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Abstract

Background

Detection of ossification areas of hand bones in X-ray images is an important task, e.g. as a

preprocessing step in automated bone age estimation. Deep neural networks have emerged

recently as de facto standard detection methods, but their drawback is the need of large

annotated datasets. Finetuning pre-trained networks is a viable alternative, but it is not clear

a priori if training with small annotated datasets will be successful, as it depends on the prob-

lem at hand. In this paper, we show that pre-trained networks can be utilized to produce an

effective detector of ossification areas in pediatric X-ray images of hands.

Methods and findings

A publicly available Faster R-CNN network, pre-trained on the COCO dataset, was utilized

and finetuned with 240 manually annotated radiographs from the RSNA Pediatric Bone Age

Challenge, which comprises over 14.000 pediatric radiographs. The validation is done on

another 89 radiographs from the dataset and the performance is measured by Intersection-

over-Union (IoU). To understand the effect of the data size on the pre-trained network, sub-

sampling was applied to the training data and the training was repeated. Additionally, the

network was trained from scratch without any pre-trained weights. Finally, to understand

whether the trained model could be useful, we compared the inference of the network to an

annotation of an expert radiologist. The finetuned network was able to achieve an average

precision (mAP@0.5IoU) of 92.92 ± 1.93. Apart from the wrist region, all ossification areas

were able to benefit from more data. In contrast, the network trained from scratch was not

able to produce any correct results. When compared to the annotations of the expert radiolo-

gist, the network was able to localize the regions quite well, as the F1-Score was on average

91.85 ± 1.06.
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Conclusions

By finetuning a pre-trained deep neural network, with 240 annotated radiographs, we were

able to successfully detect ossification areas in prediatric hand radiographs.

Introduction

Recently, deep learning made a huge impact on the biomedical area and is effectively outper-

forming and thus replacing older, more complex manually designed algorithms [1]. At the

same time, they often reach human-level performance, which was unthinkable in the past [2].

The drawback is however that in case of supervised learning the training of neural networks

usually requires large amounts of annotated data, which in the medical domain barely exist, as

structured and machine-readable labeling is still uncommon in clinical practice. Consequently,

the training of such systems often requires the manual re-annotation of data by trained special-

ists, which are scarce and expensive resources.

A common workaround consists of using pre-trained networks and finetune these to the

data at hand [3]. Additionally, there are some special network structures that work very well

even if only few annotations are available, e.g. U-Net [4]. In case, of image data these networks

are typically pre-trained on the ImageNet dataset [5] which is with regard to content and pixel

encoding very different from medical image data, particularly from X-ray images.

For a larger project on automated bone age assessment from pediatric X-ray images of

human hands, a robust detector of ossification areas was needed as a critical preprocessing

component. Given a lack of existing tools for that specific task and the time and cost of anno-

tating an extensive dataset, a pre-trained detection network based on Faster-RCNN was used.

In this paper we demonstrate that by utilizing pre-trained networks an effective detector of

ossification areas in pediatric X-ray images of hands can be trained with very few annotated

data.

Materials and methods

The dataset

We utilize the dataset from the Pediatric Bone Age Challenge [6] organized by the Radiological

Society of North America (RSNA). This dataset is now freely available and can be accessed

over the website. It is a rather large dataset, e.g. when compared with Digital Hand Atlas [7],

and consists of 12611 training images, as well as 1425 validation images and 200 test images.

For our purposes it is enough to use the training set only. The dataset consists of 54.2% male

and 45.8% female hands. The age distribution is not uniform, but reflects the distribution in

the clinical routine, i.e. while there are rather few images of infants with 0-4 years (4.0%) and

adolescents over 16 years (2.7%), there are many more for the 4-8 years (21.9%) as well as 8-12

years (36.2%) and 12-16 years (35.2%). The images vary in their size and quality, e.g. especially

infants hands are underexposed to minimize radiation exposure and thus include noise.

ROI annotations

There are several regions of the hand that are deemed important by radiologists for the deter-

mination of hand bone age. These are epiphyseal growth-regions between the distal phalanges

and the intermediate phalanges (called DIP), between the intermediate phalanges and the

proximal phalanges (called PIP) and between the proximal phalanges and the metacarpals
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(called MCP). Furthermore the carpal bones themselves (Wrist), the Ulna and the Radius are

regions of interest. An example inference of these regions can be seen in Fig 1 and an overview

of extracted patches at these locations in Fig 2.

A subset of the RSNA dataset was selected from chunks of the training set, consisting of 240

images for training and 89 images for validation. The distribution of ages were computed to

verify that the statistics of the random sample of training and validation data do match and are

representative of the RSNA dataset. The distributions are shown in Fig 3.

All selected images were annotated by non-experts utilizing an open-source tool named

labelImg.

In order to make the annotation process as comfortable as possible, few extensions were

implemented. First, for this application the overall number of ROIs as well as the number of

ROIs per class on each radiograph are always the same. Instead of starting from scratch every

image, a template was copied as annotation candidate. Second, to cope with the differences in

Fig 1. Example inference for a radiograph, highlighting all regions of interest using the final trained Faster-RCNN network.

https://doi.org/10.1371/journal.pone.0207496.g001
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size between different radiographs, global scaling of all boxes as well as local scaling, i.e. of sub-

groups like DIP, PIP etc were implemented. Third, since radiographs in this dataset are of dif-

ferent qualities and brightness, a contrast enhanced view was implemented. This simplified the

annotation of DIP and PIP, since these were usually very dark. The implementation of these

enhancements was straightforward and can be found online (see https://github.com/

aydindemircioglu/labelImg).

The annotation was not done entirely by hand, but instead the proposed neural network

was initially trained on the first 100 annotated images and used subsequently to produce anno-

tation candidates for the remaining 229 images. These were then corrected manually by utiliz-

ing our modified labelImg tool. This approach reduced annotation times and ensured that the

tools were fit to the task.

Network

All experiments were conducted using Tensorflow r1.4 [8]. As object detection meta architec-

ture the Faster-RCNN [9] architecture was chosen with Inception-ResNet-V2 [10] as underly-

ing feature extractor. The model was pre-trained on the COCO dataset [11], which consists of

roughly 330.000 natural images, and is available in the Model Zoo of the Tensorflow Object
Detection API [12]. Of course it would be desireable to use models which were trained on the

medical domain instead of natural images. However, at the moment no pre-trained models are

available for the chosen architecture, which were trained from scratch on medical datasets.

For fine-tuning, the default configuration from the repository was used: SGD optimizer

with momentum set to 0.9, a single image per batch due heterogeneous sized input images and

memory requirements for large scale inputs, and a fixed learning rate of 0.0003. Only moderate

Fig 2. Randomly extracted patches of the annotated regions of interest. The patches were extracted in square shape for better

visualization.

https://doi.org/10.1371/journal.pone.0207496.g002
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data augmentation was applied in form of random horizontal flips. Since the dataset at hand

does not contain a large number of images and to ensure that the model does not overfit, only

5000 steps were used for training.

Since the pre-trained models were trained on RGB images and the dataset consists of

monochrome radiographs, the channel was duplicated to form a grayscale RGB image. In

addition, Contrast Limiting Adaptive Histogram Equalization (CLAHE) [13] was utilized on all

images in order to increase the contrast of low-intensity images. The block size was set to

64 × 64 pixels and the limit was set to 2.0.

Fig 3. Analysis of the age distribution between both annotated sets. The validation set contains slightly more older patients.

https://doi.org/10.1371/journal.pone.0207496.g003
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In order to understand the relationship between the number of annotations and the quality

of the network’s predictions, we simulated the iterative process of data acquisition by subsam-

pling the training data without replacement in steps of 20%. This process was repeated ten

times with different seeds for random shuffling, in order to obtain a robust estimation of the

generalization capability of the process.

Additionally, to determine the effect of using pre-trained networks on generalizability, we

repeated the simulated experiment, but initialized the weights randomly using the Xavier

method [14] instead of using the pre-trained weights.

The performance was measured by the average precision of the Intersection over Union
(IoU) which is also known as Jaccard Index. A detected region is considered as a good match if

the area overlaps with at least 50%, which is a commonly chosen evaluation critera for object

detection [15].

As the annotations were created by non-experts, another experiment was conducted to

compare the quality of both expert and non-expert annotations. For this evaluation a different

criteria was used, since the medical definition of the regions of interest differ from the applica-

tions use-cases. Therefore we adopt the evaluation criteria of [16, 17] and compare the L2 dis-

tance of the central points between the annotated and predicted ROIs. A prediction is

considered to match the groundtruth, if:

kg � pk2 � t ð1Þ

Where g is the groundtruth central point and p the predicted central point of the ROI. The

threshold t ¼ height � 6

256
is computed based on the image height, which is the most influencing

axis of hand radiographs. The radius/threshold of 6 pixels based on rescaled images of size 256

was introduced by [16]. In addition, we compute the iota coefficient, which is a multivariate

variant of Cohen’s kappa and is a measure of the interrater agreement [18].

All experiments were conducted on a Nvidia DGX-1. The source code and annotations to

replicate the experiments are available on Github (see https://github.com/razorx89/rsna-

boneage-ossification-roi-detection).

Results

Manual annotation statistics

In Fig 4, bounding box sizes of each class are visualized. It is clearly visible that the classes fol-

low the same relationships between both annotated sets, although the validation set is biased to

be slightly smaller. Furthermore, annotations of PIP, DIP, and MCP are higher, whereas

Radius, Ulna, and Wrist are wider.

Impact of dataset size on detection quality

The results are shown in Table 1. Each class benefitted from more data, though the models had

a relative high detection rate with only 20% of the training images (i.e. 48 images).

Effect of pre-trained weights

Replacing the pre-trained weights with random weights initialized by the Xavier method was

extremely harmful. The performance of the network for every region dropped below 0.1%, i.e.

the network was not able to find any regions correctly on not previously seen images.
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Expert versus non-expert annotation

The results of models trained on non-expert annotations are listed in Table 2. The predictions

produced by the network matched non-expert annotations with a high average precision of

Fig 4. Analysis of the annotation box sizes between both annotated sets. The bounding box sizes were normalized to an maximum image edge length

of 1024px, which is the default behaviour of the Faster-RCNN models in the Tensorflow Object Detection API.

https://doi.org/10.1371/journal.pone.0207496.g004

Table 1. Evaluation of object detection models for hand region detection using the Faster-RCNN InceptionResNetV2 pre-trained model. Results are stated as mean

and standard deviation of ten different training set splits. The evaluation is performed on the held-out set of 89 images.

Split AP@0.5IoU mAP@0.5IoU

DIP PIP MCP Radius Ulna Wrist

20% 76.03 ± 11.59 79.50 ± 7.33 91.49 ± 2.41 92.37 ± 2.68 84.88 ± 2.45 97.51 ± 1.96 86.96 ± 2.91

40% 83.77 ± 7.20 83.36 ± 5.34 93.07 ± 1.23 94.14 ± 3.25 84.81 ± 3.02 98.50 ± 0.76 89.51 ± 1.95

60% 86.09 ± 8.15 84.99 ± 4.89 94.32 ± 1.99 95.96 ± 1.98 86.42 ± 4.49 98.71 ± 0.51 91.08 ± 1.89

80% 87.35 ± 5.25 86.10 ± 6.21 93.25 ± 3.03 96.13 ± 1.49 85.27 ± 5.50 98.45 ± 0.58 91.09 ± 2.89

100% 89.79 ± 5.10 88.29 ± 4.98 94.82 ± 1.45 97.96 ± 1.10 87.78 ± 3.24 98.87 ± 0.01 92.92 ± 1.93

https://doi.org/10.1371/journal.pone.0207496.t001

Table 2. Evaluation on central points of ROIs annotated by both a radiology expert and a non-expert. Training was performed on the full set of 240, annotated by the

non-expert, and evaluated on the held-out set of 89 images. Results are stated as mean and standard deviation of 10 runs.

Label Non-Expert Expert

Precision Recall F1-Score Precision Recall F1-Score

DIP 99.13 ± 0.79 95.76 ± 1.81 97.41 ± 0.99 98.96 ± 0.74 95.59 ± 1.91 97.23 ± 1.07

PIP 98.57 ± 0.73 97.03 ± 0.51 97.79 ± 0.37 98.45 ± 0.75 96.92 ± 0.54 97.68 ± 0.41

MCP 98.70 ± 0.40 97.15 ± 0.71 97.92 ± 0.48 78.09 ± 1.73 76.85 ± 1.59 77.46 ± 1.64

Radius 99.55 ± 0.78 97.30 ± 1.77 98.40 ± 0.82 97.71 ± 1.17 95.51 ± 1.91 96.59 ± 1.16

Ulna 100.00 ± 0.00 91.12 ± 1.12 95.35 ± 0.61 95.32 ± 1.90 86.85 ± 1.76 90.89 ± 1.74

Wrist 98.07 ± 1.08 96.85 ± 1.16 97.46 ± 0.89 91.69 ± 3.50 90.56 ± 3.90 91.12 ± 3.66

Average 99.00 ± 0.35 95.87 ± 0.66 97.41 ± 0.40 93.37 ± 0.85 90.38 ± 1.31 91.85 ± 1.06

https://doi.org/10.1371/journal.pone.0207496.t002
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99%, while the expert annotations were matched with an average precision of about 93%. In

both cases the precision was higher than the recall rate. For DIP and PIP the F1-scores do not

show any noticeable difference, with an absolute change of less than 0.2%. However, MCP was

the class with the greatest loss. The iota coefficient between both annotations is 0.998.

Discussion

Annotating ossification regions in X-ray images of the hand is a reasonable preprocessing step

for hand bone age assessment, e.g. the Tanner-Whitehouse (TW2) method [19], a standard-

ized procedure for radiologist, determines the hand bone age by a scoring over the estimated

age of several ossification regions. An automated ossification area detector therefore is a first

step to replicate the workflow of a radiologist. Furthermore, the output of the fully automated

bone age assessment pipeline is easy to interpret and failure cases can be analyzed more easily.

In contrast to other approaches, this pipeline allows using high resolution image patches of the

localized regions of interest, instead of downsampling the whole image and thus discarding

details of the bones.

Though only few annotated images are necessary for our approach, many annotation tools,

while powerful, are quite general in nature and not adapted to the problem at hand (e.g. the

Annotation Module in 3D-Slicer [20]). To ease the annotation process of the training data, we

modified an open source tool, labelImg (see https://github.com/tzutalin/labelImg), to allow for

a more streamlined annotation process.

Finally, in our case this process can also be used by non-specialists to annotate the data. By

comparing the annotations to those of a specialist, we show that there is not a large difference

in the location of the central point of the ossification region. Therefore, the cost of annotations

can be reduced even further, as no distinguished expert is necessary.

Regarding the hand bone age problem, there exist two classical methods which are

employed by radiologists to determine the bone age. The Greulich-Pyle method takes the

whole hand image into account and compares it to an atlas of radiographs. While this is the

easier of both methods, the inter-rater as well as intra-rater variability is quite large [21]. The

second, and more often used, is the Tanner-Whitehouse method. Here, 13 selected hand

bones are examined for their ossification stage. These are individually scored based on their

textual appearance and then combined into a single score, using race as an auxiliary factor.

Automation of these methods has been attempted many times over the years, e.g. in com-

merical packages like [22], and there is a large amount of literature. A review can be found in

[23]. One particular method, the FingerNet, was proposed in [24]. There, a special deep net-

work is constructed to detect the joints and trained on 1000 images segmented by an expert

radiologist. In [25] hand bone age is estimated from 3D MRI volumes. They use 3D-landmark

localization methods to find the 13 bones of the TW2 method and apply CNNs for regression.

[17] use Regression Tree Ensembles to localize epiphyses only.

Using deep learning, [26] constructs a regression network, called BoNet, based on the Over-

Feat model. Similarly, [27] employ several pre-trained and finetuned networks, based on Goo-

gleNet, AlexNet and VGG-16. Both do not detect joints, but in a post-hoc analyses they show

that the networks mainly take the ossification areas into account to determine the bone age.

In [28] the authors constructed a two stage neural network for locating carpal bones in

hand radiographs for the application of bone age assessment. At first, a focussing network

identifies the center point of carpal bones. Afterwards, the identified regions of interest are

processed by another network to classify the bone as one of seven carpal bones. Each classify-

ing network was constructed differently for each carpal bone in order to ensure a sufficient

receptive field.
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Recently, several end-to-end object detection algorithms were developed. Our detection

network is based on Faster-RCNN [9], an evolution of RCNN [29] and Fast-RCNN [30]. In

contrast to more lightweight algorithms like Single-Shot Detector (SSD) [31], Faster-RCNN

yields better detection accuracies at the cost of higher computational time.

Regarding the bone age assessment, using an object detector network yields several advan-

tages. First, radiographs have usually a much higher image resolution than current network

architectures can process due to limited memory. By identifying the ossification ROIs, high

resolution patches can be extracted which retain all relevant bone details. Second, each individ-

ual region gets scored and therefore the final age prediction is the result of ensembling over all

ossification regions. Third and most importantly, the outcome of such a two-stage system is

more interpretable by the radiologist and therefore increases the clinical acceptance of such a

method.

We have shown that with even few data deep networks can be trained and successfully

applied to detect joints and ossification areas. The key ingredient was a freely available, pre-

trained neural network object detector. Using pre-trained models as a starting point for train-

ing a generalizable model with only small datasets has also been proven by other researchers

[3]. To understand how the size of the annotated dataset is related to the performance of the

detection network, we simulated the annotation process by subsampling the data. To ease the

annotation process, we adapted an open source segmentation tool to our needs.

The effectiveness of the procedure is clearly visible in Table 1, where even with 48 images

(corresponding to 20% of all annotated data used for training) acceptable results can be pro-

duced. In detail, all classes benefitted strongly from more data, except for the Wrist, where the

positive trend was not as pronounced. This stems from the fact that the average precision was

already very high for 20% of the data, so the relative improvement cannot be as high as for the

other regions. Looking at the region sizes in Fig 4, the Wrist and Radius were the two largest

classes in terms of spatial dimensions. They also had the highest detection rates, especially at a

subsampling rate of 20%. On the other hand, PIP and DIP were the two smallest classes and

had comparatively low detection rates. This might have be caused by the Faster-RCNN config-

uration, which uses by default box proposals of size 64, 128, 256, and 512px. However, PIP,

DIP, MCP, and Ulna classes contained smaller bounding boxes than the smallest box proposal,

especially in the validation set. This relation was also reflected in the standard deviations,

where larger regions had less variation than the smaller regions. One explanation could be that

smaller regions of interest contain less information to discriminate and therefore more train-

ing data is needed to successfully classify a box proposal as one of the classes of interest.

The importance of using pre-trained weights was very evident when training the network

with randomly initialized weights. The performance on the validation sets was nearly zero, i.e.

the network was completely unable to detect the correct regions. This behaviour was not unex-

pected, as the network contains millions of parameters which cannot be trained by just a few

annotated images, and underlines the importance of pre-trained networks.

Regarding the agreement of the expert vs non-expert annotation, it was not surprising that

the non-expert annotations matched the predictions better than the expert annotations as the

network was trained on the former. Still, both had a rather high agreement, as can be seen

from the iota coefficient, so that the central points of the expert annotated ROIs were mostly

matched by models trained on non-expert annotated training data. However, MCP was the

class with the greatest loss, since the medical definition differs a lot for the middle finger and

thumb [32]. The difference could be reduced by declaring the underlying definition in advance

and will be application dependent.

There are some improvements that our study could benefit from: While X-ray images tend

to be visually rather consistent over different sites, we only used the RSNA dataset. External
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validation data would be necessary to judge the generalizability of the network. Furthermore,

we only used annotations from one radiologist expert, thereby we cannot consider inter-

observer variability.

Another possible extension to this workflow could be to utilize a self-learning approach

[33]. Instead of annotating even more images by hand, the trained model could predict ROIs

on the remaining images from the RSNA Pediatric BoneAge dataset. By applying very strict

rules for annotation candidate selection, the number of images with wrong and corrupting

training material could be reduced to a minimum. Possible checks could include the number

of predicted ROIs, overlapping ROIs with an IoU greather than 50%, or low confidence values.

In conclusion, by utilizing a pre-trained Faster-RCNN, a robust detector of ossification

areas in pediatric X-ray images of hands can be trained with a minimal set of annotated data.
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