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Survival of infection with Ebola virus (EBOV) depends on the

ability of the host to mount early and strong immune responses

[1,2]. However, given that EBOV cases are associated with 40%–

90% human mortality, EBOV has developed intricate solutions to

human immunological defenses. Enveloped viruses, like EBOV,

must deposit their genetic material within a cell to ensure their

propagation. The roles of viral envelope glycoproteins in

mediating virus attachment to host cells and catalyzing the

subsequent fusion of the viral and host plasma membranes have

been well described (reviewed in [3]). Given the limited number of

genes in EBOV and other viruses, it stands to reason that these

conformationally labile glycoproteins are also involved in more

than just the initial steps of a productive infection. There is strong

evidence that viral entry glycoproteins (GP) are modulators of host

antiviral defenses (Table 1). In this article, we discuss our current

structural understanding of the functions of envelope entry

glycoproteins in immune evasion using EBOV as our example.

How Does Glycosylation of Ebola Virus Envelope
Proteins Facilitate Immune Evasion?

In EBOV, four variants of the envelope glycoprotein are

synthesized as a result of transcriptional stuttering or post-

translational processing (Figure 1A). About 25% of transcripts

from the GP gene produce the virion-attached or envelope spike

GP that is important for entry. The surface of the envelope GP is

covered with N- and O-linked glycans. Depending on the EBOV

species, the envelope GP contains 11–18 N-linked glycan sites.

Furthermore, EBOV GP contains an unstructured ,150-residue

mucin-like domain that is heavily modified with O-linked glycans

(,80 sites) [4]. The N-linked glycans are a heterogeneous mixture

of ,60 different species of high-mannose, hybrid, and complex

oligosaccharides, while the O-linked glycans consist of primarily

smaller trisaccharide structures (core 2) that contain varying

amounts of sialic acids [5].

Epitope masking is a major mechanism of viral immune

evasion. Modeling of the EBOV GP core structure reveals a

surface covered in oligosaccharides (Figure 1B). The dense

clustering of glycans creates an unfavorable environment for the

interaction of otherwise neutralizing antibodies. Moreover, critical

regions on EBOV GP, such as the receptor-binding site, are

hidden under layers of glycan. No antibodies have been identified

to target the receptor-binding site, however a number of

neutralizing antibodies have been generated against the more

variable mucin-like domain [6]. The mucin-like domain is not

necessary for EBOV entry [4]. Essentially, the EBOV GP glycans

direct the immune system to produce antibodies against highly

variable or dispensable regions on the viral surface. This also

occurs in hosts infected with HIV-1; nonbroadly neutralizing

antibodies are generated against the variable V1/V2/V3 loops

[7]. In mice, removal of the mucin-like domain of the EBOV GP

leads to the production of cross-species antibodies directed at the

conserved glycoprotein core structure [8]. A small area near the

base of the EBOV GP core is available to immune surveillance

(Figure 1B). This nonglycosylated patch on GP is conserved in

both Zaire and Sudan EBOV species, and the neutralizing

antibodies KZ52 and 16F6-1 bind to this hotspot [9]. However,

given its close proximity to the viral membrane and the density of

GP spikes on the surface, it is not clear how accessible this epitope

is.

EBOV GP also has the unique ability to mask the function of

host cellular proteins important in response to viral pathogens.

Transient expression of EBOV GP results in low detectable levels

of various cell surface proteins such as major histocompatibility

complex (MHC) class I proteins and several members of the b-

integrin family [10,11]. Initially, it was thought that EBOV GP

downregulated expression or degraded these proteins from the cell

surface. However, MHC class I and b-integrins are not removed

from the cell surface. Rather, the mucin-like domain of EBOV GP

provides a ‘‘glycan umbrella’’ that shields surface epitopes and

inhibits surface protein recognition [11–13] (Figure 1B). This

represents a novel mechanism of disrupting immune function that

does not involve downregulation or degradation of surface

proteins.

What Roles Do Shed Viral Glycoproteins Play in
Immune Evasion?

The shedding or secretion of soluble viral glycoproteins

exemplifies another viral strategy of humoral misdirection. Many

enveloped viruses, including EBOV, Lassa, respiratory syncytial,

herpes simplex, and HIV-1, generate free glycoproteins that act as

either ‘‘antibody sinks’’ or decoys of host immunity (Table 1).

EBOV-infected cells secrete two glycoproteins (secreted GP and

shed GP) into an infected person’s sera [14,15]. Most of the

transcripts (70%) for the GP gene encode the 110-kDa, dimeric,

secreted GP (sGP) (Figure 1A). A cleavage at the membrane-

proximal external region by the tumor necrosis factor-a converting

enzyme (TACE) releases the trimeric glycoprotein, termed shed

GP. In 5% of the transcripts, insertion of two adenosines produces
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a small 298-residue secreted GP (ssGP), of unknown function. The

first 295 amino acids of sGP are common with the envelope GP,

but due to transcriptional stuttering, the sGP C-terminus forms

different disulfide linkages leading to a homodimeric rather than a

trimeric assembly (Figure 1A). As a result, sGP lacks regions found

in GP that have been shown to be important in the neutralization

of the virus [9]. sGP and shed GP likely compete with virion-

attached GP for antibody binding [16]. Most of the antibodies

derived from EBOV survivors or macaques are directed towards

sGP rather than the virion-attached GP [17,18]. Antibodies that

bind to sGP or shed GP are likely nonneutralizing, and those

neutralizing antibodies that cross-react between sGP and GP may

be absorbed by the much more abundant sGP. In a guinea pig

model of EBOV infection, shed GP inhibits the neutralizing

activity of EBOV antibodies [15].

How Do Viral Glycoproteins Actively Suppress
Host Immunity?

In a seminal paper, Cianciolo et al. described immunomodu-

lation by a synthetic peptide derived from the fusion subunit of the

HIV-1 envelope glycoprotein [19]. The immunomodulatory

region (IR) is comprised of a disulfide-linked loop situated between

the heptad-repeat regions of the fusion subunit, and similar

structures have been identified in numerous retroviruses and

filoviruses (Figure 2A). Point mutations introduced into the IR of

HIV-1 gp41 abrogate the modulation of host cytokine expression

in vitro and increase antibody responses in rats immunized with

mutant protein [20]. Synthetic peptides derived from the IR

regions of GP2 of Ebola and Marburg viruses inhibit the

expression of IFN-c, IL-2, and IL-10, lower CD4+ and CD8+

cell activation, and increase immune cell apoptosis [21]. The

fusion domain from Moloney murine leukemia virus expressed on

various tumor cell lines facilitates xenograph immune evasion and

natural killer cell antagonism [22]. Interestingly, the human

endogenous retrovirus-derived syncytin-2 retains the immuno-

modulatory activity associated with the viral envelope glycopro-

teins, but the closely related syncytin-1 differs in the IR region,

ablating this function [23]. These retrovirus-derived syncytin

proteins are implicated in both cell–cell fusion during placental

development and in maternal–fetal tolerance, clearly pointing to a

role in immune evasion [24]. Available structures of the post-

fusion glycoprotein subunit show that the disulfide-bonded

immunomodulatory motif exists as a conformationally conserved

region at the apex of the fusion subunit, with residues identified by

mutagenesis as important for immunosuppression displayed

outwards (Figure 2B). Interestingly, in the SIV fusion subunit the

same region is not found at the apex but rather on the central

helical heptad-repeat region. One possible target of the HIV-1

gp41 IR is CD74, a type II single-pass transmembrane protein

that, among other functions, chaperones MHC class II dimers

from the endoplasmic reticulum to the MHC class II compartment

(MIIC) for antigen loading [25,26], and is also implicated in MHC

class I cross-presentation [27]. Recently, it was determined that

Table 1. Viral entry glycoprotein-mediated immune evasion strategies in other viral families.

Viral Family Immune Evasion Mechanism Examples/Comments Ref

Arenaviridae Glycoprotein shedding/secretion Lassa virus: shed GP1-mediated immune evasion has been attributed to differential
glycosylation of the shed and transmembrane glycoprotein complex.

[37,38]

Coronaviridae Direct humoral antagonism SARS CoV: spike protein acts as a ligand for phenotypic conversion of B cells into
macrophage-like cells.

[39]

Filoviridae see article

Flaviviridae Glycan shielding The hepatitis C virus E1/E2 glycoprotein escapes neutralizing antibodies in a
glycoprotein-dependent manner.

[40,41]

NK and innate immune antagonism The hepatitis C virus E2 glycoprotein binds CD81 and blocks natural killer
cell activation.

[42]

Herpesviridae Glycan shielding Bovine herpes virus gp180 O-linked glycans shield against humoral assault and are
conserved across all gammaherpesvirus gp350 homologs.

[43]

Antigen presentation antagonism Epstein Barr virus sgp42 binds MHC class II, thereby interfering with antigen
presentation to CD4+ T-cells.

[44]

Orthomyxoviridae Glycan shielding Glycans present on the Influenza A virus HA glycoprotein protect temporally diverse
pandemic strains in a conserved manner.

[45,46]

Paramyxoviridae Glycoprotein shedding/secretion Respiratory syncytial virus G glycoprotein acts both as a decoy for host antibodies
and can modulate immunity via immune receptor interactions.

[47]

Glycan shielding Nipah virus F protein contains N-linked glycans that offer a protective role against
the host antibody response.

[48]

Retroviridae Glycoprotein shedding/secretion HIV-1 gp120 shedding competes with the gp160 complex for host antibodies. [49]

Immunosuppressive structural motif Peptides derived from HIV-1 gp41 inhibit T-cell activation. [19]

Immunosuppressive structural motif HTLV-1 gp21 immunomodulatory region inhibits IgG response by ,40 fold when
compared to mutant recombinant protein.

[50]

Glycan shielding HIV-1 gp120 glycan shield protects otherwise neutralizing epitopes from humoral
antagonism and directs antibodies towards variable loops.

[7,51]

Direct innate immunity antagonism HIV-2 env-encoded glycoprotein counteracts BST-2-mediated viral tethering. [32]

Antigen presentation antagonism HIV-1 gp41 can interrupt TCR-CD3 interactions to modulate T-cell proliferation. [52]

Antigen presentation antagonism HIV-1 gp41 interacts with HLA-associated invariant chain and may have a role
in MHC-directed antagonism.

[28,53]

doi:10.1371/journal.ppat.1003258.t001
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Figure 1. Ebola virus glycoproteins. (A) Processing of EBOV glycoproteins. The EBOV genome contains seven genes (39-NP-VP35-VP40-GP-VP30-
VP24-L-59), but nine proteins are produced due to editing events in the GP gene. The GP gene primary transcript encodes for a ,110 kDa, dimeric
secreted GP (pre-sGP). Furin cleavage of pre-sGP produces mature sGP and a secreted D-peptide. Transcriptional stuttering results in the production
of the envelope-attached GP and a small, secreted GP (ssGP). The GP is the only virally encoded protein on the EBOV surface and is cleaved by furin to
form a disulfide-linked GP1-GP2 heterodimer, which then assembles as trimers on the virus surface. GP1 contains the receptor-binding site for host
cell attachment, while GP2 contains a helical heptad-repeat (HR) region, transmembrane anchor (TM), and a 4-residue cytoplasmic tail. A cleavage at
the membrane-proximal external region by the tumor necrosis factor-a converting enzyme (TACE) releases the shed GP. The first 295 residues of
ssGP, sGP, and GP are common, but each protein has a different C-terminus, leading to different functions. (B) Epitope masking by EBOV
glycoproteins. Molecular surface of EBOV GP subunits (PDB code: 3CSY) are shown in green (GP1) and yellow (GP2). Complex-type N-linked glycans
are modeled onto the EBOV GP surface as red/white spheres to reveal a heavy glycan layer that buries much of the GP surface, including the receptor-
binding site; only a small patch at the base of the GP is accessible (KZ52/16F6 antibody-binding site). The O-linked glycosylated mucin-like domain
(blue) is modeled onto EBOV GP, and thought to form an extended structure that provides another glycan layer of protection to the virus. EBOV GP is
estimated to be ,150 Å in height. Given the size and shape of EBOV GP, smaller cellular surface proteins, such as MHC class I and b-integrins (,70 Å
in height), may be sterically blocked.
doi:10.1371/journal.ppat.1003258.g001
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the ectodomain of human CD74 binds to residues corresponding

to a region adjacent to the conserved HIV-1 gp41 IR. When

peripheral blood mononuclear cells (PBMCs) were incubated with

recombinant post-fusion HIV-1 gp41, an increase in phosphory-

lated ERK occurred. Furthermore, this activation was inhibited in

a dose-dependent manner by treatment with soluble recombinant

CD74 ectodomain [28]. The activation of the ERK/MAPK

pathway via high levels of the CC-chemokine RANTES (or other

exogenous signals) is responsible for increased infectivity of HIV-1

[29]. In support of these findings, siRNA knockdown of CD74

effectively curbs HIV-1 infectivity [30]. Although these works are

stimulating, more extensive research is required to generate a

complete description of viral fusion glycoprotein-associated

immunosuppression. Like HIV-1, the host targets of the immu-

nomodulatory motif found in other species of virus remain poorly

defined and await further studies.

What Are the Innate Restriction Strategies
Targeted toward Viral Glycoproteins?

Host strategies for viral restriction are not limited to the

humoral arm of the immune system. The interferon-a-induced

innate viral restriction factor BST-2 (also called tetherin and

CD317) is a common target of viral glycoprotein modulation [31].

As viruses bud from the cell surface, they are coated with a

membrane derived from the host cell. As a result, host BST-2 is

incorporated in the membrane of the nascent virion and forms a

protein tether to prevent viral release. This nonspecific restriction

factor potentially plays a protective role against infections due to

retroviruses, filoviruses, arenaviruses, flaviviruses, rhabdoviruses,

and orthomyxoviruses (Table 1).

EBOV and HIV-2 both downregulate BST-2 by interactions

mediated through their respective viral glycoproteins [32],

whereas HIV-1 makes use of the accessory protein Vpu to achieve

this same outcome. Some viruses degrade BST-2 or sequester it in

intracellular compartments. For example, the HIV-2 envelope

glycoprotein appears to sequester the constitutively endocytosed

BST-2 in transferrin-positive endosomes [33]. Recent studies have

shown that EBOV GP does not remove BST-2 from the cellular

surface [34] or sequester it in intracellular sites or lipid rafts [35].

EBOV GP interferes with BST-2-mediated virion capture

independently of the mucin-like domain, and neither an

engineered form of GP lacking the transmembrane domain nor

the dimeric sGP antagonize BST-2 restriction [32]. HIV-1 Vpu

interacts with BST-2 via a helical interface found within the

transmembrane domains of the two proteins [36]. Accordingly, it

may be worthwhile to explore the role of the transmembrane

domain of EBOV GP in BST-2 antagonism.

Perspectives

Viruses have developed remarkable mechanisms to inhibit the

adaptive and innate immune systems of their hosts. Clearly, viral

entry glycoproteins play critical roles in these activities. However,

many of these roles and biological pathways are poorly defined.

With new infectious diseases emerging and classical viral diseases

reemerging, closer examination of viral entry glycoproteins as

targets for preventative or therapeutic strategies is warranted.
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