to zero. Its performance with
insertion was less impressive, as the TPR increased from 0% to
41% with coverage with considerable FDR in the range of 30%–
40%. On the other hand, Lumpy did not correctly type any dupli-
cations and insertions, and breakpoints of these SV types were
more likely to be classified as unknown. Lumpy had a signifi-
cantly increasing number of untyped calls with higher coverage.
Between 30% and 50% of such calls were validated breakpoints of
duplications and insertions. Generally, the SV callers performed
well on calling and typing deletions, inversions, and duplica-
tions with SVEngine simulated data. Manta had the best overall
performance. Calling and typing insertions were the most chal-
lenging task for SV analysis. SVEngine simulation of insertions
will aid in further development of insertion callers.

Simulation benchmark with tumor heterogeneity

To validate SVEngine’s correctness in simulating various mutant
allele frequencies, we simulated a series of WGS data represent-
ing two-population mixtures of tumor and normal genomes at a
chosen level of tumor purity. We derived copy number segment
files from the SVEngine simulated dataset and ran the tumor
heterogeneity caller THetA2 [33] to infer the mixing subpopula-
tion frequency.

We compare the THetA2 estimates to the input ground truth
purity to SVEngine in Fig. 4C and Supplementary Table S2. The
THetA2 estimated purities are (0.165, 0.234, 0.466, 0.728, and
0.844) for input ground truth purities at (10%, 25%, 50%, 75%, and
90%), respectively. The root mean square deviation is 0.043 and
the Pearson correlation coefficient is 0.996 (i.e., R2 > 0.99)). The
high correlation and small error measure indicate SVEngine’s
correct simulation of tumor and normal mixture WGS data. The
copy number segments derived from such data are suitable in-
put to standard tumor heterogeneity tools such as THetA2 for
reliably estimating tumor purities, even for simulating extreme
cases where the tumor purity is as low as 10%.

Conclusions

We have developed and released SVEngine, a structural vari-
ant simulator, available as an open-source program. It simulates
next-generation sequencing data that has embedded structural
variations as well as an assortment of complex sequence fea-
tures. SVEngine simulates and outputs mutated sequence con-
tigs (FASTA), sequence reads (FASTQ), and/or alignment (BAM)
files with desired variants, along with BED files containing
ground truth. SVEngine’s flexible design enables one to specify
size, position, and heterogeneity for deletion, insertion, dupli-
cation, inversion, and translocation variants. SVEngine’s addi-
tional features include simulating sequencing libraries having
multiple different molecular parameters and targeted sequenc-
ing datasets. SVEngine is highly parallelized for rapid and high-
throughput execution.

We showed the versatility and efficiency of SVEngine by com-
parison of features and runtime vs. other available simulators.
We demonstrated the utility of SVEngine in an example mim-
icking the phylogeny in cancer clonal evolution by simulating
the associated variant allelic frequency. We validated the accu-
racy of SVEngine simulations by examining expected sequence
mapping features such as coverage change, read clipping, insert
size shift, and neighboring hanging read pairs for representative
variant types. SVEngine is implemented as a standard Python
package and is freely available for academic use [34].

The analysis of structural variants is an important part of ge-
nomics research. Improvements in the field also come from a
growing set of available technologies, e.g., long read technolo-
gies such as the single-molecule, real-time sequencing by Pa-
cific Biosciences [35]; nanopore sequencing by Oxford Nanopore
Technologies [36]; and synthetic long read technologies such
as the chromium droplet-based library preparations by 10X Ge-
nomics [37-39]. As the empirical data from these technologies
accumulate, platform-specific read simulators such as PBSIM
[40] and NanoSim [41] will become increasingly available. Al-
though the implementation is nontrivial, the design of SVEngine
is fully compatible with alternative read simulators. Going for-
ward, we will work with the community to expand SVEngine
with more powerful features, such as multiplatform simulation
and cophased single-nucleotide polymorphism simulation.

Methods
Simulation software and pipeline

SVEngine was developed as a standard Python package with a C
extension. SVEngine provides two Python executables and one
C command line executable: mutforge, tree2var and xwgsim, re-
spectively. The mutforge command implements a parallelized al-
gorithm that divides the template genome into blocks of contigs,
spikes structural variants into the contigs, samples short reads
from the altered contigs, and finally merges the short-read sets
back into one file and performs the alignment. The tree2var com-
mand implements a procedure that determines variant fractions
from an input phylogeny tree based on Equations (1) and (2) and
a depth first search graph algorithm and then substitutes these
allele fractions in an input VAR file. The xwgsim command imple-
ments a modification to wgsim, which reduces the read sampling
rate by 50% for the overlapping regions between contigs (i.e., lig-
ation regions). The overlaps were designed so as to allow for the
proper merging of contig-wise read sets. xwgsim only interacts
with mutforge and thus is mostly transparent to a user.
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As shown in Fig. 1, the required inputs to mutforge are three-
fold: (1) a template haploid sequence file(s) in FASTA format.
This can be a standard human genome reference or any other
reference genome sequence. (2) A VAR file or a META file for
specifying structural variants (distributions). These are tab de-
limited files with columns defined in SVEngine’s manual. The
VAR format is intended for specifying exact information for in-
dividual variants, which includes variant ID, parent ID (if part of
a complex event such as a deletion occurring due to a translo-
cation), fraction, ploidy, chromosome, starting position, and the
sequence length to be deleted and/or the sequence content to be
inserted. Alternatively, the META format is intended for higher-
level control, allowing one to specify a desired meta distribution
of variants, including variant type and total number of events,
size, allele fraction, and ploidy distributions per type. One can
specify where and how to insert the sample sequence in the case
of foreign DNA insertion. For example, a user can readily design
100 deletions of size ranging from 100 bp to 10k bp of a uniform
distribution of allelic fraction and a fair Bernoulli distribution of
homo- and heterozygosity in one line of text in the META file. (3)
The PAR file is used to model an experimental design, including
insert size, read length, and coverage, as well as additional op-
tions for xwgsim. The file can be used to specify multiple libraries
with different mean insert size and standard deviation. One can
use such normal mixtures to approximate irregular libraries of
multiple modes and asymmetric tails. The xwgsim command
also provides random embedding of single nucleotide variations
(SNV) and indels if desired. On the SVEngine’s Wiki page, we sup-
ply example VAR, META, and PAR files with detailed annotation
to facilitate their usage.

Once all inputs are provided, the SVEngine master process
divides the template genome into blocks and serializes spike-in
tasks to parallel worker processes. The worker process patches
its assigned contig. If read pairs were required, it also calls
xwgsim to simulate read pairs. The read pair subsets are then
collected by the master process and merged. If alignments were
required, it also calls bwa-mem and samtools to map the reads to
the reference.

The output of SVEngine has three levels. At the first level
(contig), only two files would be generated: one is a FASTA file
containing all the altered contigs and the other is the ground
truth of spiked-in variants in a BED3 format file with the addi-
tional columns following the VAR format as in the input. At the
second level (read pair), SVEngine additionally outputs the read
1 and read 2 of the simulated read pairs in two FASTQ files. Fi-
nally, at the third level (alignment), SVEngine provides the read
alignment output to the given reference in a BAM file format. The
runtime of SVEngine increases with the specified output level, as
additional processing time will be required. Table 2 can be used
as a reference for runtime estimates for different output levels.

The tree2var command simulates a clonal evolution scenario,
which requires an additional tree input file (NEWICK). tree2var
also takes a VAR file, which can be generated from mutforge with
a META file input and in the dry-run mode. The user must en-
sure that the identifier of the tree’s internal nodes and the vari-
ant match each other, as this is used to identify and replace al-
lele fraction with the value computed from tree phylogeny. The
tree2var outputs a new VAR file that contains the rewritten allele
fraction fields that reflect the clonal structure described by the
user tree. For intuitive diagnostics, tree2var also outputs an ASCII
text-based plot of the parsed input tree. SVEngine’s tree parsing
interacts with DendroPy [29], which allows further functionality
such as random tree simulations and many tree statistics. The

output VAR file from tree2var then becomes the input to mutforge
for actual read simulation.

A parallel simulation framework

SVEngine’s major improvements to existing structural variant
simulation tools involve one’s ability to alter the allelic fraction,
control of haplotypes, and highly efficient parallelized simula-
tion. These improvements were achieved through the core al-
gorithm as illustrated in Fig. 5. In general, we used a divide-
and-conquer approach intertwined with multiprocess execu-
tion. First, the SVEngine master process lays out a genome
grid for simulation. For any input haploid sequence, the entire
genome is partitioned into N equal size nonoverlapping blocks:
B1, B2, . . . , BN, where Bk = [ G(k−1)

N + 1, Gk
N ]. The planned block size

G
N (i.e., plan size in the manual) can be chosen at the input, where
G is the entire genome length. Ligation regions of length l (i.e.,
ligation size in the manual) are also defined, which consists of
symmetric touching border regions of equal size adjacent blocks:
L1, L2, . . . , L N−1, where Lk = [ Gk

N − l
2 + 1, Gk

N + l
2 ]. These serve as

buffer regions that enable the SVEngine to ligate block sequence-
based simulations back together. The block generating proce-
dure is similar for multichromosome genomes, except blocks
representing chromosome ends might be shorter than the stan-
dard block size.

Second, the SVEngine master process coordinates all of the
tasks. In one task, a structural variant is embedded into the ad-
jacent sequence. This is done by assigning a sequence of blocks
that it impacts. All the variant’s control information is attached
to the task as well. In Fig. 5, the first variant, a 50% deletion
SVi , was assigned blocks Bi1 , Bi1+1, . . . , Bin , and the next variant,
a 100% deletion SVj , was assigned blocks B j1 , B j1+1, . . . , B jn . De-
pending on its size, a variant can take anywhere from one block
to as many blocks as needed. The genomic region that is not al-
tered between adjacent variants, e.g., SVi and SVj , also becomes
a task. This is assigned to the sequence blocks that are comple-
mentary to the blocks taken by SVi and SVj and with a no-op
instruction attached. If necessary, no-op tasks with large block
sequences are further broken down to no-op tasks with size-
capped block sequences to improve efficiency of parallelization.
The size cap is defined by the trunk size option as explained in
the manual.

Third, the SVEngine master process dispatches all the tasks
to an auto revolving worker process pool and then waits for
all the workers to finish. Each worker process, when assigned
a new task, loads the haploid sequence defined by the task’s
block sequence plus left and right ligation regions. For exam-
ple, a worker would load sequence from [ Gi1

N − l
2 + 1, Gin

N + l
2 ]

for SVi as the original contig, or [ G j1
N − l

2 + 1,
G jn
N + l

2 ] for SVj , or

[ G(in+1)
N − l

2 + 1,
G( j1−1)

N + l
2 ] for the no-op task in between them.

The original contig is then operated on for deletion, insertion,
or other alternations to form the altered contig. If no-op, the
original contig is unaffected. The worker then calls xwgsim to
simulate the proper numbers of read pairs from the original and
altered contigs according to the specified frequency and result-
ing contig sizes. The xwgsim step also takes care of attenuated
sampling (at half the normal rate) within the designated liga-
tion regions as the worker provides the ligation size l in its ar-
guments. In addition, xwgsim adds a procedure to the popular
NGS simulator wgsim [42] to correctly adjust coverage for a lig-
ation region. Briefly, we define the ligation region as a segment
of haploid sequence where two adjacent contigs to be simulated
overlap. The ligation region is used to ensure proper and contin-
uous transition from simulating reads from the first contig to the
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Figure 5: The core parallelized simulation algorithm of SVEngine. Here are two neighboring events SVi and SVj : a 50% deletion and a 100% deletion to be spiked in. The
first deletion event spans blocks Bi1 , Bi1+1, . . . , Bin , and the second deletion event spans genome blocks B j1 , B j1+1, . . . , B jn . The genome blocks are shaded in blue, and

the ligation regions are shaded in orange. The resulting read pairs are represented by their coverage in black dash patterns. The parallel execution tasks are boxed in
green.

Figure 4: Simulation benchmark of SVEngine. We measured (A) TPR and (B) FDR for the two SV callers (Lumpy and Manta) using SVEngine simulated WGS data with
10x, 25x, 50x, 75x, and 100x coverage, respectively. (C) We measured the concordance in R2 between THetA2 estimated purity and ground truth with 10%, 25%, 50%,
75%, and 90% tumor cell fractions based on SVEngine-simulated WGS data.

second. That also means a ligation region would be simulated
twice—once along with the first contig and then along with the
second contig. To compensate for potential double coverage in
a ligation region, we implemented an adjusted read generation
procedure in xwgsim, which only simulates 50% of the intended
read coverage within the region for one contig. Such patterns of
expected read pair coverage from the SVi , SVj , and no-op tasks
are illustrated in Fig. 5.

Fourth, when the worker processes are completed, the mas-
ter process collects all simulated read pairs from all tasks and
concatenates them into two final files, one for read 1 and the
other for read 2. Also, it collects all original and altered con-
tigs and concatenates them into one final sequence file. Finally,
it performs read pair alignment to the reference genome us-
ing bwa-mem and samtools. This last step, although sequential in
SVEngine, is already thread parallelized by other required pro-
grams such as the bwa and samtools tools [22, 43]. Patterns of

expected read pair coverages after merging the SVi , SVj , and no-
op tasks are also illustrated in Fig. 5. The described algorithm
assumes one haploid for simplicity. For multi-ploidy, each hap-
loid is handled in a similar way by the worker process except
that the variant’s haplotype status is also taken into consider-
ation. Overall, this SVEngine’s core algorithm is very efficient,
as demonstrated by the runtime comparison, and is very versa-
tile and accurate, as demonstrated by multiple example appli-
cations described here.

Notable simulator features

To comprehensively evaluate structural variant callers, one may
need a wide spectrum and large number of SV events. This range
is more easily specified by distributions of variants rather than
individual variants. SVEngine supports variant distributions as
specified in the META format. The expansion of distributions
to actual variants takes place in the master process before any
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spike-in. The distributions are expanded on a target genome se-
quentially by randomly picking the next event’s start position
from regions that can accommodate it. Afterward, it removes
the impact region from the remaining available regions, and so
on. Once all distributions are expanded, the master process re-
turns a list of variant fulfills user’s specifications and outputs
them into a VAR file. The user can choose to run SVEngine in
dry-run mode to stop the execution at this point and inspect
the resultant variants. The user also has the option to continue
the simulation to the end, which is equivalent to inputting the
output VAR file into SVEngine for simulation in the next step.

To increase the sensitivity of SV detection, researchers may
prepare multiple sequencing libraries with different molecular
parameters for analysis. For example, different insert sizes en-
able the detection of a wider spectrum of detection of SVs [44].
Longer sequence read length can boost the performance of some
callers that use remapping strategies [45]. A unique feature of
SVEngine is its ability to simulate NGS data modeling of multiple
libraries with different mean insert size and standard deviation,
coverage, and read lengths. The feature is implemented within
the worker process. When using a multilibrary task, SVEngine
will call xwgsim multiple times to generate read pairs in accor-
dance with the library specification.

SVEngine provides simulation data that target or mask spe-
cific genomic regions. This feature emulates targeted sequenc-
ing applications, such as exome sequencing and gene panel se-
quence data. It can be used to exclude problematic regions such
as gaps and telomere and centromere regions of the reference
template. One only needs to provide standard BED format files
to SVEngine listing the regions to be masked or targeted by the
simulated sequencing.

Databases such as DGV and other literature provide a list
of known population variants. Tools such as RepeatMasker [46]
provide extensive lists of known regions of human repeats
and/or homolog sequences, with enrichment of structural vari-
ant breakpoints. Although not provided in our examples due to
their varied formats, in principle, these population and repeat-
mediated variants can be downloaded in general tab delimited
formats such as BED or VCF files. Subsequently, these annota-
tion formats are easily converted into an SVEngine VAR format
input file using text processing utilities such as awk and sed. Us-
ing a VAR file generated in this way, SVEngine can easily embed
these variants into simulation data.

Simulation benchmark with NA12878

To validate SVEngine’s correctness in simulating various struc-
tural variants, we simulated WGS data for a well-studied indi-
vidual NA12878 based on her known variants, as published by
the 1000 Genomes Project (1KG) [31]. Then, we ran commonly
used SV callers Lumpy [2] and Manta [10] and computed perfor-
mance metrics such TPR and FDR for the callers as an indication
of our simulation correctness.

In detail, we downloaded 1KG’s NA12878 final call set from
its ftp site [47]. We also downloaded human mobile element se-
quences from RepBase [32] (version 23.02). After cleaning up in-
consistent variants registered by multiple callers and those that
were mobile element insertion without available RepBase se-
quences, we arrived at 20,759 structural variants for NA12878
with exact genotype and breakpoint information. The set in-
cluded 19,034 deletions, 1,150 duplications, 328 inversions, and
247 insertions. These insertions included 91 LINE1, 58 ALU, and 9
SVA mobile element insertions, the inserted sequence of which
we were able to determine from the RepBase.

We encoded the information of these variants, such as SV
type, genotype, breakpoint, and inserted sequences, into a VAR
format suitable for input to SVEngine. We specified the sequenc-
ing library with a mean insert size of 300 and the sequencing
run with 2 × 150 bp paired-end reads and ran SVEngine to gen-
erate a series of WGS data in BAM files with coverage of 10x, 25x,
50x, 75x, and 100x. The latest version of Lumpy and Manta were
downloaded from their GitHub site and installed. We applied
them on the SVEngine-generated WGS data series with their de-
fault parameters. The resulting SV calls were parsed into BED
files and compared with the ground truth VAR file using BED-
TOOLS. We consider a true positive hit if a call’s breakpoint is
within 20 base pairs of ground truth. We compared caller’s per-
formance both with and without enforcing correct SV typing.
The performance metrics TPR and FDR were calculated as fol-
lows

True Positive Rate (T P R) = # of True Positives
# of Ground Truth

%

and

F alse Discovery Rate (F DR) = # of Calls − # of True Positives
# of Calls

%.

Simulation benchmark with tumor heterogeneity

To further validate SVEngine’s correctness in simulating various
mutant allele frequencies, we simulated a series of WGS data
representing different mixtures of tumor and normal genomes,
ran the tumor heterogeneity caller THetA2 [33] on the simulated
data-derived segment file, and compared the THetA2 estimates
to our ground truth purities.

In detail, we downloaded and installed the latest version of
THetA2 from its GitHub site. We simulated a two-subpopulation
scenario, where one tumor cell population and one normal cell
population were mixed. We used the example segmental inter-
vals provided by THetA2 as the ground truth copy number status
of the tumor cell population and the human reference genome
for the normal cell population. The copy number file has 84 seg-
ments, including 45 neutral, 26 losses, and 13 gains. We accord-
ingly encoded these copy number variants into a series of VAR
files with allelic frequencies: 10%, 25%, 50%, 75%, and 90%. We
used SVEngine to generate WGS data BAM files based on the
series of VAR files, with mean insert size 300 bp, 2 × 150 bp
paired-end reads, and 100x coverage. We used featureCounts [48]
to compute the probe segment file suitable for input to THetA2
and ran THetA2 with default parameters to estimate the tumor
heterogeneity. We regressed the THetA2 estimated purity over
SVEngine ground truth purity to find the R2 statistic with the lm
function in R.

Availability of source code and requirements

Project name: SVEngine.
Project home page: https://bitbucket.org/charade/svengine.
Operating system: Linux/Unix
Programming language: standard Python package with a C ex-
tension
Other requirements: GNU C Compiler or similar
License: BSD3
Research Resource Identifier (RRID): SVengine, SCR 01 6235

https://bitbucket.org/charade/svengine
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Availability of supporting data

In silico datasets are available via Bitbucket [34]. An archival copy
of the Bitbucket repository is also available via the GigaScience
database GigaDB [49].

Additional files

Table S1 Simulation benchmark on NA12878. The table includes
full data of NA12878 simulation results, including computed true
positive rate (TPR) and false discovery rate (FDR) for overall per-
formance when SV typing correctness was not enforced (“all”) or
for performance involving specific SV categories when SV typing
correctness was enforced (“del”, “ins”, “inv”, “dup”).
Table S2 Simulation benchmark on tumor heterogeneity. The ta-
ble includes THetA2 estimated purity and input ground truth pu-
rity to SVEngine for the tumor heterogeneity simulation.
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