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ABSTRACT Here, we present the genome of Palo, a T7-like podophage of Rhizobium
phaseoli. The genome is 46.3 kb and contains 58 predicted protein-coding genes,
including a novel signal-anchor-release (SAR) endolysin, a homolog of the T5 A1 pro-
tein required for DNA transfer, and a dual-start holin/antiholin pair.

The Gram-negative alphaproteobacterium Rhizobium phaseoli is generally found in
legume root nodules, where it fixes nitrogen (1). R. phaseoli possesses the sym plas-

mid, containing symbiotic determinants, nodulation genes, and nitrogen fixation gene
repeats (2). Examined in this report is the genome of Palo, a T7-like podophage of R.
phaseoli that has multiple unique features and could be used to study the population
dynamics of R. phaseoli populations in soil.

Bacteriophage Palo was isolated from potato root samples obtained in Olton, Texas,
by plaque purification using the double-agar overlay method (3) with host bacterium
R. phaseoli 127K17 grown aerobically at 28°C in L-arabinose medium. Genomic DNA
was isolated from crude lysates using the modified Wizard cleanup kit protocol, as
described previously (4). Samples were then prepared as Illumina TruSeq libraries using
a Nextera Flex kit and sequenced on an Illumina MiSeq system using paired-end 250-
bp reads and 500-cycle v2 chemistry. The 444,176 reads were quality controlled and
manually trimmed using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc)
and FastX v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download.html), respec-
tively. A single contig was assembled to 22.5-fold coverage using SPAdes v3.5.0 with
default parameters (5). The contig was closed by PCR and Sanger sequencing using pri-
mers AAGGATTGGTTCGCATCTACC and ATACTGAGTTCGATCCTCTGCA. GLIMMER v3 (6)
and MetaGeneAnnotator v1.0 (7) were used for structural annotation of the genome,
and tRNAs were detected using ARAGORN v2.36 (8). BLAST v2.9.0 (9) was run against the
NCBI nonredundant, TrEMBL, and UniProtKB Swiss-Prot databases (10) (accessed 14
March 2020). InterProScan v5.33 (11) was used to conduct conserved domain searches,
and TMHMM v2.0 (12) was used to predict transmembrane domains. All programs were
used with default settings. progressiveMauve v2.4 was used to calculate genome-wide
nucleotide similarity (13). These annotation tools were used in Apollo and Galaxy instan-
ces hosted by the Center for Phage Technology at Texas A&M University (https://cpt
.tamu.edu/galaxy-pub) (14–16).

Genomic analysis determined that Palo is a podophage, which was confirmed visu-
ally by transmission electron microscopy (TEM), with a 46,322-bp genome and a GC
content of 52%, significantly lower than the 61.1% GC content of its host. PhageTerm
(17) predicted 260-bp direct terminal repeats, like those characteristic of T7-like phages.
The genome has a coding density of 93%, 58 predicted protein-coding genes, and no
tRNAs. BLASTn analysis showed that the phage most closely related to Palo was the
T7-like phage RHEph09, a virulent Rhizobium etli phage, with an overall nucleotide

Citation Nabhani A, Rushing L, Newkirk H,
Burrowes B, Young R, Gonzalez C. 2021.
Complete genome sequence of Rhizobium
phaseoli podophage Palo. Microbiol Resour
Announc 10:e01443-20. https://doi.org/10
.1128/MRA.01443-20.

Editor Kenneth M. Stedman, Portland State
University

Copyright © 2021 Nabhani et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Carlos Gonzalez,
cf-gonzalez@tamu.edu.

Received 16 December 2020
Accepted 7 January 2021
Published 28 January 2021

Volume 10 Issue 4 e01443-20 mra.asm.org 1

GENOME SEQUENCES

https://orcid.org/0000-0001-9376-8227
https://orcid.org/0000-0001-8001-2914
https://orcid.org/0000-0002-7309-8059
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://hannonlab.cshl.edu/fastx_toolkit/download.html
https://cpt.tamu.edu/galaxy-pub
https://cpt.tamu.edu/galaxy-pub
https://doi.org/10.1128/MRA.01443-20
https://doi.org/10.1128/MRA.01443-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:cf-gonzalez@tamu.edu
https://mra.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01443-20&domain=pdf&date_stamp=2021-1-28


sequence identity of 54.5% (18). Twenty-four of the 58 putative protein-coding genes of
Palo were assigned predicted functions. A putative dual-start holin/antiholin with a pre-
dicted mRNA stem-loop that could control translation initiation was found. A putative
novel signal-anchor-release (SAR) endolysin gene that possessed not only the SAR do-
main at the N terminus but also a separate transmembrane domain at the C terminus
was identified. Surprisingly, although Palo has the hallmarks of a T7-like virulent phage,
many Palo genes have homologs in alphaproteobacterial genomes; for example, the
Palo terL gene is closely related to a gene in Rhizobium sp. strain Leaf341 (NCBI GenBank
accession number NZ_LMPE00000000) that is part of a cluster of unannotated phage lysis,
structural, and replication genes. This finding suggests that Palo may be derived from a
recent temperate ancestor. In addition, Palo encodes a close homolog of A1, one of two
early proteins required for second-step DNA transfer in the paradigm siphophage T5 (19).

Data availability. The Palo genome was deposited under GenBank accession num-
ber MT708544.1. The associated BioProject, SRA, and BioSample accession numbers are
PRJNA222858, SRR11558343, and SAMN14609646, respectively.
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