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Abstract

Six1 is a critical regulator of embryonic development that requires interaction with the Eya family 

of proteins (Eya1-4) to activate the transcription of genes involved in neurogenesis, myogenesis, 

and nephrogenesis. While expression of Six1 and Eya family members is predominantly observed 

in development, their overexpression is observed in numerous cancers. Importantly, both Six1 and 

Eya have independently been shown to mediate breast cancer metastasis, but whether they 

functionally interact during tumor progression has not been explored. Herein we demonstrate that 

knockdown of Eya2 in MCF7 mammary carcinoma cells reverses the ability of Six1 to induce 

TGF-β signaling, as well as to induce characteristics associated with epithelial-mesenchymal 

transition (EMT) and cancer stem cells (CSCs), suggesting that Six1 is dependent on Eya2 to 

mediate numerous pro-metastatic characteristics. The importance of the Six1/Eya interaction in 

human breast cancer is underscored by the finding that high levels of Six1 correlate with shortened 

time to relapse and metastasis as well as decreased survival only when co-expressed with high 

levels of Eya2. Overall, these data implicate Eya2 as a necessary cofactor for many of the 

metastasis promoting functions of Six1, suggesting that targeting the Six1/Eya interaction may 

inhibit breast cancer progression. Since Six1 and Eya2 are not highly expressed in most adult 

tissues, the Six1-Eya interaction may be a valuable future therapeutic target whose inhibition 

would be expected to impair breast cancer progression while conferring limited side effects.
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Introduction

Many processes necessary for early embryonic development are recapitulated in cancer, 

often as a result of homeobox gene re-expression (Cillo et al., 1999; Ford, 1998; Samuel and 

Naora, 2005). Such inappropriate expression of homeobox genes, which encode 

transcription factors, allows for the acquisition of early developmental phenotypes, such as 

proliferation, survival, invasion and migration in adult cells, thereby contributing to 

tumorigenesis and/or tumor progression (Abate-Shen, 2002). The Six1 homeobox gene 

plays a critical role in the development of a number of organs via promoting proliferation, 

survival, migration, and invasion of precursor cell populations (Laclef et al., 2003a; Laclef 

et al., 2003b; Xu et al., 2003; Li et al., 2003). In muscle development, Six1 contributes to 

the delamination and migration of myogenic precursor cells from the dermomyotome to the 

developing limb, in a process that entails an epithelial-mesenchymal transition (EMT)

(Laclef et al., 2003a; Laclef et al., 2003b; Xu et al., 2003). In addition to the role of Six1 in 

development, recent work has identified misexpression of Six1 in numerous cancers 

including breast (Ford et al., 1998; Reichenberger et al., 2005), ovarian (Behbakht et al., 

2007), cervical (Micalizzi et al., 2009), hepatocellular carcinoma (Ng et al., 2006), as well 

as Wilms’ tumors (Li et al., 2002) and alveolar rhabdomyosarcomas(Yu et al., 2004). 

Importantly, Six1 overexpression in cancer recapitulates the pro-proliferative, pro-survival, 

and pro-migratory phenotypes attributed to Six1 in development (Behbakht et al., 2007; 

Coletta et al., 2004; Micalizzi et al., 2009; Yu et al., 2004).

Six1 belongs to the evolutionarily conserved Six1-Eya-Dach transcriptional regulatory 

network that is critical during embryonic development. Members of the Eya family of Six1 

coactivators (Eya1-4) play critical roles in Six1-mediated transcriptional activation. Six1 and 

Eya1 knockout mice phenocopy each other, and both molecules are necessary for the proper 

development of ears, muscle, kidney, thymus, and sensory neurons, as well as for overall 

neonatal survival (Ando et al., 2005; Laclef et al., 2003b; Li et al., 2003; Xu et al., 2003; Xu 

et al., 2002). The phenotypes observed in both KO mice are, at least in-part, due to poor 

progenitor cell proliferation and survival, underscoring the role of the Six1-Eya complex in 

the expansion of progenitor cell populations during normal development. The role of the 

Six1-Eya complex in human disease is also clear, as both Six1 and Eya1 mutations can be 

found in branchio-oto-renal syndrome, where mutations disrupt individual protein function, 

Six1-DNA binding, and Six1-Eya1 binding (Abdelhak et al., 1997a; Abdelhak et al., 1997b; 

Kochhar et al., 2008; Orten et al., 2008; Patrick et al., 2009; Ruf et al., 2004; Vincent et al., 

1997). Additionally, Eya4 mutations are observed in sensorineural hearing loss (SNHL) 

(Schonberger et al., 2005; Wayne et al., 2001; Zhang et al., 2004) where Eya4 function and 

Six1-Eya4 interactions are lost. Together, data from both mouse models and human disease 

underscore the critical developmental function of the Six1-Eya interaction.

Although not highly expressed in most adult tissues, Six1 is misexpressed in multiple 

cancers and re-instates a pro-proliferative and pro-survival phenotype(Coletta et al., 2004; 

Yu et al., 2006). In breast cancer, Six1 also induces EMT- and stem cell-like phenotypes, 

the former of which is mediated through upregulating TGF-β signaling (Micalizzi et al., 

2009) and is likely critical for Six1-induced metastasis. Six1 correlates with advanced 
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disease in many types of cancer, including breast (Micalizzi et al., 2009), ovarian (Behbakht 

et al., 2007), and alveolar rhabdomyosarcomas (Yu et al., 2004). Overexpression of Eya1 

and Eya2 family members have been identified in many of the same cancers as Six1(Li et 

al., 2002; Zhang et al., 2005). In ovarian cancer, two independent studies have demonstrated 

that Six1 and Eya2 each correlate with poor patient survival in advanced disease (Behbakht 

et al., 2007; Zhang et al., 2005); however, as of yet, the role of Six1 and Eya together in 

cancer has not been studied. Importantly, Eya was recently shown to increase proliferation, 

migration, invasion, transformation, and metastasis in mammary carcinoma cells (Pandey et 

al., 2010); suggesting that Eyas, like Six1, play an important role in breast cancer and that 

they may in fact cooperate with Six1 to confer pro-proliferative and migratory phenotypes. 

While a non-nuclear function of Eya was postulated to mediate its pro-tumorigenic 

phenotypes (Pandey et al., 2010), no formal experiments were conducted to test the 

relevance of the interaction between Six1 and Eya in breast tumorigenesis and/or metastasis.

In this study, we demonstrate a cooperative role between Six1 and Eya in mediating 

phenotypes associated with breast tumorigenesis and metastasis. Knockdown of Eya2 in 

Six1 overexpressing MCF7 mammary carcinoma cells reverses Six1-mediated induction of 

TGF-β signaling, as well as the ability of Six1 to induce EMT and an increase in cancer stem 

cell characteristics. The relevance of the Six1-Eya interaction in human breast cancer is 

underscored in gene expression datasets, where only co-expression of Six1 and Eya can 

predict poor patient prognosis. Taken together, these data strongly support the hypothesis 

that Eya is a critical activator of Six1 in human breast cancer, where it is required to mediate 

Six1-induced TGF-β-dependent EMT and expansion of the cancer stem-like cell population.

Results

Eya2 is the predominant Eya in MCF7 cells

We have previously shown that Six1 overexpression in the MCF7 mammary carcinoma cell 

line activates the TGF-β pathway (Micalizzi et al., 2009), leading to a loss of epithelial and 

gain of mesenchymal characteristics. To determine whether Six1 requires the Eya family of 

cofactors to mediate these phenotypes, we first examined which Eyas, if any, are expressed 

in MCF7 cells. Using qRT-PCR with plasmid standard curves and primers that specifically 

recognize individual Eya members, we determined the mRNA copy number of each Eya in 

MCF7 cells overexpressing Six1 (MCF7-Six1) and control (MCF7-Ctrl). Importantly, we 

identified Eya2 as the predominant Eya family member in MCF7 cells, exhibiting 5-fold 

greater expression than Eya3. In contrast, Eyas 1 and 4 were absent or expressed only at 

very low levels (Fig1a). To determine the dependence of Six1 phenotypes on Eya2 function, 

we stably and specifically knocked down Eya2 in MCF7-Six1 cells using two independent 

shRNA sequences. Independent control cell lines were also established in which a scramble 

shRNA control was introduced into MCF7-Six1 and MCF7-Ctrl cells. Two clonal isolates 

were propagated from each shRNA in each line to control for insertion site effects. Eya2 

mRNA and protein levels were determined in each clone (Fig1b and c), and on average, we 

achieved a 75% knockdown.
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Eya2 knockdown in MCF7-Six1 cells reverses the ability of Six1 to induce TGF-β signaling

We have previously shown that Six1 activates the TGF-β signaling pathway when 

overexpressed in MCF7 cells (Micalizzi et al., 2009; Micalizzi et al., 2010). Using our Eya2 

knockdown cells, we examined the dependence of Six1 on Eya2 in mediating increased 

TGF-β signaling. Because we have observed that Six1 overexpression leads to an increase 

both in the levels of the Type I TGF-β receptor (TβRI) (Micalizzi et al., 2010) and in total 

Smad3 levels (Micalizzi et al., 2009), each which may contribute to the overall increase in 

TGF-β signaling, we first examined whether loss of Eya2 would reverse the Six1-mediated 

increases in these protein levels. Indeed, Eya2 knockdown reverses the Six1-mediated 

increase in the levels of TβRI and Smad3 (Fig2b). Further, Eya2 knockdown in MCF7 cells 

leads to decreased signaling downstream of TGF-β as measured by 3TP-luciferase activity, a 

measurement of Smad-mediated TGF-β responsive transcription (Fig2c). Finally, co-

expression of Six1 and Eya2 increases both total and p-Smad3 levels in NMuMG cells 

above that observed with expression of Six1 or Eya2 alone, suggesting that the two proteins 

cooperate to activate TGF-β signaling in multiple contexts (Supplemental Fig1). Together, 

these data demonstrate that Eya2 is necessary for the ability of Six1 to activate TGF-β 

signaling.

Eya2 knockdown partially reverses the ability of Six1to induce EMT

In both cell culture and animal models, Six1 overexpression results in the loss of the 

epithelial phenotype with a concomitant gain in the mesenchymal phenotype (McCoy et al., 

2009; Micalizzi et al., 2009). We have previously shown that this EMT requires Six1-

induced TGF-β signaling (Micalizzi et al., 2009), and thus asked whether Six1 is also 

dependent on Eya2 to mediate EMT. In support of the hypothesis that Six1 requires Eya2 to 

mediate an EMT, knockdown of Eya2 in MCF7-Six1 cells reverses the Six1-induced 

increase in the mesenchymal marker fibronectin (Fig3a). Additionally, Eya2 is required for 

the Six1-induced re-localization of E-cadherin and β-catenin away from the insoluble 

(membranous) fraction and into the soluble (cytoplasmic/nuclear) fraction, a hallmark of 

EMT (Fig3b and 3c). As expected, the decreased levels of soluble β-catenin in the presence 

of Eya2 knockdown correlates with decreased Six1-induced β-catenin-responsive 

transcription as measured by TOP-FLASH reporter activity (Fig3d). These data demonstrate 

that Eya2 is required for the ability of Six1 to induce and/or maintain features of EMT 

associated with the induction of mesenchymal properties. However, loss of Eya2 did not 

restore cytokeratin 18 expression to MCF7 cells, which is normally downregulated in the 

presence of Six1 (data not shown), nor did it reverse the decrease in cell-matrix adhesion 

observed with Six1 overexpression (Fig3e). This suggests that either: 1) Eya2 is not globally 

required for Six1-induced EMT, or 2) that some Six1-induced characteristics of EMT are 

permanent once induced and no longer dependent on Six1 function.

Six1 is dependent on Eya2 for enhancement of cancer stem/progenitor cell characteristics

We recently demonstrated that Six1 promotes a stem/progenitor cell phenotype when 

overexpressed in mouse mammary glands and that tumors which arise in these transgenic 

mice appear to be derived from a stem/progenitor cell population (McCoy et al., 2009; 

Micalizzi et al., 2009). Additionally, Six1 drives TGF-β signaling and EMT, properties that 
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are associated with cancer stem-like cells (CSCs) (McCoy et al., 2009; Micalizzi et al., 

2009; Ouyang et al.; Taylor et al.). Thus, we set out to test whether Eya2, which is required 

for the ability of Six1 to induce TGF-β signaling and EMT, is also required for the ability of 

Six1 to induce a cancer stem cell-like phenotype. While Six1 overexpression of MCF7 cells 

leads to an increase in the population of cells that are CD44+ and CD24−, markers of 

mammary stem/progenitor cells (Al-Hajj et al., 2003), loss of Eya2 significantly reverses 

this increase (Fig4a and Supplemental Fig2). Furthermore, knockdown of Eya2 reverses the 

increase in functional cancer stem-like cells observed with Six1 overexpression, as 

demonstrated in secondary tumorsphere formation assays (Fig4b). Interestingly, Six1 

overexpression not only increases the number of tumorspheres formed by MCF7 cells, but it 

significantly alters their morphology from a uniformed sphere to a less organized shape, a 

phenotype that is also reversed with Eya2 knockdown (Fig4c). Together, these results 

demonstrate that Eya2 is necessary for the ability of Six1 to induce characteristics of cancer 

stem/progenitor-like cells.

Co-expression of Eya2 and Six1 correlates with activated TGF-β signaling in human breast 
cancer

We previously demonstrated that Six1 induces metastasis via increasing TGF-β signaling. 

Additionally, we have shown that high levels of Six1 correlate with high levels of activated 

TGF-β signaling as well as with adverse outcomes in human breast cancer (Micalizzi et al., 

2009). Based on our results suggesting that Eya2 is required for Six1-activated TGF-β 

signaling, we performed immunohistochemical analysis on breast cancer tissue arrays to 

determine if Six1 is dependent on Eya2 to mediate TGF-β signaling in human breast cancer. 

We first produced and characterized an Eya2-specific antibody using an N-terminal Eya2 

peptide. Importantly, this newly developed antibody specifically recognizes Eya2 as 

opposed to other Eya family members (Supplemental Fig3). Using tissue arrays containing 

fifty malignant primary breast tissue samples, immunohistochemical analysis was performed 

with antibodies against Eya2, Six1, and Smad3, which when nuclear is an indicator of active 

TGF-β signaling. Following blinded scoring, the data were divided into above the mean and 

below the mean nuclear staining for Six1 and Eya2. Co-expression of high levels of Six1 

and Eya2 significantly correlates with nuclear localized Smad3 (Fig5), supporting a critical 

cooperative role for Six1 and Eya in mediating TGF-β signaling in human breast cancer.

Co-expression of Six1 and Eya2 correlates with advanced disease and poor prognosis in 
human breast cancer

Because Six1 requires Eya2 to mediate increased TGF-β signaling and to promote EMT and 

cancer stem cell-like properties, and because Six1 and Eya2 correlate with activated TGF-β 

signaling in human breast cancer, which we have previously shown is essential for Six1-

induced metastasis, we further examined whether Six1 is dependent on Eya2 to predict poor 

prognosis in human breast cancer. Using the van de Vijver gene expression dataset, profiling 

tumor mRNA from 295 women with early-stage invasive breast carcinoma (van ’t Veer et 

al., 2002), we previously demonstrated that high Six1 levels significantly correlate with poor 

patient prognosis as measured by shortened time to relapse, shortened time to metastasis, 

and decreased breast cancer specific survival (McCoy et al., 2009; Micalizzi et al., 2009). 

However, in this previous analysis, the correlation with Eya2 was not investigated. We now 
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show that high levls of Eya2 also significantly correlate with shortened time to relapse, time 

to metastasis, and decreased survival (Supplemental Fig4). However, in breast cancer 

patients whose tumors expressed high Six1 levels in the absence of high Eya2, as well as 

high Eya2 levels in the absence of high Six1, there is NO correlation with any of these 

parameters. In contrast, only when tumors express BOTH high levels of Six1 and Eya2 

together, is a strong significant correlation found with shortened time to relapse, shortened 

time to metastasis, and with shortened survival (Fig6). These results can be corroborated in 

the independent Wang dataset (Wang et al., 2005), consisting of 286 lymph-node negative 

breast cancer patients (Supplemental Fig5). These data strongly suggest that Six1 and Eya2 

cooperate in human breast cancer and reinforce the hypothesis that Eya2 is required for the 

ability of Six1 to mediate tumor progression.

As Eya1, Eya2, and Eya4 have all been implicated in cancer, we extended our analysis of 

the van de Vijver dataset to examine whether any Eya family member is able to cooperate 

with Six1 in human breast cancer, or whether this cooperation is specific to Eya2. 

Importantly, in the van de Vijver dataset, Eya1 in conjunction with Six1 also significantly 

associates with shortened time to relapse and to metastasis, as well as with shortened 

survival (Fig7), and although not significant, Eya1 does show a cooperative trend with Six1 

in the Wang dataset (Supplemental Fig6). In comparison, Eya3 only correlates with survival 

in the van de Vijver dataset and Eya4 does not correlate with any adverse outcome in 

conjunction with Six1 in either dataset (data not shown). Together, these data strongly 

suggest that Eya1 and Eya2 are both able to cooperate with Six1 in human breast cancer.

Discussion

The Six homeobox transcription factor reactivates developmental pathways out of context in 

numerous tumor types, likely contributing to both tumor initiation and tumor progression. 

Downstream pathways involved in, and required for, Six1-activated tumor initiation and 

tumor progression have been studied intensely over the past few years (Coletta et al., 2004; 

Micalizzi et al., 2009; Micalizzi et al., 2010; Yu et al., 2006). Since Six1 has no intrinsic 

activation or repression domains, we hypothesized that it would require a co-factor(s) to 

mediate its tumor promotional characteristics. Because members of the developmentally 

required Eya coactivator family are overexpressed in many of the same cancers as Six1, 

including ovarian cancer where both Six1 and Eya2 correlate with advanced-disease and 

poor patient survival (Behbakht et al., 2007; Zhang et al., 2005), we pursued Eya proteins as 

relevant required co-factors of Six1 in human breast cancer.

To establish if Six1 requires Eya to mediate its tumorigenic effects, we knocked down Eya2 

in MCF7 mammary carcinoma cells overexpressing Six1. In this study, we demonstrate for 

the first time, a cooperative role for Six1 and Eya in mediating the pro-metastatic 

phenotypes induced by Six1. Eya2 is required by Six1 to activate TGF-β signaling, as well 

as to induce both EMT and cancer stem cell-like characteristics. These data are supported 

clinically by the demonstration that Six1 and Eya2 are co-expressed with activated TGF-β 

signaling, and that the two proteins together, but not individually, correlate with shortened 

time to relapse and metastasis and with decreased survival. These results strongly suggest 

that Eya2 and Six1 act in concert to promote breast tumor progression.
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Although all Eya family members cooperate with Six1 to mediate Six1-induced transcription 

in cell culture models (Li et al., 2003; Ohto et al., 1999; Zhang et al., 2004), we demonstrate 

that only Eya1 and Eya2 strongly collaborate with Six1 in human breast cancer. This 

association of Six1 with Eya1 and Eya2 is not surprising as Eya1 and Six1 knockout mice 

phenocopy each other (Ando et al., 2005; Laclef et al., 2003b; Li et al., 2003; Xu et al., 

1999; Xu et al., 2003) and as Eya2 and Six1 both correlate with advanced disease and 

decreased survival in ovarian cancer (Behbakht et al., 2007; Zhang et al., 2005). In contrast, 

overexpression of Eya3 has not been observed in cancer, nor has an endogenous role for 

Eya3 with Six1 been demonstrated. Interestingly, Eya4 is methylated and downregulated in 

gastrointestinal cancers (Osborn et al., 2006; Zou et al., 2005), but is overexpressed in 

malignant peripheral nerve sheath tumors along with other Eya and Six family members 

(Miller et al., 2010), suggesting that Eya4 may play roles in both tumor suppression and 

progression, depending on the context. Thus, while Eya1 and Eya2 appear to be the key Eya 

family members necessary for Six1-mediated tumor progression in the breast, we 

hypothesize that, given the correct context, any Eya family member may be sufficient to 

cooperate with Six1 to mediate tumorigenesis.

Interestingly, a recent study demonstrates that overexpression of Eya in MCF7 mammary 

carcinoma cells promotes proliferation, transformation, migration, and invasion of breast 

cancer cells, while knockdown of Eya3 in MDA-231 metastatic mammary carcinoma cells 

inhibits invasion, migration, and metastasis in nude mice (Pandey et al., 2010). The authors 

of this recent study suggest that Eya promotes tumorigenic phenotypes largely through 

cytoplasmic functions, since nuclear targeted Eya did not induce transformation, migration 

or invasion of breast cancer cells to the same extent as wild type Eya protein. While a 

cytoplasmic function for Eya likely contributes to its ability to mediate tumorigenic and 

metastatic phenotypes, the cell lines used in this study contain low levels of Six1, making it 

difficult to assess the dependence of Eya on Six1 in this context. It has previously been 

shown that the presence of Six family members significantly affects the percentage of Eya 

proteins located in the nucleus versus the cytoplasm (Ohto et al., 1999), and that the 

cytoplasmic/nuclear Eya ratio is further influenced by expression of Abl and G-alphai 

proteins, which function with Eya in the cytoplasm (Embry et al., 2004; Fan et al., 2000; 

Xiong et al., 2009). Interestingly, complete eye restoration in Drosophila requires balanced 

nuclear and cytoplasmic eya expression (Xiong et al., 2009), suggesting that full Eya 

function may require spatial regulation between the two Eya pools. Indeed, while the 

cytoplasmic function of non-targeted Eya was deemed critical for the pro-tumorigenic and 

metastatic properties observed in the aforementioned study, nuclear targeted Eya still 

increased pro-tumorigenic/metastatic phenotypes 3-fold above baseline (Pandey et al., 

2010), suggesting that the cytoplasmic and nuclear functions of Eya may cooperate to impart 

the tumorigenic response. Importantly, the requirement of a direct Six1-Eya interaction in 

mediating metastatic phenotypes, as opposed to the two proteins working in parallel 

cooperative pathways, is not yet known. Nonetheless, the cell culture models used in this 

study are strongly supported by the clinical data published herein, and indicate that Six1 and 

Eya indeed require each other to mediate breast cancer progression.
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In addition to its transactivation activity, Eya contains two phosphatase activities, N-

terminal serine/threonine phosphatase activity and C-terminal tyrosine phosphatase activity. 

The C-terminal tyrosine phosphatase activity acts in the nucleus to activate a repair and 

survival pathway by dephosphorylating H2AX in response to DNA damage (Cook et al., 

2009; Krishnan et al., 2009) and in the cytoplasm to mediate phosphotyrosine signaling 

networks during Drosophila development by interacting with the Abelson tyrosine kinase 

(abl)(Xiong et al., 2009). The N-terminal serine/threonine phosphatase activity plays a role 

in the cytoplasm, where it is required for the ability of Eya4 to enhance the innate immune 

response (Okabe et al., 2009). Significantly, the tyrosine phosphatase activity of Eya is 

necessary for Eya-induced migration, invasion, transformation, and metastasis (Pandey et 

al., 2010). The requirement for Eya phosphatase activity in mediating transcriptional 

activation, specifically through Six1, has not been completely elucidated, particularly in 

mammalian cells. Early in-vitro studies analyzing activation of Six1 reporter promoters 

suggest that the Eya phosphatase activity is important to co-activate transcription through 

Six1 (Li et al., 2003). However, a more recent study in Drosophila suggests Eya 

phosphatase activity is only required for a subset of Six1 transcriptional targets (Jemc and 

Rebay, 2007). Thus, the role of Eya phosphatase activity in mediating Six1-induced pro-

metastatic phenotypes remains to be determined.

In conclusion, we have found that the Eya co-activator is required for the ability of Six1 to 

mediate a number of pro-metastatic properties, and that the two molecules together 

significantly predict adverse outcomes in human breast cancer. Understanding the necessity 

of Six1 on both a direct interaction with Eya and on the Eya phosphatase activity is 

important for future development of anti-cancer agents that target the Six1-Eya complex. 

Six1 and Eya2 are implicated in advanced breast cancer and are not normally expressed in 

most adult tissues. Thus, inhibiting these proteins in breast, ovarian, and other carcinomas 

may result in a therapeutic agent that would target tumor progression with limited side 

effects to patients.

Methods

Cell culture

One MCF7-Six1 and one MCF7-Ctrl stable clone (Ford et al., 1998) was stably transfected 

using Effectene (Qiagen, Valencia, CA, USA) with 5 shRNA constructs and one scramble 

negative control in the SureSilencing pGeneClip vector (SABiosciences, Frederick, MD, 

USA). Cells were selected with 2.5ug/ml puromycin and 2 individual clonal isolates chosen 

from each of two working Eya2 shRNA constructs (shRNA1: 

CGTGCGCATTGGCCTTATGAT; shRNA2: GGGTTCTATCAAGGAGGAAAT), as well 

as 2 scrambled control clones (GGAATCTCATTCGATGCATAC).

Real Time PCR

Total RNA was TRIzol isolated and RNeasy mini kit purified (Qiagen). Quantification to 

compare Eya mRNA levels was performed using plasmid standard curves and calculation of 

copy number for each Eya mRNA. Relative expression was used for comparison of Eya2 
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levels between shRNA clones and determined by ΔΔCT method (Livak and Schmittgen, 

2001). Supplemental Figure7 lists primer and probes.

Antibody Production

An Eya2 antibody was produced by Proteintech Group, Inc (Chicago, IL). An N-terminal 

Eya2 peptide (aa17-37: LDKLKFNRADAAVWTLSDRQG) was KLH conjugated. 1mg of 

peptide was injected on day1 with boosts on days 28, 40, 58, and 76 and bleeds on days 72 

and 102. The antibody was antigen affinity purified and tested on lysates from MCF7 cells 

transfected with Eya2 or Eyas 1,3,4 for control.

Immunofluorescence

Cells were grown on glass slides, fixed with formaldehyde, permeablized with 0.5% Triton 

X-100/PBS, incubated with Eya2 antibody (1:100; Ford Lab), then with Texas Red-

conjugated antirabbit IgG antibody (Sigma-Aldrich, St. Louis, MO) and stained with DAPI.

Western blot analysis

Western blot analysis was performed on whole cell lysates made with RIPA buffer(Ford et 

al., 2000). Primary antibodies used were: E-cadherin, β-catenin, and Fibronectin (BD 

Biosciences, San Diego, CA, USA), β-actin (Sigma-Aldrich), Smad3 (Invitrogen, Carlsbad, 

CA, USA) Eyas 1, 3, 4 (SantaCruz Biotechnology, Santa Cruz, USA). Cell fractionation 

performed as previously described (Shtutman et al., 2006).

3TP and TOP-flash luciferase

Eya2 and scramble shRNA clones were plated in triplicate at 110,000 cells/well in a 12-well 

plate. After 24 hours, cells were cotransfected with 3TP (Wrana et al., 1992) or pTOP-flash 

plasmid (Korinek et al., 1997), and a renilla luciferase construct containing a cryptic 

promoter, using FuGENE 6 (Roche, Indianapolis, IN, USA). After 48 hours, lysates were 

prepared and analyzed with the Dual Luciferase Kit (Promega, Madison, WI, USA) on a 

Modulus Microplate (Turner Biosystems, Sunnyvale, CA, USA).

Cell adhesion

For cell adhesion, 96-well plates coated with laminin, fibronectin, collagen I, or collagen IV 

(BD Biosciences, Biocoat) were blocked with 1%BSA for 1 hour. 2.5 × 104 cells were 

added, incubated 1 hour at 37°, and then washed 3 times with PBS, fixed for 10 minutes 

with cold methanol, stained with 0.04% crystal violet, and solubilized with 10% glacial 

acetic acid. Absorbance was determined at 570 nm on a microplate reader (Molecular 

Devices, Sunnyvalle, CA, USA).

Cancer Stem Cell Assays

7.5×105 cells were plated and grown for 48 hours. For flow cytometry analysis, cells were 

trypsinized, washed with 0.5%BSA-PBS, stained with anti-CD44-APC and anti-CD24-

biotin (BD Biosciences) (1:100) for 30 minutes, then stained with anti-streptavidin-V450 

(BD Biosciences) (1:1000) for 30 minutes, and resuspended in 400 μl of 0.06 μg/ul PI/0.5% 

BSA-PBS. Fluorescence was detected with CyAn (Beckman Coulter). For tumorsphere 
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assays, cells were trypsinized and re-plated at 1,000 cells/ml in 6-well, ultra-low attachment 

plates (Fisher-Scientific) in 2 mls of serum-free DMEM/F12 media (Hyclone), 

supplemented with 20ng/ml bFGF (BD Biosciences), 20ng/ml EGF (BD Biosciences), 4 

μg/ml heparin (Sigma), penicillin-streptomycin (Hyclone), and B27 (Gibco). The cells were 

fed 1 ml of media every 2-3 days. On day 10, all cells/spheres were collected, digested using 

0.05% trypsin with 0.53mm EDTA-4Na (Invitrogen), and single cells plated as above at 

2,000 cells per well to perform secondary assays. Tumorspheres were counted on day 8 of 

second passage.

Immunohistochemistry

Tumor array BRC711 was obtained from US Biomax (Rockville, MD, USA). Paraffin 

embedded sections were stained as previously described (Harrell et al., 2006) following the 

ImmPRESS kit protocol (Vector Laboratories, Burlingame, CA). Primary antibodies 

included Eya2 (1:300; Ford Lab), Six1 (1:75; Atlas Antibodies, Stockholm, Sweden), and 

Smad3 (5ug/ml; Invitrogen). Nuclear staining intensity in tumor cells was scored in a 

blinded fashion by a pathologist (PJ) on a 0-4 scale with 4 corresponding to most intense 

staining.

Analysis of microarray data

Gene expression and clinical outcome data were obtained from the van de Vijver and Wang 

datasets (van ’t Veer et al., 2002; Wang et al., 2005). Six1 and Eya1-4 gene expression was 

obtained for each tumor sample. All samples were mean-centered for each gene and divided 

into 2 groups: samples that express the denoted gene or gene combination above (high) or 

below the mean (low) and the rest of the samples that did not fit the denoted gene 

expressions (other). Each data set was analyzed separately. Kaplan-Meier survival curves 

were generated using WinStat for Excel (R. Fitch Software). Normalization was obtained 

from the Stanford Microarray Database (van de Vijver) and NCBI GEO (Wang: GSE2034).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Eya2 is the predominant Eya in MCF7 cells and can be efficiently knocked-down in 
MCF7-Six1 cells
(a) Eya2 is the most abundant Eya family member in MCF7 cells. Quantitative real time 

PCR of Eyas1-4, indicating comparative Eya mRNA copy number in MCF7-Six1 or MCF7-

Ctrl clones. Error bars represent the standard error of the mean of 3 grouped MCF7-Six1 or 

MCF7-Ctrl clones from a single RNA isolation. Data is a representative image of triplicate 

RNA isolations. (b) Real time PCR and (c) immunocytochemistry for Eya2 performed on 

MCF7 cells stably transfected with Eya2 shRNA or scramble shRNA, and then clonally 

selected. shRNA-a and shRNA-b are separate clonal isolates containing shRNA constructs 

targeting different regions of Eya2. Two clonal MCF7-Six1/shRNA isolates from each 

shRNA group were chosen for analysis. Error bars indicate the standard deviation of the 

mean of duplicate RNA isolations.
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Figure 2. Eya2 knockdown in MCF7-Six1 cells reverses Six1-induced TGF-β signaling
MCF7-Six1/Eya2 shRNA clones have decreased levels of (a) TβR1 and (b) total Smad3. (c) 

MCF7-Six1/Eya2 shRNA clones exhibit decreased TGF-β-responsive transcription 

compared to MCF7-Six1/scrambled controls as observed by performing luciferase activity 

assays with the 3TP reporter construct. All transfections were normalized to renilla 

luciferase activity. Data points show the mean of two individual clones and error bars 

represent the standard error of the mean for 2 experiments. P values represent unpaired t test 

statistical analysis.
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Figure 3. Eya2 knockdown partially reverses Six1-induced EMT
Eya2 knockdown in MCF7-Six1 cells reverses the ability of Six1 to (a) upregulate the 

mesenchymal marker Fibronectin and (b & c) to relocalize E-cadherin and β-catenin from 

the insoluble (membranous) fraction to the soluble (cytoplasmic) fraction as shown by 

western blot and quantitation following cell fractionation. (d) MCF7-Six1/Eya2 shRNA 

clones have decreased β-catenin responsive transcription compared to Six1 scrambled 

controls. β-catenin transcriptional activity was measured using the TOP-flash luciferase 

reporter construct normalized to renilla luciferase activity. Data points for fractionation and 

reporter activity show the mean of two individual clones and error bars represent the 

standard error of the mean for 2 experiments. P values represent unpaired t test statistical 

analysis. (e) Eya2 knockdown does not reverse the Six1 induced decrease in cell-matrix 

adhesion. Relative adherence measured by crystal violet staining.
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Figure 4. Eya2 knockdown reverses the Six1-induced increase in cancer stem cell characteristics
(a) Flow cytometric analysis demonstrates loss of CD44+/CD24− cancer stem cells with 

knockdown of Eya2. (b) Secondary tumorsphere assays, a measurement of self renewal 

capacity, demonstrate decreased tumorsphere formation and (c) re-gained spherical shape 

with knockdown of Eya2. Antibodies used to perform flow cytometry include CD24 and 

CD44, markers found on human epithelial stem cells. Figure is a representative image of 

two experiments. Data points show the mean of two individual clones and error bars 

represent the standard error of the mean. P values represent unpaired t test statistical 

analysis. Original magnification, x200.
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Figure 5. Co-expression of Eya2 and Six1 correlates with activated TGF-β signaling in human 
breast cancer
(a) Representative images of human breast cancer tissue arrays stained with anti-Six1, anti-

Eya2, and anti-Smad3 antibodies show that low Six1 and low Eya2 correlate with little 

nuclear Smad3, whereas tumors that express both high Six1 and Eya2 show high levels of 

nuclear Smad3. (b) Quantitation of Smad3 staining. Staining of tissues was scored on a scale 

from 0-4 for each antibody. Each sample was categorized as having above (high) or below 

(low) the mean Eya2 and/or Six1 staining and values were plotted against the average 

Smad3 scores within the group. Statistical analysis performed using Anova. Original 

magnification, x400. Scale bars: 20um.

Farabaugh et al. Page 18

Oncogene. Author manuscript; available in PMC 2012 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Coordinate high Six1 and Eya2 expression are required to predict poor prognosis in 
human breast cancer
In a gene expression dataset of 295 women with early-stage invasive breast carcinoma 

(van ’t Veer et al., 2002), patient samples expressing high Six1 in the absence of high Eya2, 

and high Eya2 in the absence of high Six1, do not correlate with reduced time to metastasis, 

reduced time to relapse, and shortened breast cancer-specific survival while high Six1 and 

high Eya2 together in the same patient sample significantly correlates with shortened time to 

relapse and to metastasis, and with shortened breast cancer specific survival. The mean 

value for Six1 and/or Eya2 expression was used to divide the samples into high (above the 

mean) and low (below the mean) Six1 and Eya2 expression. P-values were calculated by 

log-rank analysis.
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Figure 7. Coordinate high Six1 and Eya1 expression are required to predict poor prognosis in 
human breast cancer
In a gene expression dataset of 295 women with early-stage invasive breast carcinoma 

(van ’t Veer et al., 2002), patient samples expressing high Six1 in the absence of high Eya1, 

and high Eya1 in the absence of high Six1, do NOT correlate with reduced time to 

metastasis, time to relapse and shortened breast cancer specific survival while high Six1 and 

high Eya1 together in the same patient sample significantly correlates with the 

aforementioned prognostic indicators. The mean value for Six1 and/or Eya1 expression was 

used to divide the samples into high (above the mean) and low (below the mean) Six1 and 

Eya1 expression. P-values were calculated by log-rank analysis.
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