
Introduction
Colorectal cancer (CRC) is a leading cause of morbidity and
mortality in the United States and worldwide, with increasing
incidence and mortality rates in many parts of the world [1–
3]. Screening colonoscopy has been associated with a reduced

risk of developing CRC in observational studies, with an up to
60% reduction in relative risk of incidence and mortality even
among patients with negative baseline findings [4–6]. The utili-
ty of colonoscopy relies on accurate detection of precancerous
lesions and subsequent removal via polypectomy; however,
clear evidence demonstrates substantial variability in adenoma
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ABSTRACT

Background Colorectal cancer (CRC) is a major public

health burden worldwide, and colonoscopy is the most

commonly used CRC screening tool. Still, there is variability

in adenoma detection rate (ADR) among endoscopists. Re-

cent studies have reported improved ADR using deep learn-

ing models trained on videos curated largely from private

in-house datasets. Few have focused on the detection of

sessile serrated adenomas (SSAs), which are the most chal-

lenging target clinically.

Methods We identified 23 colonoscopy videos available in

the public domain and for which pathology data were

provided, totaling 390 minutes of footage. Expert endos-

copists annotated segments of video with adenomatous

polyps, from which we captured 509 polyp-positive and

6,875 polyp-free frames. Via data augmentation, we gener-

ated 15,270 adenomatous polyp-positive images, of which

2,310 were SSAs, and 20,625 polyp-negative images. We

used the CNN AlexNet and fine-tuned its parameters using

90% of the images, before testing its performance on the

remaining 10% of images unseen by the model.

Results We trained the model on 32,305 images and test-

ed performance on 3,590 images with the same proportion

of SSA, non-SSA polyp-positive, and polyp-negative images.

The overall accuracy of the model was 0.86, with a sensitiv-

ity of 0.73 and a specificity of 0.96. Positive predictive value

was 0.93 and negative predictive value was 0.96. The area

under the curve was 0.94. SSAs were detected in 93% of

SSA-positive images.

Conclusions Using a relatively small set of publicly-avail-

able colonoscopy data, we obtained sizable training and va-

lidation sets of endoscopic images using data augmenta-

tion, and achieved an excellent performance in adenoma-

tous polyp detection.
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detection rate (ADR) among endoscopists, with profound im-
plications for patient outcomes [7–9]. Importantly, sessile ser-
rated adenomas (SSAs) are recognized as particularly challen-
ging lesions to identify due to their frequently flat morphology
and subtle surface features [10–12], which are likely underdiag-
nosed but overrepresented in development of interval CRC [13,
14].

The application of machine learning is a promising modality
to improve endoscopic lesion detection, and many recent stud-
ies have demonstrated its successful use in improving ADR, in-
cluding detection of sessile serrated adenomas (SSAs) [15].
Many of these studies adopted the emerging paradigm of
deep learning, where imaging data flow through an intricate
network of “neurons” in a non-linear fashion, resulting in highly
accurate predictive models capable of polyp detection and lo-
calization [16–19]. However, existing studies have relied on
large, curated databases, which can be expensive or laborious
to obtain and which are not made available in the public do-
main. In addition, existing systems are typically trained on large
networks requiring significant computational resources. In the
present study, we aimed to demonstrate the utility of a relative-
ly small set of publicly available endoscopic videos in training a
small convolutional neural network model, which can achieve
similar accuracy in detecting adenomatous colon polyps, in-
cluding challenging cases like SSAs.

Methods
Data curation

Using public video databases (YouTube, VideoGIE, and Vimeo)
we identified 23 colonoscopy videos ranging from 1 to 41 min-
utes in duration, totaling over 390 minutes of footage. All vi-
deos were colonoscopy technique teaching videos uploaded
by expert endoscopists, and full pathology data were provided
in all cases when a polyp was present and polypectomy was per-
formed. All videos were of standard white light colonoscopy.
The terms ‘screening colonoscopy’, ‘surveillance colonoscopy’,
‘polypectomy’, ‘endomucosal resection’, ‘adenoma’, ‘sessile
serrated adenoma’, and ‘colon polyp’ were used to search for
relevant colonoscopy videos on VideoGIE, Vimeo, and Youtube.
One expert gastroenterologist (TB), then selected colonoscopy
videos which met the following inclusion criteria: 1) videos up-
loaded by an academic center/physician to VideoGIE, Vimeo, or
YouTube; 2) standard-definition or high-definition video quality
with at least “adequate” prep quality; and 3) definitive histopa-
thologic diagnosis of removed polyps. Exclusion criteria for co-
lonoscopy videos were: 1) unclear or unconfirmed source/au-
thor of colonoscopy video; 2) poor-quality video or prep; and
3) significant pathology not relevant to screening colonoscopy
(colitis, active diverticular bleeding). Because each video had
the same frame rate of 30 /second, we adapted command line
tools from VLC (videolan.org) to capture individual frames
from each of the videos. Each video was reviewed by expert
gastroenterologists who annotated the segments of videos
with polyps and designated the type of each polyp seen (e. g.
adenoma, SSA, and other findings such as lipoma and diverticu-
la which were not included in the current study). We specifically

captured video frames that contained adenomatous polyps
during these annotated segments, and sampled polyp-free
frames immediately before and after polyp-containing frames
as controls to ensure equal appearance of polypectomy device
and other potential confounding elements. Certain videos con-
tained no adenomatous polyps and were also included as con-
trols. A detailed description of each video and each polyp is lis-
ted in ▶Supplementary Table 1. We captured 509 video
frames containing adenomatous polyps and 6,875 polyp-free
frames which were used in this study.

Data pre-processing

To overcome the limitations of small sample size and prevent
overfitting, we applied data augmentation techniques, includ-
ing translation, reflections, color palette transformations, crop-
ping, rotations, and Gaussian blurring on each image (frame),
as was performed and benchmarked previously [20, 21]. We ex-
cluded images that were significantly blurred as detected by
the variance of Laplacian filter edge detection introduced in
Huertas et al. [22]. This procedure generated 15,720 adenoma-
tous polyp-positive images, of which 2,310 were SSA, and
20,625 images without adenomatous polyps.

Deep learning framework

We adopted a transfer learning approach and fine-tuned a pre-
trained convolutional neural network (CNN), AlexNet, which is
one of the earliest deep learning frameworks to significantly
improve object recognition [20]. AlexNet consists of five con-
volutional layers, three of which are by max-pooling layers,
and three fully connected layers. As such, it is significantly
smaller than many modern CNNs, which we believed to achieve
a reasonable balance between discriminatory power and com-
putational efficiency. To adapt the AlexNet architecture for our
polyp detection application, we created our model using
parameters trained on ImageNet data hosted on the Caffe
deep learning framework [23], and fed our pre-processed ima-
ges with labels to fine-tune these parameters. Specifically,
using Caffe, we trained this model on 90% of the images, apply-
ing dropout, batch normalization, and initialization/learning
rate adjustment similarly to methods utilized by Krizhevsky et
al. [20], which are considered standard techniques to improve
generalizability of CNNs. We tested the performance of the
model on the remaining 10% of the images unseen by the pro-
gram during training. Training and validation datasets contain
images from different polyps.

Statistical analysis

All statistical analyses were performed using the R program-
ming language version 3.3.We calculated the probability of an
image having a polyp using a normalized softmax output from
the neural network classifier, and used 0.5 as the threshold to
assign predicted class (polyp-containing vs polyp-free), which
were then compared with physician-labeled ground truth. We
performed sensitivity, specificity, and predictive value analyses
using epiR package version 1.0, with default assumptions of
normality to calculate confidence intervals. We computed the
area under the ROC curve (AUC) using the standard pROC pack-
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age version 1.8, where 10,000 stratified bootstrap replicates
were drawn to calculate confidence intervals. To investigate
the limitations of our model, especially those containing SSAs,
we manually examined mis-classified images (including all 17
SSA-containing false-negative images and 80 false-positive
images), and presented those which are representative.

Results
We repurposed the AlexNet CNN model [20] and implemented
it for colonoscopy-specific image recognition, using 32,305
endoscopic images for training (90%) and 3,590 for testing
(10%). Training and testing images came from different sets of
polyps. We balanced our dataset such that 43% of images were
polyp-positive, and 6.4% were SSA-positive (15% of polyp-posi-
tive images were SSA-positive), in both training and validation
sets.

The model achieved an overall binary classification (pres-
ence of adenomatous polyps) accuracy of 0.86, with a sensitiv-
ity of 0.73 (95% confidence interval [0.71, 0.75]), and a specifi-
city of 0.96 (95% confidence interval [0.95, 0.97]). Positive pre-
dictive value was 0.93 (95% confidence interval [0.92, 0.95]),
and negative predictive value was 0.83 (95% confidence inter-
val [0.81, 0.84]) (▶Fig. 1 and ▶Table1). The area under the re-
ceiver operating characteristic curve (AUC) was 0.94 (95% con-
fidence interval [0.9401, 0.9445] based on 10,000 stratified
bootstrap replicates (▶Fig. 2).

When examining the activation patterns of different CNN
layers, we observed a sequential enrichment of higher-level fea-
tures (e. g. edges, light intensity, vascular patterns, ▶Fig. 3),
suggesting that our resulting model was not strongly influ-
enced by noises in the training database of images derived
from publicly available videos, and was thus less likely to overfit.
This was also supported by the observation that the accuracy in
the validation set tracked with that in the training set fairly well
throughout training epochs.

With respect to SSA polyps, among the 231 images in the va-
lidation set, the model obtained an accuracy of 0.93. Upon fur-
ther examination of SSA images which were either correctly or
incorrectly classified, we observed that a few incorrectly-classi-
fied images came from frames of video with significant motion-
induced blurring (▶Fig. 4). On the other hand, we also investi-
gated polyp-free images that were incorrectly classified as
polyp-containing (false positives). These images commonly
demonstrated evidence of motion-induce blurring (▶Fig. 5),
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▶ Fig. 1 Validation result by polyp type, using a validation set of
N=3,590 images. Detailed performance metrics are in ▶Table 1.
This model achieved a high specificity (0.96) and accurately de-
tected sessile serrated adenomas (SSAs).

▶Table 1 Detailed model performance on a validation set of 3,590 images.

Predicted Condition

Total N=3,590 Predicted Positive Predictive Negative

True Condition Condition Positive Overall 1,114 413

SSA 214 17

Condition Negative 80 1,983

SSA, sessile serrated adenoma.
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▶ Fig. 2 Receiver operating characteristic (ROC) curve of the over-
all model. The area under the ROC curve (AUC) is 0.94.
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▶ Fig. 3 Architecture of the underlying convolutional neural network (“AlexNet”) with an exemplary image showing the activation of three
convolutional layers. As raw image data passes through the CNN model, higher-level features of the polyp (bottom of the image) begin to
emerge.

▶ Fig. 4 Example images of correctly classified (a) and incorrectly
classified (b) sessile serrated adenoma (SSA) images. These two
images come from the same video (#12) but the image on the
right has motion-induced blurring.

▶ Fig. 5 Example images of adenomatous polyp-free images incor-
rectly classified as polyp-containing (false positive). Both a and
b are misclassified as polyp-free and are examples of motion-in-
duced blurring, which represents the most common feature of
these false positives.
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suggesting that rapid motions can present challenges to accu-
rately detect polyps using our current model.

Discussion
Artificial intelligence (AI) has profoundly impacted biomedical
research and many aspects of clinical care, and gastroenterolo-
gy is poised to benefit tremendously from the rapidly expand-
ing repertoire of analytical tools and rich imaging data from pa-
tients [15, 16]. In this context, we have shown that using a rela-
tively small set of publicly-available colonoscopy videos and
subsequently applying data augmentation and transfer learn-
ing of a simple convolutional neural network (CNN), it is possi-
ble to identify the presence of colorectal adenomas based on
images captured from colonoscopy videos with high accuracy.
Accurate detection of SSAs as observed in the current study is
particularly promising, because they are difficult to identify
with estimated miss rate ranging from 15% to 41% [24–26]. Be-
cause CNN architecture has been shown to excel in image ob-
ject recognition tasks, we were encouraged to observe the re-
markable improvement in SSA detection, resulting in higher ac-
curacy than other types of adenomatous polyps, likely due to
the intrinsic but subtle consistency of SSA morphology not ea-
sily appreciated by humans.

The present study is meaningful in addressing two of the
common challenges in the application of AI-assisted colonosco-
py: first, existing studies [17–19] using computer-aided detec-
tion and/or deep learning models typically require large data-
base of carefully selected and annotated images which are of-
ten difficult to obtain, and require extensive investment in
computational resources in addition to the time needed for
clinicians to curate these data. Second, datasets collected at a
single medical center in a research environment may be homo-
geneous with site-specific settings, and it is unclear whether
these studies can directly generalize to other institutions. We
have developed a computational pipeline that can harness the
heterogeneous collection of colonoscopy videos in the public
domain, which by data augmentation and standard CNN train-
ing techniques achieved accurate polyp detection with no evi-
dence of overfitting. In addition, our model was trained on ima-
ges directly captured from colonoscopy videos with very high
specificity, suggesting that it is potentially suitable for clinical
use as a real-time computer-aided diagnostic tool.

Compared to some other studies based on deep learning
(e.g. [17, 18]) or other machine learning modalities (e. g. [27]),
our sensitivity is lower (0.73 compared to >0.90) but specificity
is higher (0.96 compared to <0.80), potentially due to our
polyp-free images coming from a wider set of clinical scenarios
spanning all of the videos. This study is also limited by the small
number of videos and images used in both training and testing
of the resulting model, potentially contributing to the lower
sensitivity of the study and making it challenging to further dis-
sect the factors resulting in missed detections and false posi-
tive results (in addition to motion-induced blurring). We ac-
knowledge that these limitations can be addressed by curating
more colonoscopy videos due to the scalability of our pipeline.

Conclusion
While prospectively collected videos from expert centers has
been a typical approach in developing AI algorithms for gastro-
intestinal endoscopy, our work shows that publicly available
video samples are sufficient to develop a viable algorithm for
polyp detection. The next important step will be to determine
if an algorithm developed from data in the public domain can
function equally well if applied to high-quality prospectively
collected videos from endoscopy centers and in the setting of
live clinical care. This proof-of-concept study has shown the po-
tential for using publicly available endoscopy resources to for-
mulate computational models that can accurately detect ade-
nomatous lesions that would otherwise be easily missed by clin-
icians. By further fine-tuning and characterizing the current
model with training and testing on larger datasets, we believe
this is the first step to establish a safe, universal, and easy-to-
use AI platform to improve adenoma detection and patient out-
comes.

Importantly, progress in the field of computer-aided polyp
detection has generally been limited to groups with direct ac-
cess to proprietary data sets of colonoscopy videos and images
obtained through IRB-approved research protocols. Our study
is the first to apply these techniques using endoscopic videos
already available in the public domain, the number and quality
of which are only expected to increase markedly over time. Our
important next steps would be to compare images and videos
obtained from the public domain to those captured from
endoscopy centers and in the setting of live clinical care to fur-
ther establish the unique benefits of this modality. Along with
the rapid ongoing progress in machine learning and AI capabil-
ities, leveraging publicly available data may help accelerate
progress in the field of computer-aided polyp detection.
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▶ Supplementary Table 1 Detailed description of 23 publicly available videos used in the current study.

Video # Total Video Length Pathological Findings Captured Video Length With Pathology (i. e. polyp)

 1 59 s Large adenoma 59 s

 2 27m59 s Adenoma 212 s

 3 11m33 s Polyp –unknown type
Lipoma
Adenoma

110 s

 4 30m09 s Polyp –unknown type 0 s

 5 16m14 s Normal 0 s

 6 14m27 s Normal 0 s

 7 09m07 s Normal 0 s

 8 03m55 s Normal 0 s

 9 13m45 s Normal 0 s

10 30m25 s Adenoma (3 unique) 53 s

11 40m37 s Normal 0 s

12 36m08 s Adenoma
SSA

93 s

13 41m13 s Adenoma (2 unique)
SSA
Small polyp (not removed)
Sigmoid diverticuli

78 s

14 01m50 s Large adenoma 14 s

15 01m46 s Normal 0 s

16 19m14 s Normal 0 s

17 20m00 s Adenoma (3 unique)
Diverticuli

58 s

18 18m14 s Adenoma (3 unique)
Prior right colon resection

80 s

19 12m43 s Normal 0 s

20 25m17 s Adenoma (4 unique) 131 s

21 02m30 s Adenoma with polypectomy 0 s

22 02m00 s Adenoma 34 s

23 01m29 s SSA 5 s

SSA,
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