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Background: Although checkpoint blockade is a promising approach for the treatment of
hepatocellular carcinoma (HCC), subsets of patients expected to show a response have
not been established. As T cell-mediated tumor Killing (TTK) is the fundamental principle of
immune checkpoint inhibitor therapy, we established subtypes based on genes related to
the sensitivity to TKK and evaluated their prognostic value for HCC immunotherapies.

Methods: Genes regulating the sensitivity of tumor cells to T cell-mediated killing (referred
to as GSTTKs) showing differential expression in HCC and correlations with prognosis
were identified by high-throughput screening assays. Unsupervised clustering was
applied to classify patients with HCC into subtypes based on the GSTTKs. The tumor
microenvironment, metabolic properties, and genetic variation were compared among the
subgroups. A scoring algorithm based on the prognostic GSTTKSs, referred to as the
TCscore, was developed, and its clinical and predictive value for the response to
immunotherapy were evaluated.

Results: In total, 18 out of 641 GSTTKSs simultaneously showed differential expression in
HCC and were correlated with prognosis. Based on the 18 GSTTKs, patients were
clustered into two subgroups, which reflected distinct TTK patterns in HCC. Tumor-
infiltrating immune cells, immune-related gene expression, glycolipid metabolism, somatic
mutations, and signaling pathways differed between the two subgroups. The TCscore
effectively distinguished between populations with different responses to
chemotherapeutics or immunotherapy and overall survival.

Conclusions: TTK patterns played a nonnegligible role in formation of TME diversity and
metabolic complexity. Evaluating the TTK patterns of individual tumor will contribute to
enhancing our cognition of TME characterization, reflects differences in the functionality of
T cells in HCC and guiding more effective therapy strategies.

Keywords: hepatocellular carcinoma, T cell-mediated tumor killing, tumor microenvironment, glycolipid
metabolism, somatic mutation analysis
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BACKGROUND

Hepatocellular carcinoma (HCC) is the most common primary
malignant cancer in the liver. It ranks sixth in morbidity and
fourth in mortality among cancers worldwide. The mortality rate
of HCC in the United States increased by 43% % between 2000
and 2016, and the average 5-year survival is only 12% in China
and 18% worldwide (1, 2). The World Health Organization
predicts that in 2030, HCC will account for approximately one
million deaths (3).

The single or combined administration of checkpoint
inhibitors has shown good efficacy in HCC. In the CheckMate-
040 trial, patients with advanced HCC received nivolumab as a
single second-line agent and showed a median overall survival
(OS) time ranging from 15.6 to 28.6 months, irrespective of the
use of sorafenib (4). A clinical trial in China (NCT02989922)
involving 220 patients with progressive HCC from 13 centers
showed a similar treatment efficacy for camrelizumab and other
PD-1 monoclonal antibodies, with an objective response rate of
14.7%, 6-month survival rate of 74.4%, and median OS time of
13.8 months (5).

Although immune checkpoint blockade has become an
effective immunotherapeutic approach for HCC, it is very
difficult to identify subsets of patients expected to benefit from
this strategy before the start of therapy. Immune cells (especially
various T cell subtypes), stromal cells, and molecules expressed
in the tumor microenvironment (TME) are key determinants of
the response to checkpoint blockade. Thorsson et al. classified 33
tumors into six immune subtypes based on data from The
Cancer Genome Atlas (TCGA), among which HCC cases were
classified as inflammatory or lymphocyte-depleted subtypes (6).
In a proteomic study of paired tumor and adjacent normal
tissues, 159 cases of hepatitis B virus-related HCC were divided
into subtypes with metabolic, proliferative, and tumor immune
microenvironment (TIME) disorders, and PYCR2 and ADHIA
were found to be differentially expressed and involved in
metabolic reprogramming in the subtypes (7). However, the
clinical utility of these models for predicting the response to
immunotherapy in HCC is limited, and they have not been
verified in clinical cohorts.

Using a genome-scale gRNA library knockout screen, Pan
et al. revealed that inactivation of Prbml, Arid2, and Brd7,
encoding components of the polybromo and BRGI-associated
factors chromatin remodeling complex sensitized melanoma
cells to T cell-mediated killing (8). Ru et al. integrated high-
throughput screening data including CRISPR/Cas9, shRNA, and

Abbreviations: CNV, copy number variation; ES, enrichment score; GEO, Gene
Expression Omnibus; GSEA, gene set enrichment analysis; GSTTKSs, genes
sensitive to T cell-mediated tumor killing; GSVA, gene set variation analysis;
HCC, hepatocellular carcinoma; HR, hazard ratio; IC50, half-maximal inhibitory
concentration; ICGC, International Cancer Genome Consortium; KEGG: Kyoto
Encyclopedia of Genes and Gnomes, LIHC, liver hepatocellular carcinoma;
MSigDB, Molecular Signatures Database; ORA, over-representation analysis;
OS, overall survival; PCA, principal component analysis; RTK, receptor tyrosine
kinase; SD, stable disease; ssGSEA, single sample gene set enrichment analysis;
TCGA, The Cancer Genome Atlas; Th, T helper; TIME, tumor immune
microenvironment; TME, tumor microenvironment; tSNE, t-distributed
stochastic neighbor embedding; TTK, T cell-mediated tumor killing.

RNAi data, and determined that PTPN2 and CD47 are genes
associated with the sensitivity of tumor cells to T cell-mediated
killing (referred to as GSTTKs) (9).

In this study, we utilized a set of identified GSTTKs to
distinguish between HCC patient populations with different
immunophenotypes and immune cell infiltration
characteristics. Additionally, we investigated the metabolic and
genomic features of patients and developed a new independent
prognostic marker based on T cell-mediated tumor killing (TTK)
with the potential to guide individualized treatment of HCC.

METHODS

Raw Data Retrieval and Preprocessing

A total of 660 HCC samples datasets were procured from three
publicly available datasets. Raw RNA sequencing data were
standardized by variance-stabilizing transformation (VST)
using the DESeq2 package in R, include 349 samples from the
Cancer Genome Atlas (https://portal.gdc.cancer.gov/) TCGA-
LIHC cohort (10) and 196 samples from the International
Cancer Genome Consortium (https://dcc.icgc.org/) ICGC-
LIRI-JP cohort (11). The microarray datasets, 115 samples of
GSE76427, was downloaded from the Gene Expression Omnibus
database (GEO, https://www.ncbi.nlm.nih.gov/geo/) (12). Genes
associated with a favorable response to TTK in cancer
immunotherapy were obtained from the TISIDB database
(http://cis.hku.hk/TISIDB/) and used to established a gene set,
referred to as GSTTKSs (9).

Integrated Multi-Omics Analysis

GSTTKs differentially expressed between paracancerous and
cancerous tissues were identified using the R package DESeq2
(13), with a false discovery rate < 0.05 and |Log fold change | > 1
as thresholds for significance. GSTTKs significantly associated
with OS in HCC were identified by univariate Cox regression
using the Survival package in R. A Venn diagram was generated
using the VennDiagram package to identify the intersection of
differentially expressed GSTTKs and prognostic GSTTKs.
Somatic mutations in these genes in patients were described
using the maftools R package (14). The copy number variation
(CNV) status of each gene was retrieved from TCGA and
delineated using GISTIC 2.0 to obtain chromosome
information along with the gain or loss status, which was
visualized in a circos plot (15). A principal component analysis
(PCA) was performed using the PCAtools package in R to
determine whether specific GSTTKs in the TCGA-LIHC
dataset can distinguish between liver tumor samples and non-
tumor samples.

Recognition of Different TTK Patterns by
Unsupervised Clustering

The ConsensusClusterPlus package was employed for
unsupervised clustering using the following parameter settings:
partitioning around medoid (PAM) based on the center point,
merge based on Ward’s distances using the minimum variance
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method (16). In addition, 1000 times repetitions were conducted
for guaranteeing the stability of classification. The proportion of
ambiguous clustering (PAC) was used to automatically select the
optimal number of subtypes. PCA and tSNE analysis were
performed to compare the transcriptional profiles between the
different immune subtypes. For the clustering results for the
TCGA-LIHC and ICGC-LIRI-JP cohorts, Kaplan-Meier survival
curves were plotted and log-rank tests were performed using the
survminer and survival packages in R.

Evaluation of Tumor-Infiltrating

Immune Cells

Based on TCGA-LIHC dataset, a single sample gene set
enrichment analysis (ssGSEA) was performed to quantitatively
detect the relative levels of infiltration of 28 immune cells in the
TME (17). The genetic signatures for these 28 immune cells were
derived from Charoentong et al. (18). In the ssGSEA,
differentially expressed marker genes were employed to
evaluate the abundance of immune cells in individual samples.
The relative abundance of each type of immune cell was
represented as an enrichment score. To further explore the
relationship between HCC subtypes and immune cell
infiltration in HCC, the Wilcoxon rank sum test was used to
analyze the differences in immune cell abundance between HCC
subtypes. TIDE (Tumor Immune Dysfunction and Exclusion)
algorithm developed by Liu can simulate the two main
mechanisms of tumor immune escape: the induction of T cell
dysfunction at high cytotoxic T lymphocyte (Cytotoxic T
Lymphocytes, CTL) and the prevention of T cell infiltration at
low CTL, and predict the response potential of tumor
immunotherapy. This algorithm was used to evaluate the LIHC
cohort, which is verified with the results of ssGSEA analysis to
explore the difference of TME among different TTK patterns of
HCC (19). The stromal and immune score was determined using
the ESTIMATE package in R to assess the level of immune
infiltration. These analyses were performed using the gene set
variation analysis (GSVA) (20), ComplexHeatmap and estimate
packages in R.

Annotation and Functional

Enrichment Analyses

To evaluate the correlation between molecular subtypes and
immune markers, the characteristic signatures related to
differentially infiltrating immune cells in the HCC subtypes were
collected from previous studies. Data for 148 immunomodulators
and inhibitory immune checkpoints, including 41 chemokines, 21
major histocompatibility complex molecules, 18 receptor
molecules, 44 immunostimulant molecules, and 24 inhibitory
immune checkpoint molecules, were collected from previous
studies (18, 21, 22). The Wilcoxon rank sum test was used to
analyze the differential expression of these genes between the HCC
subtypes. To determine the correlation between molecular
subtypes and specific biological processes, annotated gene sets
derived from the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Molecular Signatures Database (MSigDB), and a study
by Mariathasan et al. were used for enrichment analysis and for

comparing biological processes among subtypes (20, 23). For
typing based on glycolipid metabolism, a glycolysis-cholesterol
synthesis axis-related gene set was obtained from Schaeffer et al.
(24) and modeling was completed using the R package
ConsensusClusterPlus package. GSEA, GSVA, and over-
representation analysis (ORA) were performed using the
ClusterProfiler (25) and GSVA (20) packages in R.

Study of Etiology Based on Whole-
Genome Data

Somatic mutation information in the mutect2 format for patients
with HCC in TCGA-LIHC was converted to the mutation
annotation format. The maftools package was used to generate
waterfall diagrams to visually represent genes with high mutation
frequencies. To investigate differences in the distribution of
mutations among the HCC subtypes, differentially mutated
genes were identified using p < 0.05 as the threshold for
significance. Non-negative matrix factorization was carried out
to reduce the dimensionality of the mutation matrix for the
LIHC dataset, and the optimal number of mutation signatures in
different HCC subtypes was identified (26). Thirty tumor
mutational signatures that have been reported in COSMIC
(https://cancer.sanger.ac.uk/cosmic) were downloaded for
comparison with signatures identified by NMF, and mutational
signature features of HCC were determined (27). A bar graph of
96 trinucleotide changes was generated for each sample to show
the base change profile of each mutation feature. The whole
process was performed using the NMF, BSgenome, and
MutationalPatterns packages in R.

Calculation of the TCscore and
Assessments of Clinical Significance

The index to represent the TTK level was establish based on the
expression data for 18 GSTTKs including risk factors of CA9,
SLC1A7, E2F1, RECQL4, AURKA, CENPF, RFPL4B, H2AFZ,
KIF11, CDC7, TGIF2LX, MCM10, GRM4 and protective factors
of SLC4A10, CAPN11, MYOI1B, NR4A3, FGF12. The
enrichment score (ES) of gene set that positively or negatively
regulated TTK was calculated using single sample gene set
enrichment analysis (ssGSEA) in the GSVA package (20), and
the normalized differences between the ES of the risk factors
minus protective factors was defined as the TTK potential index
(TCscore) to computationally dissect the TTK trends of
each sample:

TCscore = ESforriskfactors — ESforprotectivefactors

The relationships between the TCscore and clinical
characteristics, sensitivity to chemotherapeutics were evaluated.
AJCC guidelines recommend the use of antineoplastic drugs
such as doxorubicin, mitomycin, vincristine, cisplatin and
sorafenib in the treatment of HCC. We predicted the
chemotherapy response of each sample to these five drugs
based on the GDSC database (the Genomics of Drug
Sensitivity in Cancer, https://www.cancerrxgene.org/). The
prediction process is realized by pRRophetic (28) packages in R.
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Statistical Analysis

All statistical analyses were conducted using R versions 3.6.3 and
4.0.2. For comparisons of continuous variables between two
groups, normally distributed variables were evaluated using
independent Student’s t-tests, and non-normally distributed
data were analyzed using Mann-Whitney U tests (the
Wilcoxon rank sum test). The chi-square test or Fisher’s exact
test was used for comparisons of categorical variables between
two groups. The relationships between gene expression levels
were evaluated on the basis of Spearman correlation coefficients.
Univariate and multivariate Cox analyses were used to identify
independent prognostic factors. Receiver operating characteristic
curves were plotted using the SurvivalROC package, and the area
under the curve was used to evaluate the accuracy of the TCscore
in predicting prognosis. The Rtsne package was used for a t-
distributed stochastic neighbor embedding (tSNE) analysis.
Two-sided p < 0.05 was the threshold for significance.

RESULTS

Identification and Characterization of
GSTTKSs Involved in HCC Progression
Comprehensive analysis of GSTTKs using multi-group data of
TCGA-LIHC cohort. The result of difference analysis of
transcriptome data shows that 92 of 641 GSTTKs were
upregulated or downregulated in HCC, as shown in a volcano
map in Figure 1A and a heatmap in Figure S1A. Univariate Cox
regression analysis revealed that 125 out of 641 GSTTKs were
related to prognosis in HCC. Taking the intersection of the two
sets of genes, 37 GSTTKs simultaneously exhibited differential
expression and prognostic value in HCC (Figure 1B). The
univariate Cox analysis of 37 GSTTKs showed that 11 GSTTKs
were protective factors with HR < 1 and 16 GSTTKs were risk
factors with HR > 1 for HCC prognosis (Figure 1C). According
to the genomic data of TCGA-LIHC, the top 10 oncogenic
pathways and effects of HCC are shown in Figure S1B. The
mutational landscape for the 37 GSTTKs is displayed in a
waterfall plot in Figure 1D. Eighteen out of the 37 GSTTKs
had a mutation frequency of >1% and were closely associated
with progression or recurrence in HCC. Results of univariate cox
regression analysis and differential analysis for 18 GSTTKs were
shown in Table S1. As shown in Figure S1C, the co-occurrence
of CA9 mutations and MCMI10 mutations was significantly
overrepresented in HCC. In addition, we detected widespread
CNV in these 18 GSTTKs (Figure 1E). Copy number gains were
most frequent, and RECQL4, CAPNII, and FGFI2 showed
extensive CNV amplification, whereas H2AFZ showed a copy
number loss. The chromosomal locations of the 18 GSTTKs with
CNV are shown in Figure 1F. HCC and non-tumor samples
could be completely separated by the PCA (Figure 1G) based on
these 18 GSTTKs with differential mRNA levels (Figure 1H),
indicating high heterogeneity in the mutation status and
expression of GSTTKs between normal and HCC tissues. Thus,
GSTTK expression changes may play a crucial role in HCC
occurrence and progression.

TTK Patterns in HCC

Based on RNA-seq data and clinical data for TCGA-LIHC, we
identified four different patterns which show that comprehensive
landscape of 18 GSTTKSs interactions and their prognostic
significance for HCC patients was depicted with the 18
GSTTKs network correlations (Figure 2A). The R package of
ConsensusClusterPlus was used to classify patients with
qualitatively different TTK patterns based on the expression of
18 GSTTKs, and two distinct modification patterns were
eventually identified using unsupervised clustering, including
146 cases in Clusterl and 203 cases in Cluster2 (Figure 2B).
PCA algorithm and tSNE algorithm are used to evaluate the
differences between the two TTK patterns, and it is found that
there are significant differences in transcriptional profile among
different TTK patterns (Figures 2C, D). To verify the stability
and applicability of two TTK patterns in HCC, we repeated the
unsupervised clustering analysis using LIRI-JP cohort from
ICGC (Figure S2A) and GSE76427 cohort from GEO (Figure
$2D); both populations could be well classified into two groups.
The PCA (Figures S2B, E) and tSNE analysis (Figures S2C, F)
results corroborated the two distinct patterns of TTK in HCC.
Based on TCGA-LIHC expression profiling data, 16 out of 18
GSTTKs in the two clusters were significantly differentially
expressed (Figure S2G). The clinical prognostic value of TTK
patterns in patients with HCC was assessed through a survival
analysis. Patients in the two clusters showed a significant
difference in survival in both TCGA dataset (p = 0.0016,
Figure 2E) and the ICGC dataset (p = 0.0025, Figure 2F).

Mechanisms Underlying the
Immunotherapy Response in Patients

With Different TTK Subtypes

By comparing the infiltrating immune cell composition in the
TME of HCC between the two TTK subtypes (Figure 3A), we
obtained the following key findings. 1) Samples in Cluster 1 mostly
showed low immune cell infiltration, whereas samples in Cluster 2
mostly exhibited high immune cell infiltration. 2) The high
immune infiltration zone in the heatmap contains immune cells
that are established to mediate antitumor immune response (e.g.,
activated CD8+ T cells, type 1 T helper (Th1) cells, and dendritic
cells) and multiple immunosuppressive cells (e.g., bone marrow-
derived suppressor cells, regulatory T cells(Treg), immature
dendritic cells, and neutrophils), suggesting that there may be a
feedback mechanism, that is, TME may promote the recruitment
or differentiation of immunosuppressive cells.

In order to determine the specific immune components that
cause the difference of TME between Cluster 1 and Cluster 2, the
differences of 28 immune cells among different subtypes were
calculated. Combined with the results of the survival analysis
(Figure 2E), samples in Cluster 2 corresponding to favorable
survival outcome showed abundant infiltration by effector
memory CD8" T cells, Thl cells, CD56 natural killer cells,
eosinophils, natural killer T cells, neutrophils, and
plasmacytoid dendritic cells, whereas those in Cluster 1
corresponding to an unfavorable clinical prognosis showed the
infiltration of activated CD4" T cells, effector memory CD4" T
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FIGURE 1 | Identification of GSTTKs and detection of mutations in liver hepatocellular carcinoma (HCC). (A) Volcano map shows 92 of 641 GSTTKs show differential
mRNA expression in HCC based on transcriptome profiing data for patients with HCC from TCGA-LIHC cohort. Red indicates up-regulation and blue indicates
down-regulation. (B) Venn diagram shows 37 GSTTKs exhibiting both differential expression and prognostic value in HCC. (C) Univariate Cox regression analysis of 37
GSTTKs associated with clinical prognosis in HCC. (D) Waterfall plot displays the mutational landscape of the 37 GSTTKSs along with clinicopathological characteristics.
(E) Copy number variation (CNV) in 18 GSTTKSs in HCC. Deletions, blue dots; Amplifications, red dots. (F) CNV locations of 18 GSTTKSs are labeled on the chromosome.
(G) Principal component analysis separates tumor (green) and normal samples (red). (H) The 18 GSTTKs are differentially expressed between HCC and normal tissues.
Tumor, red; Normal, blue. The upper and lower ends of boxes represent the interquartile range. Lines in the boxes represent median values, and black dots show
outliers. Asterisks indicate significance, *p < 0.05; **p < 0.01; **p < 0.001; ***p < 0.0001; ns, no statistical significance.

cells, Th2 cells, and natural killer T cells (Figure 3B). A TIDE
analysis based on RNA-sequencing data revealed that samples in
Cluster 2 had higher scores for T cell dysfunction, microsatellite
instability, and tumor-associated fibroblasts than those in Cluster
1, whereas samples in Cluster 1 scored higher for T cell exclusion,
myeloid-derived suppressor cells, and tumor-associated M2
macrophages than those in Cluster 2; these findings were
generally consistent with the ssGSEA results (Figure 3C).
Furthermore, we compared the two clusters with respect to
biomarkers of infiltrating immune cells (Figure S3A) and

molecular markers of the response to immunotherapy,
including 41 chemokines, 21 major histocompatibility complex
molecules, 18 receptor molecules, 44 immunostimulant
molecules, and 24 inhibitory immune checkpoint molecules
(Figure S3B). In addition, we also evaluated the correlations
between the 18 GSTTKs and immune-infiltrating cells (Figure
S4A) and identified significant correlations between NR4A3 and
RECQL4 expression and most immune cells. Analysis of the
differences in immune-infiltrating cells between the groups with
high and low NR4A3 and RECQL4 expression were further
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LIRI-JP cohorts.

analyzed (Figures S4B, C), and these results indicated that these
genes may contribute to the difference between the TTK patterns.

TTK Patterns and the Metabolic
Microenvironment in HCC

Based on an enrichment analysis of TCGA-LIHC dataset by
GSVA (Figure 4A), the two TTK clusters differed significantly
with respect to metabolic pathways, suggesting that metabolic
alterations as well as the TIME contributed to the distinct TTK
patterns. Subsequent ORA (Figure S5A) and GSEA (Figure
S5B) confirmed the difference in metabolic status between the
two clusters. Next, we extracted glycolytic and cholesterogenic
genes (Figure S6A) and used them to classify HCC into four
metabolic subtypes: quiescent, glycolytic, cholesterogenic, and
mixed (Figure 4B). PCA revealed a substantial separation
among these four metabolic patterns (Figure S6B). The
expression levels of genes involved in glycolipid metabolism
are presented in Figure S6C. We detected significant
differences in OS among the four metabolic clusters, with the

FIGURE 2 | Patterns of TTK and their prognostic value in HCC. (A) Interactions among 18 GSTTKs in HCC. The circle size represents the effect of each regulator
on prognosis, and comparisons were made using the log-rank test (o < 0.05, p < 0.001, p < 1E-05 and p < 1E-08). Green dots in the circle represent risk factors
for prognosis; gray dots represent favorable factors for prognosis. The lines linking the regulators show interactions, and the line thickness indicates the strength of
the correlation. Positive correlations are marked in red and negative correlations are shown in blue. The regulator clusters A-D are marked in red, blue, purple, and
orange, respectively. (B) Two patterns of TTK were identified by unsupervised clustering. Cluster1, red; Cluster2, blue. (C, D) PCA and tSNE verified the two
patterns in HCC. Two subgroups without intersection were identified, indicating that Cluster1 and Cluster2 samples could be clearly distinguished based on GSTTK
expression profiles. (E, F) Survival analysis indicated that patients assigned to the two clusters had significantly different survival outcomes in TCGA-LIHC and ICGC-

quiescent and cholesterogenic subtypes being superior to the
glycolytic and mixed subtypes (Figure 4C, p = 0.0032). This is
consistent with the Warburg effect, in which aerobic glycolysis
contributes to the aggressive cellular proliferation in malignant
tumors. To investigate whether expression patterns across the
glycolytic-cholesterogenic axis could underlie the differences
between previously established immune subtypes (29), we
determined the various HCC subtypes for each sample and
investigated their degree of overlap with the metabolic
phenotypes (Table S2). Quiescent and cholesterogenic
subtypes could be classified into Cluster 2, whereas the
glycolytic and mixed subtypes were mostly assigned to
Cluster 1 or Lymphocyte Depleted Subtype (Figure 4D),
suggesting that there is a relationship between TTK subtypes
and the metabolic microenvironment in HCC. Analysis of the
expression levels of the 18 GSTTKs (Figure S7A) and tumor-
infiltrating cells (Figure S7B) according to the metabolic
clusters uncovered the relationship between the immune and
metabolic microenvironment in HCC.
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Genomic Features and Signaling Pathways
Associated With the Two TTK
Subtypes of HCC

We analyzed the distribution of somatic mutations in the two
clusters using genomic data from TCGA-LIHC datasets
(Figures 5A, B). Mutations in CTNNBI, a common therapy
resistance gene in HCC, were predominant in Cluster 1, whereas
mutations in TP53, a cardinal driver gene of HCC, were
predominant in Cluster 2. Comparison of the mutant genes in
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FIGURE 3 | TME immune cell infiltration characteristics and immune components in distinct TTK patterns. (A) Heatmap showing the unsupervised clustering of
TCGA-LIHC cohort using the ssGSEA score based on 28 immune cell subpopulations. Survival status, alcohol use, hepatitis C or B virus infection, sex, ARID1A
mutation, AXINT mutation, CTNNBT mutation, TTN mutation, TP53 mutation, stage, and sensitive cluster are annotated in the lower panel. (B) Relative abundance of
each infiltrating cell type that differed between the two clusters. (C) Box plots showing the TIDE score for the two clusters in HCC. The upper and lower ends of the

black dots show outliers. *p < 0.05; *p < 0.01; **p < 0.001; ***p < 0.0001;

the two clusters (Figure 5C) and revealed that both TP53 and RBI
showed the largest difference in mutation frequency between the
two clusters. As somatic mutations are the result of multiple
mutation processes, including DNA repair defects, and exposure
to exogenous or endogenous mutagens, different mutation
processes contribute to different combinations of mutation types
or characteristics. To comprehensively characterize the landscape
of genomic features, we identified five mutational signatures for
the two HCC subtypes (Figure $8). C > A_DNA_Repair and
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DNA_MMR_Deficiency predominated in Cluster 1 (Figure 5D),
whereas Smoking and DNA_MMR_Deficiency were the main
patterns in Cluster 2 (Figure 5E).

We selected several markers of the stromal TME for a ssGSEA
and found that the score for DNA damage response was
significantly higher for Cluster 1 than for Cluster 2, whereas
the scores for angiogenesis and epithelial interstitial
transformation were significantly higher for Cluster 2 than for
Cluster 1 (Figure 5F). To confirm these results, we calculated the
stromal score as well as the ESTIMATE score for cases in TCGA-
LIHC using the ESTIMATE algorithm and found significant
differences between the two TTK types (Figures S9A, B).
Moreover, there were significant differences in the stromal and
ESTIMATE scores among the four metabolic subtypes (Figures
S9C, D). Based on the differences in expression patterns and
mutation frequencies between the two clusters, we selected genes
involved in oncogenic pathways from the MsigDB and KEGG
databases for a ssGSEA and found that only the receptor tyrosine
kinase (RTK)-RAS pathway differed significantly between the
groups (Figure 5G). Thus, RTK-RAS is the main pathway
mediating the TTK patterns.

Establishment of the TCscore to Predict
the TTK Type in Patients With HCC

We developed a scoring system, referred to as the TCscore, to
quantify TTK patterns based on the expression levels of the
above 18 GSTTKs from TCGA-LIHC. A Spearman correlation
analysis of the TCscore, stromal pathway score, and oncogenic

pathway score revealed relationships between the TCscore and
intertumoral or tumor microenvironment signaling pathways
(Figure S9E). Most variables were negatively correlated with
TCscore, but angiogenesis was most strongly related. TCscore
were calculated for patients in the ICGC-LIRI-JP cohort using
the formula applied to the TCGA-LIHC cohort to validate the
prognostic ability of the GSTTKSs signature. The sensitivity and
specificity of the TCscore was assessed through time-dependent
ROC analysis. The AUC values were 0.724 in TCGA-LIHC
cohort (training set) and 0.729 in ICGC-LIRI-JP cohort
(testing set), respectively (Figures 6A, B). A best threshold
value of 0.738 was further selected for classification and
Kaplan-Meier and cox regression analysis was performed after
classification. Kaplan-Meier curves for OS were plotted
according to the optimal cutoff value for TCscore for cases
from TCGA-LIHC (p < 0.0001, Figure 6C) and ICGC-LIRI-JP
(p < 0.0001, Figure 6E). Patients with high TCscore showed a
relative shorter survival time than that of patients with low
TCscore. The univariate (Figure S$10) and multivariate cox
regression analyses suggested that the TCscore is an
independent prognostic factor for patients with HCC in
TCGA-LIHC (p < 0.0001, hazard ratio (HR) = 1.910, 95%
confidence interval (CI): 1.470-2.482, Figure 6D) and ICGC-
LIRI-JP (p < 0.0001, HR 2.136, 95% CI: 1.458-
3.129, Figure 6F).

We combined the TCscore with other factors, including the
mutation status of known oncogenes (e.g., TP53, ARIDIA,
AXINI, CTNNBI, and TTN) and clinical characteristics (e.g.,
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FIGURE 5 | Somatic mutations, mutational signatures, and related signaling pathways for the TTK patterns. (A, B) Waterfall plots revealing the somatic mutation
distributions of the 25 genes with the highest mutation frequencies in Cluster 1 (A) and Cluster 2 (B). (C) Forest plot showing differentially mutated genes in the two
clusters. (D, E) Upper panel, Bayesian NMF was used to identify five mutational signatures in Cluster 1 (D) and Cluster 2 (E). The y-axis shows the number of
mutations of each type in each specific sequence. The middle and lower panels show the total number of mutations associated with five mutational signatures

gene sets related to stromal-activated pathways and oncogenic signaling cascades. The upper and lower ends of the boxes indicate the interquartile range. Lines in
the boxes represent median values, and black dots show outliers. *p < 0.05; *p < 0.01; **p < 0.001; “**p < 0.0001; ns, no statistical significance.

(F, G) Differences in signaling pathways involved in patterns of TTK based on

history of alcoholism, hepatitis B or C virus infection, expression
of PDCDI, and tumor mutation burden), and plotted the
Kaplan-Meier survival curves based on these parameters for
cases from the TCGA database (Figure S11). When we also
investigated the relationships between the TCscore and
clinicopathological characteristics, we found significant
correlations of the TCscore with survival, sex, T stage, grade,

clinical stage, and TP53 and CTNNBI mutation statuses (Figure
$12). To assess the predictive value of the TCscore in
immunotherapy, we used the TIDE algorithm to evaluate the
associations with the treatment response and found that the
differences in the TIDE score in view of the TCscore were similar
to the TTK patterns (Figure 6G). A Spearman correlation
analysis showed that the TCscore was negatively correlated
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FIGURE 6 | Development of the TCscore based on GSTTKs for the detection of TTK patterns. (A, B) time-dependent ROC analysis shows sensitivity and specificity
of TCscore in TCGA-LIHC cohort (training set) and ICGC-LIRI-JP cohort (testing set). (C-F) evaluation of prognosis for overall survival based on TCscore for cases
from the (C) TCGA-LIHC cohort and (E) ICGC-LIRI-JP cohort. Multivariate Cox regression analyses were performed for patients with HCC from the (D) TCGA-LIHC
cohort and (F) ICGC-LIRI-JP cohort. (G) Box plots show the correlation between TIDE score and TCscore in HCC. (H) A Spearman correlation analysis indicated
that the TCscore is positively related to the TIDE score. (I-M) Response to four common chemotherapeutics for high and low TCscore in HCC. *p < 0.05; **p <
0.001; ***p < 0.0001; ns, no statistical significance.

with CAF cell (r = -0.4) and positively correlated with MDSC (r =
0.68, Figure 6H).

Using drug information from the GDSC database to calculate
the half-maximal inhibitory concentration (IC50) values of
common chemotherapeutics for HCC, we found that the IC50
value of sorafenib in the high TCscore group than in the low
TCscore group (Figure 6I), whereas the IC50 values of four other
drugs (doxorubicin, vinblastine, mitomycin, and cisplatin)
showed the opposite pattern (Figures 6J]-M), providing a basis
for the selection of chemotherapy drugs when immunotherapy is
combined with chemotherapy in clinical practice.

DISCUSSION

Immunotherapy agents, such as anti-PD1, anti-PD-L1, and anti-
CTLA4 antibodies, are increasingly being used in cancer
treatment; however, only a subset of patients with HCC
benefits from these therapies. Therefore, it is crucially
important to characterize the organ-specific TME in HCC and

to identify the patient population expected to respond
to treatment.

We adopted GSTTKs identified by high-throughput
experimental methods to subtype HCC and used unsupervised
clustering analysis to further identify TTK patterns. Next, we
performed an integrated analysis to evaluate differences in the
TIME (e.g., the abundance of tumor-infiltrating cells, molecular
markers of immune cells, and immunomodulatory gene
expression) and metabolic features (e.g., glycolipid metabolism)
between the TTK subtypes. In addition, we evaluated genetic
variation, including somatic mutations, mutational signatures,
and related signaling pathways, to explore the etiological drivers
of the TTK patterns. Finally, we developed a scoring system, the
TCscore, based on the TTK types and investigated its clinical and
predictive value for the response to immunotherapy.

There is a close connection between immune infiltration and
the response to immunotherapy; immune cell dysfunction
facilitates the immunosuppressive status in tumors. In this
study, we stratified patients with HCC into two stratified
according to clinical data from TCGA and validated our
findings in an Asian population using data from LIRI-JP in the
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ICGC. We found that Cluster 2 was dominated by immune cells
mediating anti-tumor therapy and that patients in this cluster
showed better survival than those in Cluster 1, which was
enriched in some of the same immune cells. Chen et al. have
reported that tumors with the immune-excluded phenotype also
could show abundant infiltration of immune cells trapped in the
stroma and excluded from the parenchyma. Conversely, tumors
with the immune-inflamed phenotype had greater levels of
immune cell infiltration and activation and a better response to
immunotherapy (30). Thorsson et al. performed an
immunogenomic analysis of cases of 33 cancer types in TCGA
and found that HCC can be classified into two types: C3
(inflammatory) and C4 (lymphocyte-depleted) (6). The former
type is characterized by the activation of Th1 and Th17 cells and
low-to-moderate proliferation of tumor cells, whereas the latter
type is characterized by the suppression of Thl cells and a high
response by M2 tumor-associated macrophages. In fact, some
pro-inflammatory factors and effector cytokines are released by
tumors with the immune-inflamed phenotype, and in some
cases, PD-L1 is also expressed, indicating that patients with the
immune-inflamed phenotype may show a clear response to
immunotherapy (31-33).

We found that NR4A3 and RECQL4, which are involved in
the regulation of immunity and metabolism, showed significant
associations with most immune-infiltrating cells (34-37).
NR4A3, a member of the steroid-thyroid hormone-retinoid
receptor superfamily, acts as a transcriptional activator by
binding to promoter regions to regulate gene expression (38).
NR4A3 binds to NBRE to induce the expression of VCAM1I and
ICAM]I and the adhesion of monocytes, resulting in a tumor
necrosis factor-stimulating inflammatory response (39). Li et al.
have suggested that NR4A3 regulates Treg differentiation and
maintains the Treg/Th17 balance to improve the symptoms of
immune thrombocytopenic purpura (40). Liu et al. have found
that NR4A3 augments glucose uptake in insulin target cells by
promoting the translocation of the glucose transporter SLC2A4
to the cell surface for glucose transport (41). Wang et al. have
demonstrated that the suppression of NR4A3 promotes cell
proliferation and disease progression in HCC (42). RECQL4 is
a DNA helicase that modulates chromosome segregation. Wang
et al. have revealed that cancer-related RECQL4 mutations
stimulate abnormally high levels of mitochondrial DNA
synthesis, resulting in disorders in mitochondrial metabolism.
Kumari et al. have reported that RECQL4 localizes to the
mitochondria and dysfunctions in mitochondrial RECQL4
promote aerobic glycolysis and invasive phenotypes in cells
(43). The results of our bioinformatics analyses may guide
further experimental studies of the functions and mechanisms
of action of these genes (43).

Genes involved in glycolysis-cholesterol synthesis axis have
been associated with immune infiltration and prognosis in
ovarian, cervical, endometrial, breast, and pancreatic cancers,
indicating that there is an interaction between the TME and
tumor metabolism (24, 44, 45). Glucose deprivation attenuates
the anti-tumor immune response triggered by Cytotoxic T
Lymphocytes (CTLs) in glycolytic-dependent tumor cells,

whereas checkpoint antagonists, such as anti-PD1 or anti
PDL1 antibodies, provide glucose to CTLs by inhibiting
glycolysis (46, 47). We hypothesized that this metabolic
competition also contributes to TKK and identified four
metabolic subtypes in HCC with differences in prognosis,
tumor immune-infiltrating cells, GSTTKs expression, and the
stromal score.

A recent study revealed that tumor mutations are correlated
with the responsiveness or tolerance to immunotherapy (48).
Comprehensive genomic analyses have indicated that mutation
profiles, including the frequencies of TP53 and CTNNBI
mutations, which act as major oncogenic drivers, rather than
drug targets in HCC, vary among subtypes (49). In this study,
Cluster 1 was characterized by CTNNBI mutations and the
lymphocyte-depleted phenotype in the TME, suggesting that
patients with CTNNBI mutations may not be sensitive to
immunotherapy. These results were in agreement with those
reported by Pinyol et al. (50). Cluster 2 was characterized by a
high frequency of TP53 mutations and the inflammatory
phenotype in the TME, suggesting that patients with TP53
mutations may show favorable responses to immunotherapy.
These results were consistent with the previous finding that TP53
mutations represent the tumor mutational burden in HCC and
predict a longer survival time in patients receiving
immunotherapy (51). Furthermore, this study revealed other
significant indicators of the response to combination therapies.
For instance, as EGFR and TSC2 mutations were detected in
Clusters 1 and 2, immunotherapy combined with EGFR tyrosine
kinase inhibitors (erlotinib or gefitinib) or mTOR inhibitors
(sirolimus or everolimus) may be effective for individuals with
characteristics of both subtypes.

We identified five mutational signatures in Clusters 1 and 2.
Samples in Cluster 1 mainly exhibited two signatures: C >
A_DNA_Repair and DNA_MMR_Deficiency, whereas samples
in Cluster 2 displayed various signatures, such as Smoking and
DNA_MMR_Deficiency. Baecker et al. have reported that
tobacco smoking is a risk factor for HCC (52). The difference
in DNA damage repair between Clusters 1 and 2 may explain
why patients in Cluster 1 showed a worse response to
immunotherapy. The mutation pattern in Cluster 1 may
contribute to lymphocyte depletion in the TME and the
response to immunotherapy. Additional studies are needed to
verify these hypotheses.

The mitogen-activated protein kinase pathway and RTKs
make up the RKT-RAS-ERK axis, which is crucial for the
malignant behavior of common tumors (53). Akalu et al. have
reported that TAM receptors, a subfamily of RTKs comprising
three members (Tyro3, Axl, and Mer), are an emerging innate
immune checkpoint for immune escape and that the inhibition
of TAM signaling may promote T cell checkpoint blockade (54).
Our results indicated that the RTK-RAS pathway may be the key
signaling pathway mediating different TTK modes in HCC. This
finding improves our understanding of the biological function
and mechanisms of action of T cells in HCC.

We integrated transcriptome data and data for the
18 GSTTKs to establish a new independent quantitative
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marker, the TCscore, which could be used for individual
evaluations of clinicopathological characteristics, sensitivity to
chemotherapeutics, and survival outcomes.

This study had some shortcomings. The TTK patterns and
TCscore were based on bioinformatics analyses and require
validation in a clinical trial with a large sample size. Key
GSTTKs and related pathways in TTK patterns, such as
NR4A3, RECQL4, and RTK-RAS signaling, need to be
experimentally validated in the future.

CONCLUSIONS

In summary, we identified two TTK patterns in HCC based on
GSTTKs, providing insight into T cell activity in HCC.
Additionally, we evaluated the mechanism underlying the TTK
patterns, including characteristics of the TME, metabolic
processes, and multi-omics properties. Finally, the newly
developed TCscore, a composite reflection of the TTK patterns
of individual tumors, is expected to improve our understanding
of the TME and genomic features and to be useful for guiding
immunotherapy and combination therapy strategies.
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Supplementary Figure 1 | Identification of GSTTKs and survey of mutations in

these genes in HCC. (A) Heatmap displaying 92 GSTTKSs differentially expressed in
HCC. (B) Cellular signaling pathways enriched in mutated genes in HCC. (C) Co-
occurrence of mutations in pairs of GSTTKs.

Supplementary Figure 2 | Patterns of TTK in HCC. (A-C) Qualitative
classification by unsupervised clustering based on 18 GSTTKSs in cases from the
LIRI-JP dataset in the ICGC followed by PCA and tSNE analyses. (D-F) Qualitative
classification by unsupervised clustering based on 18 GSTTKs in cases from the
GSE76427 dataset followed by PCA and tSNE analyses. (G). Expression of the 18
GSTTKs in the two TTK patterns in TCGA-LIHC cohort.

Supplementary Figure 3 | Immunomodulator biomarkers and involvement in
patterns of TTK in HCC. (A, B) Heatmaps suggested that signatures of (A) nine
tumor-associated immune cells and (B) immunomodulators as well as immune
checkpoints were differently expressed between the two patterns. *p < 0.05; **p <
0.01; *p < 0.001.

Supplementary Figure 4 | Eighteen GSTTKs are related to tumor immune cell
infiltration. (A—C) Correlations among 18 GSTTKs and tumor-infiltrating immune
cells were studied (A). The expression levels of (B) NR4A3 and (C) RECQL4 were
positively associated with various immune cells. “p < 0.05; *p < 0.01; **p < 0.001;
***p < 0.0001.

Supplementary Figure 5 | Enrichment analysis indicates a difference in
metabolic status between the TTK patterns. A, B. (A) ORA and (B) GSEA revealed
differences in metabolic processes between the TTK patterns.

Supplementary Figure 6 | Re-clustering of patients according to the glycolipid
metabolism patterns in HCC. (A) The TCGA-LIHC cohort was re-clustered
according to both glycolytic and cholesterogenic genes. (B) PCA suggested
satisfactory separation among four metabolic patterns. (C) A heatmap shows
glycolytic and cholesterogenic genes expressed in the four subgroups.

Supplementary Figure 7 | Tumor immune microenvironment differed among the
four metabolic subgroups. (A) Eighteen GSTTKs were generally differentially
expressed among the four metabolic subtypes. (B) Most tumor immune cells
showed differential infiltration among the four metabolic subtypes. *p < 0.05; “*p <
0.01; *p < 0.001; ***p < 0.0001.

Supplementary Figure 8 | Comprehensive genomic analyses revealed distinct
mutational signatures between the TTK patterns. (A, C) Bayesian non-negative
matrix factorization was used to determine the optimal number of mutational
signatures. (B, D) Based on 30 mutation features summarized in the COSMIC
database, five signatures for the two clusters were annotated.

Supplementary Figure 9 | Investigation of the stromal TME in HCC. (A-D) The
stromal tumor microenvironments (A, B) for the two clusters and (C, D) four
metabolic subtypes were assessed based on the stromal score and ESTIMATE
score. e A Spearman correlation analysis was performed to evaluate relationships
among the TCscore, stromal pathway score, and oncogenic pathway score.

Supplementary Figure 10 | The TCscore predicts prognoses in HCC. (A, B)
Univariate cox regression analysis suggests that the TCscore is associated with a
poor prognosis in patients in the TCGA (A) and ICGC (B) datasets.
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Supplementary Figure 11 | Survival analysis using the TCscore combined with
other factors. (A-J). Kaplan-Meier survival analyses were performed based on the
TCscore plus the following factors: mutation statuses of (A) TP53, (B) ARID1A, (C)
AXINT, (D) CTNNBT1, and (E) TTN, (F) history of alcoholism, (G) hepatitis B virus infection,
(H) hepatitis C virus infection, (I) PDCD1 expression, and (J) tumor mutation burden.
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