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Abstract: Zirconium doped calcium phosphate-based bioglasses are the most prominent
bioactive materials for bone and dental repair and regeneration implants. In the present study,
a 8ZnO–22Na2O–(24 − x)CaO–46P2O5–xZrO2 (0.1 ≤ x ≤ 0.7, all are in mol%) bioglass system was
synthesized by the conventional melt-quenching process at 1100 ◦C. The glass-forming ability and
thermal stability of the glasses were determined by measuring the glass transition temperature (Tg),
crystallization temperature (Tc), and melting temperature (Tm), using differential thermal analysis
(DTA). The biological activity of the prepared samples was identified by analyzing X-ray diffraction
(XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy
dispersive spectra (SEM-EDS), before and after immersion in simulated body fluid (SBF) for various
intervals of 0, 1 and 5 days, along with the magnitude of pH and the degradation of glasses also
evaluated. The obtained results revealed that the glass-forming ability and thermal stability of glasses
increased with the increase in zirconia mol%. The XRD, FTIR, and SEM-EDS data confirmed a
thin hydroxyapatite (HAp) layer over the sample surface after incubation in SBF for 1 and 5 days.
Furthermore, the development of layer found to be increased with the increase of incubation time.
The degradation of the glasses in SBF increased with incubation time and decreased gradually with
the increase content of ZrO2 mol% in the host glass matrix. A sudden rise in initial pH values of
residual SBF for 1 day owing to ion leaching and increase of Ca2+ and PO4

3− ions and then decreased.
These findings confirmed the suitability of choosing material for bone-related applications.

Keywords: P2O5-bioglass; zirconia; melt-quenching; SBF; hydroxyapatite; in vitro bioactivity

1. Introduction

Bioactive glasses are the widely used surface reactive inorganic biomaterials in engineering,
essentially for the repair and regeneration of damaged soft and hard bone tissues [1–4]. 45S5 bioglass
is the well-known and widely used bioactive glass developed by Professor Larry Hench and his
co-workers in 1969 [5]; comprised of inorganic oxides (viz., SiO2, Na2O, CaO, and P2O5) in a specific
molar ratios and has exhibited thriving biological properties such as in vitro bioactivity, osteostimulative
and osteoconductive properties. These special qualities made the bioglass a biocompatible and
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bioresorbable material in comparison to the natural bone. Various types of melt-derived bioactive
glasses (SiO2, B2O3, P2O5 etc.) have been developed and tested because of their capability to interact
with living bone tissues [3,6]. Out of all these glasses, phosphate-based glasses have many advantages,
due to solubility, high biocompatibility and low melting temperature etc., which made them suitable
to be used as biomaterials [7]. The strong glass former P2O5 contributes in the glass network, as PO4

structural units [6,8,9] are due to covalent bonding by the bridging oxygens. This bioglass material
upon immersion in the simulated body fluid (SBF) solution shows a state where the ionic and pH
conditions perfectly simulate with human blood plasma [7]. The ability to form rich calcium phosphate
hydroxyapatite (HAp) layer on the surface of the bioglass samples when it comes into contact with
the SBF confirms the in vitro bioactivity. The main disadvantage of the phosphate-based glasses
is their poor mechanical strength, which limits the applications in implant development related
to hard tissue replacement. This can be resolved by incorporating suitable transition metal ions,
such as TiO2, MgO, ZnO, CuO, Fe2O3, etc., to phosphate glass network in appropriate amounts.
The first generations of biomaterials are directly related to the bone and tissue engineering by the
implantation of ZrO2 and TiO2-based materials [9–11]. The first research paper on zirconia was
published by Helmer and Driskel in 1969 and mentioned that ZrO2 can be used as a biomaterial [12].
ZrO2 is one of the common trace elements present in the human body, and thus its inclusion in the
bioglass could be exploited for stimulating bioactivity. Both the biological activity and the mechanical
properties can improve with the incorporation of ZrO2 to the phosphate glass network. The phosphate
glass structure is mainly strengthened by forming of Zr–O–P covalent bonds due to the entering of
ZrO6 octahedra structural units of zirconia [13,14]. Most of the available research reports related
to zirconia mixed silica based bioactive glasses revealed the gradual decrease in their biological
activity with the increase of ZrO2 concentration. However, considerably limited work is available on
ZrO2 contain phosphate based bioglasses and glass ceramics [15]. Zirconia mixed porous calcium
titanium phosphate glass ceramic system was fabricated by V. K. Marghussian et al. and studied
the effect of zirconia on chemical durability and mechanical strength, which are observed to be
improved [15]. V. Rajendran et al., synthesized P2O5–Na2O–CaO–ZrO2 glasses with the addition of
ZrO2 up to 1.0 mol% by replacing the Na2O and observed that considerable high bioactivity along with
improved mechanical strength at 0.75 mol% of ZrO2 out of other concentrations [16]. Caiyun Zheng
et al. prepared 60CaO–30P2O5–3TiO2–xZrO2–(7−x)Na2O (x = 0, 1, 3) glass ceramics and studied the
influence of ZrO2 on mechanical and bioactive properties, and found that the toughening of the system
with 1 mol% of ZrO2 added has no adverse effect on the bioactivity [17]. Contrary to earlier reports,
we have considered that silica free zinc calcium phosphate glasses mixed with small quantities of
ZrO2 might improve the structural and bioactivity suitable for tissue engineering implant applications.
Moreover, the result of ZrO2 on structural and biological properties of the P2O5 glasses is not yet
revealed completely. Therefore, ZrO2 doped bioactive glass system was prepared and analyzed to
probe some light on structural and biological properties, by performing some experiments, such as
XRD, FTIR, and SEM-EDS, etc., pre- and post-soaked in SBF, and monitoring the degradation and pH
variation of the bioactive materials suitable for bone regeneration applications.

In this present study, we have developed the novel ZnO–Na2O–CaO–P2O5 bioglass system by
doping less than 1 mol% of ZrO2, and explored the properties (thermal and structural) that stimulate
the deposition of HAp layer over the glass surface.

2. Materials and Methods

2.1. Preparation of Bioglass Materials

The bioglass composition is given in Table 1. The ZrO2 mixed calcium phosphate glasses were
synthesized by taking high purity (99.9%) P2O5, ZnO, CaO, Na2O and ZrO2 chemical compounds
from Sigma-Aldrich (St. Louis, MO, USA) by the melt-quenching method. The details of the
glass composition chosen for the present study and their corresponding codes are given in Table 1.
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The appropriate proportions of the chemicals (20 g batches) were homogeneously mixed in an agate
mortar and melted in platinum crucibles at the temperature 1000 ◦C for 2 h. During melting, in order
to ensure homogeneity, the melt was stirred for every half hour. The obtained melt was casted into
pre-heated graphite molds and then shifted the glasses in an annealing chamber maintained at 250 ◦C;
the annealing was carried out for 2 h and subsequently cooled at the rate of 1 ◦C/min to the room
temperature, to make the samples free from the internal cracks, residual stress etc. The obtained
samples were ground and well-polished to the final dimension of 1.5 cm × 1.5 cm × 0.2 cm.

Table 1. The Nominal bioactive glass (mol%) composition.

Glass Code ZnO Na2O CaO P2O5 ZrO2

Z.1 8.0 22.0 23.9 46.0 0.1
Z.3 8.0 22.0 23.7 46.0 0.3
Z.5 8.0 22.0 23.5 46.0 0.5
Z.7 8.0 22.0 23.3 46.0 0.7

2.2. Thermal Analysis

Thermal characterization was carried out on the glass powder by heating from room temperature
to 1100 ◦C under Argon atmosphere, with a heating rate of 10 ◦C/min, using a standard NETZ5CH-STA
2500 (NETZSCH, Selb, Germany) Regulus thermal analysis system. A 20 mg of glass powder in an
alumina pan is used for heating, with identical alumina pan as reference material. The obtained DTA
patterns are used to identify the Tg, Tc, Tm, and other thermal parameters, such as thermal stability
(∆T) and Hruby’s criterion (KH). The difference between Tc and Tg representing the thermal stability
(∆T) and the ration between Tc − Tg and Tm − Tc gives Hruby’s criterion (KH) of the glass system [18]:

∆T = Tc− Tg (1)

KH =
Tc− Tg
Tm− Tc

(2)

2.3. Bioactivity Assessment

The SBF is arranged in a polyethylene vessel by mixing appropriate quantities of analar grade
reagents of NaCl, KCl, NaHCO3, MgCl2, 6H2O, CaCl2 and KH2PO4 (99.95%, Sigma-Aldrich) to
distilled water with continuous stirring. The solution is buffered to pH 7.4 by adding Tris-buffer
and hydrochloric acid is kept at 278 K for 48 h to trace the presence of any precipitates, the process
recommended by Kokubo and Takadama [7]. After confirming the lack of precipitate, the obtained
solution was used for in vitro studies. It was ensured that the ratios of concentration (mM) of different
ions in the prepared solution were like those of human blood plasma (Table 2). In vitro bioactivity
studies were performed (so as to achieve HAp layer formation on the surface of the samples) by
immersing each sample (0.10g of glass powder) separately in 50 mL of SBF at 37 ◦C [19]. The weight
loss measurements and the pH of the solution were performed after different incubation periods (viz. 0,
1 and 5 days).

Table 2. The concentration of various ions in the simulated body fluid (SBF) solution.

Ion Type Na+ K+ Mg2+ Ca2+ Cl− HCO3− HPO42− SO4−

Concentration (mM) 142.0 5.0 1.5 2.5 148.8 4.2 1.0 0.5
Human blood plasma 142.0 5.0 1.5 2.5 103.0 27.0 1.0 0.5
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2.4. Powder XRD

The structural phases of the glasses were analyzed by PANalytical X’pert Powder (Malvern

Panalytical Ltd., Malvern, UK), using Cu-Kα as a radiation (λ = 1.540598
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) source. The XRD patterns
were recorded diffraction angle range 2θ = 10–80◦. Using the International Center for Diffraction Data
cards (ISO 9001:2015 certified by DEKRA) were preferred to identify the crystal phases corresponding
to each diffraction peak observed in the XRD pattern.

2.5. Fourier Transform Infrared Spectroscopy Analysis

The FTIR (model: S100, PerkinElmer, Shelton, CT, USA) transmittance spectra of the samples were
recorded (for understanding the internal structural variations of the glass network) in the wavenumber
range of 4000–400 cm−1. The mixture of 1 mg of glass powder and 300 mg of Potassium bromide
powders was used to make pellets prepared under vacuum pressure.

2.6. SEM-EDS Micrographs

The surface morphology and microstructure of the bioglass samples were analyzed with the
help of Scanning electron microscopy of VEGA 3 LMU, TESCAN (Brno, Czech Republic), pre- and
post-immersion in SBF. The elemental analysis of the glass samples was estimated by Energy dispersive
X-ray analyzer connected to SEM. In order to get clear images, the samples should be electroconductive;
for this, the samples were coated with a thin gold layer.

2.7. Degradation Behavior

The dissolution behavior of the glasses immersed in SBF (pH 7.4 at 37.5 ◦C) was measured by a
weight loss process. Initially, the powder samples were weighed pre immersion and then immersed for
different days (0, 1 and 5) in SBF solution. Next, the glasses were removed from the solution and dried
at 80 ◦C, and again measure the weight of each sample to determine the weight loss by the following:

Weight loss =
Wo−Wt

Wo
× 100% (3)

where Wo is pre-immersion weight and Wt is post-immersion weight.

2.8. pH Evaluation

The pH values of the residual SBF were measured (so as to have the information on dissolution
behavior of the bioactive glass) pre-and post-immersion of the samples, containing different contents of
ZnO for different intervals of time by a pH meter (ORION pH 7000). The pH meter (Thermo Scientific,
Beverly, MA, USA) pre-calibrated to 4.01, 7.00, and 9.20 was used for these measurements.

3. Results and Discussion

3.1. Thermal Properties

The traces of differential thermal analyses (DTA) are shown in Figures 1 and 2, and the
corresponding temperature values Tg, Tc, and Tm of ZrO2 doped glass samples are tabulated in
Table 3. The values of glass transition temperature (Tg) from 262.21 (± 1.11) ◦C to 301.15 (± 1.25) ◦C,
crystallization temperature (Tc) from 335.67 ◦C to 386.32 ◦C, and melting temperature (Tm) from
672.67 ◦C to 697.49 ◦C increased with ZrO2 mol% (from 0.1 to 0.7). The increase in Tg values with an
increase of zirconia is due to an increase in the average crosslink density through non-bridging oxygen
ions (NBO) and the number of bonds per unit volume. In addition, an increase in Tg can also be due to
the increasing aggregation effect of ZrO2 on the glass network and slow mobility of large Zr4+ ions,
which lead to more rigidity of the glass network. The exothermic Tc and endothermic Tm peaks are
also increased gradually with the addition of ZrO2 (of Zr4+ ions (0.72 A ◦)) [15]. Furthermore, it is
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found to raise the viscosity of glass with a gradual increase of zirconia content due to the decrement of
NBO’s and/or high ionic field strength [1,3,11].

In the current ZrO2 doped glasses, the glass transition temperature (Tg) and stability (∆T (◦C))
values increased from 262.21 ± 1.11 to 301.15 ± 1.25 and from 73.46 ± 0.45 ◦C to 85.16 ± 0.35 ◦C
respectively, whereas the Hruby criterion (KH) increased from 0.22 to 0.27 with the content of ZrO2,
which undoubtedly designates the high stability and the good glass-forming tendency of as-prepared
glasses. The obtained results confirm the structural modification and thermal stability of the zirconia
incorporated bioactive glasses.

Table 3. Thermal properties of the ZrO2 containing bioglasses.

Sample Code Tg (◦C) Tc (◦C) Tm (◦C) ∆T (◦C) KH

Z.1 262.21 (± 1.11) 335.67 672.67 73.46 (± 0.45) 0.22
Z.3 271.10 (± 1.30) 349.21 686.92 78.10 (± 0.38) 0.23
Z.5 280.40 (± 1.24) 362.87 691.84 82.47 (± 0.43) 0.25
Z.7 301.15 (± 1.25) 386.32 697.49 85.16 (± 0.35) 0.27
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3.2. XRD Analysis

Figure 3 illustrates the X-ray diffractograms of ZrO2 mixed phosphate glasses immersed in SBF in
0, 1 and 5 days of intervals recorded at the diffraction angle (2θ) in between 10–80◦. Before immersion,
the samples do not show any sharp crystalline peaks, which indicate the non-crystalline nature of the
samples [8] shown in Figure 3a. After immersion, the same samples exhibited prominent crystalline
peaks; this indicates the formation of hydroxyapatite layer (HAp: Ca10(PO4)6(OH)2) on the surface
of the glass samples, due to ion leaching from glass to SBF and vice versa. The intensity reflections
at (1 0 0), (0 2 1), (2 0 0), (0 0 2), (2 1 1), (2 0 3), (5 0 0), and (2 1 5), in accordance with (h k l) values,
are represented formation of the hydroxyapatite layer on the glass surface samples. These intensity
reflections of HAp from XRD patterns were indexed using JCPDS card No: 72-1243. After soaking
for 1 day (Figure 3b), the presence of intense diffraction peaks at 31.74◦ (2 1 1) and 45.32◦ (2 0 3)
in the XRD diffractograms indicates the growth of crystalline calcium phosphate hydroxide [18,19].
With the increasing immersion time (1 day to 5 days), additional peaks are appearing laterally with
the noticeable intense peaks existing during 1 day of incubation. This is predicted due to penetration
of Ca2+ ions into PO4

3− glass network leading to the formation of a crystalline HAp layer on glass
surface [3,10]. Moreover, it is clearly noticed that the peak intensities are increased with the incubation
time and decreased with the concentration of ZrO2, due to the dissolution kinetics of the glass in SBF
solution. This deposition of thin HAp layer over the glasses soaked in physiological fluid can be directly
correlated to their capacity to generate effective chemical bonds with natural bone tissues [20,21].
The attained results from XRD on bioactivity of as prepared bioglasses are also confirmed further by
FTIR and SEM studies.
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3.3. FTIR Spectroscopic Analysis

Figure 4 demonstrates the infrared transmission spectrum of zirconia doped phosphate samples
pre and post immersion in SBF, and the assignment of various bands presented in Table 4. The FTIR
spectra of before soaked samples (Figure 4a) are shown in the characteristic phosphate bands located at
506 cm−1, 752 cm−1, 978 cm−1, 1642 cm−1, 2382 cm−1 and 3464 cm−1. The band at around 506 cm−1 is
attributed to the bending vibrations (PO4

3−) of O–P–O [15,16,22] The absorption bands at 752 cm−1 and
978 cm−1 are due to the (P–O–P) symmetric stretching vibrations of phosphate group [10,23]. The peak
observed at 1642 cm−1 is assigned due to the stretching vibrations of P–O–H groups (water molecule) [9].
A minor peak at around 2382 cm−1 is due to CO3

2− and HCO3
− groups [23,24] and a wide intense

band at 3464 cm−1 is ascribed to the symmetric stretching of O–H groups [9].
After immersion of 1 day and 5 days (Figure 4b,c) in SBF, the spectra showed the presence of

additional bands (phosphate structural group) 557 cm−1, 736–738 cm−1, 916–918 cm−1, 1126–1143 cm−1,
1263 cm−1, 1652 cm−1, 1543 cm−1, 2998 cm−1, 3198 cm−1, 3414 cm−1, 3553 cm−1, along with the bands
before incubation in SBF. After immersion, the band at 555-557 cm−1 represents the HAp typical
bond (PO3

4) of a phosphate group and due to the hydroxyapatite crystallization [25]. The medium
bands 736–738 cm−1 (P–O–P) can be assigned to the pyrophosphate (P2O7)4− group and the bands at
around 916–918 cm−1 are corresponding to the P–O–P stretching vibrations [26]. The strong bands
appearing at 1126–1143 cm−1 are attributed to the PO2 symmetric stretching vibration, which is related
to the calcium phosphate surface layer. The lower band at 1263 cm−1 is assigned to P=O stretching
vibrations/anti-symmetrical vibrations of PO2

– groups. The 1414 cm−1 band is –OH hydroxyl carbonate
group, while the band noticed at 1543 cm−1 band is the deformation of –OH groups [22,25,27].
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Table 4. Assignments of various bands from FTIR spectra of the bioglasses.

Wavenumber (cm−1) Assignments References
0 day 1 day 5 days

506 555 557
~506 PO4

3− O–P–O bending vibrations/P–O amorphous [15,16,22]

~555–557 HAp (PO3
4) [25]

752 736 738 ~752 P–O–P symmetric stretching
~736–738 P–O–P pyrophosphate (P2O7)4− group

[10,23]
[26]

978 916 918 ~978cm−1 P–O–P stretching vibrations
~916–918 P–O–P stretching vibrations

[10,23]
[26]

- 1126 1143 PO2 symmetric stretching vibration [22,25,27]

- 1265 - PO2
− asymmetric group /P=O stretching vibration [22,25,27]

- - 1410 –OH, hydroxyl carbonate group [22,25,27]

- - 1543 –OH groups [22,25,27]

1642 1650 - ~1642–1650 cm−1 stretching vibrations of P-O-H group [9,28]

2382 - - P–O–H group /CO3
2− and HCO3

− groups [23,24]

- 2998 - C–H stretching vibrations [22,29,30]

- - 3198 C–H [22,29,30]

3464 3414 3553
~3414–3464 H–O–H bond /CO3

2− and HCO3− [9,25,29]

~3553 O–H symmetric stretching [25,29]
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The bands appearing between 1642–1650 cm−1 are due to stretching vibrations of P–O–H
group [28] and the bands around 3414–3464 cm−1 and 3553 cm−1 are ascribed to the O–H
symmetric stretching [25,29]. The band at 2382 cm−1 is assigned to the O–H stretching vibrations
of hydrogen-bonded H–O–H groups on the surfaces of the sample. Very small peaks could also
be observed at 2998 cm−1 and 3198 cm−1 due to stretching vibrations in C–H groups [22,29,30].
The entrance of PO3

2–, CO3
2− and OH groups present in the FTIR spectra of the glasses confirmed the

growth of the thin crystalline HCA layer. It was also observed that the intensities of the absorption peaks
increased with an increase of soaking time, as well as the zirconia inclusion in the glass network [15,31].
Moreover, obtain results correlated with the XRD results. Furthermore, the formation of the HAp layer
was confirmed by the SEM-EDS results.

3.4. SEM-EDS Analysis

Figure 5 displays the surface morphology of bioglasses pre- and post-immersion in SBF by
SEM-EDS analysis. The micrographs reveal the precipitation over the samples after incubation,
indicating the formation of the hydroxyapatite (HAp) layer. Morphologies of the Z.5% (Figure 5a)
glass sample before incubation (0-day) in SBF visualize the plane surface by SEM and existence of
minimal elements P, Ca, Zn, Na, Zr and O of the glass by EDS, clearly indicating their amorphous
nature and lack of any precipitation formation of the samples [6]. After 1 day and 5 days of immersion
in SBF, the bioglass surface shows changes in surface morphology (cotton-like structures) and creates
the appearance of additional elements (P, Ca, Zn, Na, Zr, O, Cl, K, Mg) besides the authentic glass
compositional elements, indicating the deposition of apatite layer and therefore, it can be concluded
that the prepared bioglass samples are bioactive. After 1 day, as observed in Figure 5b, the SEM images
exhibited small concentrations of precipitation, as the crystalline nature of the apatite layer is identified
from XRD analysis. SEM images also have been taken for samples after 5 days of immersion, where the
apatite layer on the glass sample surfaces are noticed to be fully covered, and the dense HAp layer
(and also from EDS Ca-P ratios data) has been developed (~39 microns thick) [32]. In addition, there is
an increment in the Ca and P intensity peaks from EDS after immersion in SBF. The obtained Ca/P
ratios of the synthesized glasses are changing from 1.45–1.68 and are very near to human bone Ca/P
ratios [12,33]. This is mainly because of Ca2+, Na+ and phosphate ions releasing from glass surface to
SBF solution and transfer of ions from solution to the glass surface. Moreover, it leads to the easy super
saturation of Ca2+ and PO4

3− ions on the surface of glasses and is favorable for HAp to nucleate and
grow [7]. These obtained results are in good agreement with the above mentioned XRD and FTIR data.

3.5. pH Measurement and Weight Loss Studies

From Figure 6, it can be noticed that the pH values are increased for after immersion in the SBF
solution for 1 day suddenly, while after, there is a gradual reduction of the pH values for five days of
immersion time. The initial raise of pH values of the residual SBF (during the immersion from 0 to three
days) is due to the release of alkali/alkaline ions (viz., Na+, or Ca2+) and even the migration of zirconium
species into the SBF that causes the increase of the basicity of SBF. The detected pH reduction in the SBF
with the rise in the soaking period is owing to the formation of more concentrated phosphoric acid in
SBF and might be the transfer of alkaline Ca2+ ions from SBF to the surface of the sample (to form HAp
layer) [34]. Moreover, it is observed that the pH of the residual SBF decreases slightly with the increase
in content of ZrO2 and obeys the same trend as that of degradation. Figure 7 illustrates the weight loss
of glass samples upon SBF treatment for different time intervals (1 day and 5 days). With an increase in
the immersion time, the gradual degradation of glass samples also increased. Therefore, the accurate
dissolution rate of Z.1 to Z.7 glass samples’ increments is based on the Ca2+ and PO4

3− ions from
samples, due to their dissolution in the SBF solution. As we can see, the weight loss of each bioglass
increased along with the immersion time, but decreases slightly by adding of ZrO2 up to 0.7 mol%
in the phosphate glass matrix and resemble earlier reported literature [35,36]. The slight decrease
in the rate of degradation along with increasing ZrO2 content is observed, which is mainly because
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of highly established cross-linked dense structures and a reduction of the degradation of the glass.
This result implies a strengthening network with the addition of ZrO2 to phosphate glasses [37,38].
These considerable changes occurred in pH, and the weight loss of as-developed bioglasses is necessary
for the development of bone-like apatite.
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4. Conclusions

ZrO2 doped calcium phosphate bioactive glasses were successfully synthesized through the
melt-quenching technique. Thermal parameters such as glass stability (∆T) and Hruby criterion
(KH) values increase with the content of zirconia, which describes the high stability and the good
glass-forming tendency of as-prepared glasses. The formation of the hydroxyapatite layer was
confirmed by structural studies by means of XRD, FTIR, and SEM. The ratio of Ca and P from EDS
is around 1.67, which is almost equal to bone composition and the ability to produce bone-like
apatite structures on the surface. The changes that occurred in pH and weight loss of bioglasses with
immersion time and zirconia content are desirable for the formation of bone-like apatite. In vitro
studies revealed that the ZrO2 incorporated phosphate glasses exhibit high bioactivity relevant for
bone tissue engineering applications.
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