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Abstract

Background: With the projected upsurge in the percentage of people with some form of disability, there has been a significant
increase in the need for assistive mobility devices. However, for mobility aids to be effective, such devices should be adapted to
the user’s needs. This can be achieved by improving the confidence of the acquired information (interaction between the user,
the environment, and the device) following design specifications. Therefore, there is a need for literature review on the adaptability
of assistive mobility devices.

Objective: In this study, we aim to review the adaptability of assistive mobility devices and the role of the internet of medical
things in terms of the acquired information for assistive mobility devices. We review internet-enabled assistive mobility technologies
and non–internet of things (IoT) assistive mobility devices. These technologies will provide awareness of the status of adaptive
mobility technology and serve as a source and reference regarding information to health care professionals and researchers.

Methods: We performed a literature review search on the following databases of academic references and journals: Google
Scholar, ScienceDirect, Institute of Electrical and Electronics Engineers, Springer, and websites of assistive mobility and
foundations presenting studies on assistive mobility found through a generic Google search (including the World Health Organization
website). The following keywords were used: assistive mobility OR assistive robots, assistive mobility devices, internet-enabled
assistive mobility technologies, IoT Framework OR IoT Architecture AND for Healthcare, assisted navigation OR autonomous
navigation, mobility AND aids OR devices, adaptability of assistive technology, adaptive mobility devices, pattern recognition,
autonomous navigational systems, human-robot interfaces, motor rehabilitation devices, perception, and ambient assisted living.

Results: We identified 13,286 results (excluding titles that were not relevant to this study). Then, through a narrative review,
we selected 189 potential studies (189/13,286, 1.42%) from the existing literature on the adaptability of assistive mobility devices
and IoT frameworks for assistive mobility and conducted a critical analysis. Of the 189 potential studies, 82 (43.4%) were selected
for analysis after meeting the inclusion criteria. On the basis of the type of technologies presented in the reviewed articles, we
proposed a categorization of the adaptability of smart assistive mobility devices in terms of their interaction with the user (user
system interface), perception techniques, and communication and sensing frameworks.

Conclusions: We discussed notable limitations of the reviewed literature studies. The findings revealed that an improvement
in the adaptation of assistive mobility systems would require a reduction in training time and avoidance of cognitive overload.
Furthermore, sensor fusion and classification accuracy are critical for achieving real-world testing requirements. Finally, the
trade-off between cost and performance should be considered in the commercialization of these devices.

(JMIR Rehabil Assist Technol 2021;8(4):e29610) doi: 10.2196/29610
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Introduction

The Internet of Things
Internet technology has experienced remarkable progress since
its early stages. It has become a vital transmission framework
aiming to connect anyone and anything at any time to any
service [1]. The basic idea of the internet of things (IoT) is to
allow an autonomous and secure connection and exchange of
data between real-world devices and app [2]. IoT has become
a crucial factor in next-generation technology and the whole
business spectrum. It is the seamless interconnection of uniquely
identifiable smart objects, sensors, and informatics systems
within today’s internet infrastructure with extended benefits.
Typically, benefits include the advanced interconnectivity of
these devices, systems, and services that go beyond
machine-to-machine scenarios [3]. The impact of IoT has led
to its application in several fields for enhancing network
operation and the user’s quality of experience [1]. These fields
include transportation, health care, industrial automation, and
public safety management [4].

Smart Health Care and Assistive Mobility
Health care is an attractive application area for IoT [5]. IoT has
the potential to give rise to many medical apps, such as remote
control and health monitoring, fitness programs, chronic
diseases, and elderly care [3]. For instance, with a monitoring
app, the patient can transmit daily or weekly blood pressure
readings. This enables their physician to detect a problem and
intervene earlier. Smart health care can be referred to as an
organic whole of conventional mobile devices used with
wearable medical devices, assistive mobility devices, and IoT
gadgets (such as implantable or ingestible sensors). This can
also be referred to as the internet of medical things (IoMT).
This organic whole enables continuous patient monitoring and
treatment, even when patients are at their homes. Examples of
these assistive mobility devices are pressure monitors,
glucometers, smartwatches, smart walkers, smart wheelchairs,
smart contact lenses, and way finders [6].

With an increase in the percentage of people with some form
of disability [7-10], assistive mobility has become an important
aspect of research and has gained a lot of attention from
researchers in recent years. Mobility has to do with an
individual’s ability to move his or her body within an
environment and the ability to manipulate objects. This ability
can be hampered by impaired body functions or structures and
limit the individual’s functioning, independence, and overall
well-being [11]. Assistive mobility is a broad term used to refer
to the use of aid (of any kind) to improve the mobility of an
impaired individual.

Technology has been a tool used by researchers and companies
to address the limitations in mobility caused by some form of
impairment. For this reason, literature reviews and surveys have
been conducted on assistive technologies for individuals with

some form of disability. Although literature reviews have been
conducted on specific assistive mobility technologies (such as
smart wheelchairs, scooters [12,13], and smart canes [14]), gait
rehabilitation devices (such as smart walkers, lower-limb
exoskeletons, and smart crutches) [15-19], and how these
technologies have addressed mobility limitations of impaired
individuals, the review of all elements needed in the adaptability
of assistive mobility devices to the user in terms of information
used requires more attention.

Related literature review papers have paid attention to specific
elements needed in the adaptability of mobility devices, such
as the survey of alternative input and feedback methods,
including haptic [20], visual, and auditory [21,22] methods, as
sensory replacement and sensory augmentation for certain
sensory impairments and the survey of computer vision (CV)
and machine learning techniques [23,24] for autonomous
driving. More closely related surveys [25] approached the
categorization of assistive technology based on users’ needs
but concentrated on the cross-application of CV for
categorization. An older review in 2012 [11] focused on the
seamless integration of the capabilities of the user and the
assistive technology for mobility. These related reviews
highlighted the adaptability of assistive technologies as crucial
in the technological advancement of mobility devices. However,
we believe that an approach to the adaptability of assistive
mobility devices in terms of information used has not been
considered.

The objective of this study is to primarily focus on a literature
review of the adaptability of assistive mobility devices and the
role of IoMT in terms of the acquired information for assistive
mobility devices. Internet-enabled assistive mobility
technologies and non-IoT assistive mobility devices will be
reviewed. The technologies reviewed will provide insight into
some important themes and serve as a source and reference for
information on adaptive assistive mobility technology to health
care professionals and researchers. More specifically, we aim
to contribute to the following:

• Identifying the major areas crucial for the adaptability of
internet-enabled assistive mobility technologies (such as
smart wheelchairs, smart walkers, smart canes, and scooters)
and other non-IoT assistive mobility devices (such as
regular walkers, wheelchairs, canes, crutches, walkers,
orthoses, and prostheses) to its intended users

• Categorization of the adaptability of assistive mobility
devices in terms of the acquired information into three major
areas: user system interfaces (USIs), perception and sensor
fusion techniques, and IoMT frameworks

• Highlighting the role that IoMT plays in the adaptability
of assistive mobility devices

Methods

We selected a list of studies and references to review the
adaptability of assistive mobility devices and IoT frameworks
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for assistive mobility to be included in the literature search. The
data sources used to search for the items to be included in this
review were the following databases of academic references:
Google Scholar (including ResearchGate), ScienceDirect,
Institute of Electrical and Electronics Engineers, Springer, and
websites of assistive mobility and foundations presenting studies
on assistive mobility found through a generic Google search
(including the World Health Organization website).

The search criteria included the following keywords and
combinations thereof: assistive mobility OR assistive robots,
assistive mobility devices, internet-enabled assistive mobility
technologies, IoT Framework OR IoT Architecture AND for
Healthcare, assisted navigation OR autonomous navigation,
mobility AND aids OR devices, adaptability of assistive
technology, adaptive mobility devices, pattern recognition,
autonomous navigational systems, human-robot interfaces,
motor rehabilitation devices, perception, and ambient assisted
living.

As these combinations of data sources and keywords returned
a vast number of results, we selected the following inclusion
criteria to identify the most relevant sources: (1) language should
be English, (2) date range should be in the past 12 years
(2008-2020)—most articles were published within the past 5
years to reflect the state-of-the-art (since 2015), and older
references were made to technologies that substantially shaped
the future direction of assistive mobility devices—and (3) its
relevance should be in internet-enabled assistive mobility
technologies or non-IoT assistive mobility devices.

The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) criteria were applied [26]. The
screening of titles and abstracts was performed by DAO and
EDM and reviewed by DAO, EDM, and AMAM. Full texts
were reviewed in a second screening.

Results

Overview
After excluding results with titles that were not relevant to this
study, the literature search identified 13,286 abstracts, of which

189 (1.42%) potential studies were selected for a detailed full
text review.

We used the following exclusion criteria to identify the most
relevant sources and reduce the number of literature search
results: (1) no relevance to internet-enabled assistive mobility
technologies or non-IoT assistive mobility devices in terms of
the acquired information, (2) full text not available, (3) no report
on promises for user adaptability as a result of simulation testing
or using the technology, (4) no description of the technology,
and (5) no additional contribution to the review findings
compared with the previously reviewed articles.

Of the 189 potential studies, 82 (43.4%) studies remained for
analysis after meeting the inclusion criteria. Some studies
contributed to more than one section in this review (Figure 1).

To perform a literature review based on the type of technologies
presented in the reviewed articles, we proposed a categorization
of the adaptability of smart assistive mobility devices in terms
of their interaction with the user (USI), perception techniques,
and communication and sensing frameworks.

In recent years, advances in technology have helped to improve
the quality and efficiency of assistive mobility devices. The use
of traditional assistive mobility devices by users with some form
of cognitive, sensory, or intellectual impairment requires the
help of medical personnel or a caregiver for navigation
assistance with difficult daily maneuvering tasks. To
accommodate users who find operating standard mobility
devices difficult or impossible, several researchers have used
technologies originally developed for mobile robots to create
smart mobility devices [27], such as smart wheelchairs and
smart ambulatory devices. These assistive mobility devices are
made smart by attaching computers, actuators, and sensor
subsystems to the traditional assistive mobility device to provide
easy maneuvering, system localization, object detection, and
other sensory, cognitive, and health monitoring functions
[12,28-30].
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Figure 1. Flow diagram of search results. IoT: internet of things.

USI (Input and Output Methods)

Overview
With the advent of smart assistive mobility devices, some
assistive devices have become too complex to use. In addition,
improper characteristics of the target users have resulted in
numerous assistive mobility projects failing to transition to
real-world use [31]. For this reason, the adaptability of assistive
mobility devices is very important. Some users of assistive
mobility devices have comorbidities, such as sensory impairment
for users with spinal cord injury (SCI) or mental health
challenges because of aging or depression. This impairment
needs to be taken into account in the design of efficient assistive
mobility devices. Assistive mobility devices should be designed
to continually evaluate and correct their actions based on their
perception of the needs of the user [32]. Mobility impairment
of patients can be largely classified into 2 functional groups.

The first group includes individuals with a total loss of ability
to move by themselves and with a high risk of confinement in
bed, and, consequently, they suffer the effects of prolonged
immobility. Examples are patients with complete SCI, advanced
neurodegenerative pathologies, severe lower-limb osteoarthritis,
and fractures of the spine or lower-limb bones. The suitable
kind of assistive mobility technology for this group is called
the alternative device. Examples are wheelchairs and
autonomous vehicles (AVs). The second group includes
individuals with partial loss of mobility, presenting different
levels of residual motor capacity that can be powered by
assistive mobility devices. The suitable type of assistive device
for this group of individuals is the augmentation (rehabilitation)
device. Examples are wearable orthoses and prostheses or
external devices (such as canes, crutches, and walkers) [28,33].
Notwithstanding the functional group of mobility-impaired
patients, USIs are a crucial element in the adaptability of
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assistive mobility devices. USI has to do with the acquisition
of information from the user, the interpretation of this set of
acquired information, and the available feedback methods that
can be understood by its intended users.

USIs for assistive mobility devices are categorized based on
the type of sensors and actuators used for acquisition of user’s
information. These includes CV, brain-computer interface (BCI),
and voice, touch, and haptic feedback [12]. The USI
technologies presented below are categorized as follows: BCI,
CV interface (CVI), and auditory and haptic interface.

BCI System
BCI generally refers to a system that measures and uses signals
produced by the central nervous system. This interface enables
useful functions for people with disabilities caused by
neuromuscular disorders such as amyotrophic lateral sclerosis,
cerebral palsy, stroke, or SCI [34]. The basic components of
the BCI are signal acquisition, signal processing, and the effector
or output device [35]. Signal acquisition can be invasive or
noninvasive [35]. Over the past decade, many educative
literature reviews and surveys have been conducted and
documented by researchers on the definition, mode of operation,
classifications, functionality, and applications of BCI [34-37].

The adaptability of assistive mobility devices for users with
neuromuscular disorders has led to the adoption of BCI as a
suitable means of user-machine communication for simple
mobility tasks. BCI offers limited navigation control capabilities
to assistive mobility devices. To improve the navigational
abilities offered by BCI, models proposed by researchers
integrate BCI with other USI and machine learning tools. For
example, Rebsamen et al [38] and Long et al [39] proposed a
P300-based BCI wheelchair for the execution of commands for
a set of predefined locations. Some auxiliary sensors were also
integrated for collision avoidance during navigation. Long et
al [39] proposed a hybrid BCI system comprising a motor
imagery (MI)-based mu rhythm and the P300 potential. This
model was designed for the directional and speed control of a
brain-actuated simulated wheelchair or a real wheelchair. Kim
et al [40] proposed a prototype that addressed a user’s loss of
vision in their environment. The prototype uses the steady-state
somatosensory evoked potential (SSSEP) paradigm to control
a wheelchair by using specific frequencies and vibrations of
different body parts to elicit brain responses. They also
recommended the use of an auxiliary autonomous navigation
system to improve performance. An asynchronous MI-based
BCI protocol system control was proposed by Carlson and del
R Millan [41] to improve navigational control with the help of
10 lost-range sonar sensors and 2 webcam cameras.

Furthermore, a teleoperation control for a robotic exoskeleton
system based on the steady-state visual evoked potentials
(SSVEPs) BCI and visual feedback was proposed by Qiu et al
[42]. A camera was used to capture video for visual feedback,
and a local adaptive fuzzy controller was used to drive the
exoskeleton to track the intended trajectories in the human
operator’s mind. The controller was also used to provide, in a
convenient way, dynamic compensation with minimal
knowledge of the dynamic parameters of the exoskeleton robot.

Auditory and Haptic Interface
Individuals with mobility impairments having visual, hearing,
or tactile disabilities require the use of an alternative sensory
ability for effective communication with assistive mobility
devices. Auditory interfaces are designed to take advantage of
hearing ability as a substitute for visual or tactile impairment.
On the other hand, haptic interfaces are designed to take
advantage of the users’ tactile ability as a substitute for visual,
auditory, or motor impairment [43]. An extensive review has
been conducted on haptic assistive technology as a means of
communication for individuals with some form of sensory
impairment, such as visually and auditorily impaired individuals
[20,21,31,43]. Parker et al [22] also reviewed the positive effect
of visual and auditory feedback on motor skills of poststroke
patients during gait rehabilitation. This subtopic presents recent
auditory and haptic interface technologies for individuals with
mobility impairments.

Haptic technology has been a beneficial USI for certain impaired
users. It has found its application in many areas for the
monitoring of users’ progress and for navigational assistance.
It has been successfully implemented in the design of
exoskeletons (such as orthoses and wearable devices for
grasping and assisted movement), smart walkers, smart crutches,
and smart wheelchairs. Like haptic technology, auditory
technology is also used as an alternative navigational control
for individuals with mobility impairment and as a navigational
guide or feedback for patients with visual impairments. Many
researchers have integrated haptic or auditory technology for
navigational control, navigation assistance, or feedback of
assistive mobility devices. Wearable devices such as the Jet
Propulsion Laboratory BioSleeve [44,45], the wireless tongue
drive system (TDS) to smartphone (iPhone) electric powered
wheelchair (PWC; TDS to smartphone (iPhone) electric-PWC
[TDS-iPhone-PWC]; [46]), and the MyoSuit [47] were designed
using haptic technology for navigational control and aided
mobility, respectively. The JPL BioSleeve is a wearable,
hands-free gesture recognition interface that decodes as many
as 20 discrete hand and finger gestures and can estimate the
continuous pose of the arm. It was designed using surface
electromyography (EMG) sensors, an inertial measurement unit
(IMU), and embedded software. EMG and IMU acquire gesture
and pose signals, whereas the embedded software classifies the
signals and maps the result to commands. The wireless
TDS-iPhone-PWC uses a TDS comprising a wearable TDS
headset, a magnetic tongue barbell, a control unit, and magnetic
sensors. The prototype wirelessly sends up to six distinct control
commands to an iPhone for the navigation of a PWC after
calibration training using a PC. MyoSuit is a lightweight,
lower-limb, soft, wearable robot (exoskeleton) for rehabilitation
training that allows active contributions from users in residual
mobility. It was designed to estimate interlimb angles and trunk
postures using a five-segment body model acquired from IMU.
It also determines which model is suitable for the user.

Other examples of haptic-based technology for adaptive mobility
include the smart cane [48], intelligent control smart walker
[49], and learning shared control of an assistive robotic transport
for adults wheelchair-powered platform [50]. The smart cane
was designed using a force sensor for the measurement of the
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exerted weight and IMU for pose estimation. The intelligent
control smart walker was designed to use a force sensor to
control acceleration. The learning shared control of an assistive
robotic transport for adults wheelchair-powered platform was
designed to regulate the level of assistance between the user
and the robot by matching the location and amount of offered
assistance on different trajectories.

Some recent technologies integrate multiple technologies for
USI in the process of adapting mobility devices to a desired
group of disabilities. An example is the electronic mobility cane
(EMC) [51], which was designed using multiple sensors to
contract the logical map of the surrounding environment and
give feedback of the priority information to the user without
causing any information overload. Another example is the
EyeCane [52], which is an electronic travel aid or electronic
travel support that aims to increase the perception of the
environment using multiple sensors for distance estimation,
navigation, obstacle detection, and feedback to the user. The
last example is the multiple controlled interfaces smart
wheelchair [53], which was designed to accommodate a variety
of impaired individuals. It is a prototype wheelchair with
multiple control options (voice, gesture, and joystick input).
Another recently explored area is CV to sound technology,
which is further discussed in the following section.

CVI System
As humans, we perceive 3D structures of the world around us
with apparent ease [54]. The ability of computers to see and
understand the world just like humans do gave birth to the
research of CV. CV is a field of study that seeks to develop
mathematical techniques that enable computers to interpret and
understand the visual world (images and videos) accurately in
the same way as humans do. CV starts with the acquisition of
data or capturing of information, which is done with the help
of vision and depth (3D ranging) sensors, such as image-based
sensors (mono and stereo or depth cameras), laser-based depth
sensors (light detection and ranging, laser scanner, and infrared
light), sound-based depth sensors (sound navigation and ranging
and ultrasonic), and radio detection and ranging sensor [55].

There are many applications of CV [56-60], and one such
application is CV USI for adaptive assistive mobility devices.
An example is the visual servoing-controlled wheelchair
proposed by Pasteau et al [61]. The proposed smart wheelchair
uses 3 cameras for autonomous corridor following and doorway
passing. Another example is the autonomous scooter

navigational system proposed by Mulky et al [13] to assist
people with independent transportation challenges and
recognition of the fine-grained world around them. This was
achieved using a long-range eye-safe laser (up to 60 m) and a
stereo vision camera. Finally, the user-adaptive control
intelligent walker proposed by Chalvatzaki et al [62] used CVI
technology (laser range finder) to estimate the human state and
classify a patient’s mobility status.

CVI mostly integrates haptic or auditory technologies for user
feedback and finds its applicability in user or environmental
perception for assistive control, monitoring, and sensory
substitution devices (SSDs). For instance, the sound of vision
SSD technology [63-65] assists people with visual impairment
with navigation by converting visual perception to (spatial)
sound or haptic feedback. Usually, sound of vision SSDs
comprise data acquisition operational modes, an image
processing pipeline, and a feedback system [63-65]. An example
of a multimodal USI is the iChair, a multimodal input platform
that accepts commands from voice, touch, proximity switch,
and head-tracking cameras and provides seamless access and
control for users with severe disabilities [30].

CVI is the first phase toward autonomous navigation and is a
crucial part of perception and multisensor fusion techniques
[24].

Perception for Adaptability (Autonomous Navigation)
Autonomous navigation simply refers to the ability of a robot
or vehicle to sense its environment and navigate accurately
without human input or assistance [66]. AVs or autonomous
robots (ARs) are meant to be intelligent enough to perceive,
predict, decide, plan, and execute their decisions in the real
world [24]. The main difference between AVs and ARs is in
the fact that AVs address road networks where traffic rules have
to be obeyed, whereas ARs have to cope with open environments
without many specific rules to follow only to reach the final
destination [67]. There are six different levels of driving
autonomy (Table 1), as published by the Society of Automotive
Engineers International in 2021, ranging from no automation
at level 0 to full automation at level 5 [66,68]. Following the
Society of Automotive Engineers International definition,
existing AVs and ARs in 2021 are not fully autonomous.
Mobility aids can be seen as a type of AR, and the adaptability
of the mobility aid is dependent on its ability to make intelligent
navigational decisions with limited to no intervention by its
user.
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Table 1. Summary of the Society of Automotive Engineers (SAE) automation levels.

Scenarios (ODDb)Driving supervision (DDT fallback)DDTaSAE [66,68] levels

Environment monitoring (OEDRc)Vehicle controls

N/AdDriverDriverDriver0: no driver automation

LimitedDriverDriverDriver1: driver assistant

LimitedDriverDriverDriver and vehicle2: partial driving automation

LimitedDriver and vehicleVehicleVehicle3: conditional driving automa-
tion

LimitedVehicleVehicleVehicle4: high driving automation

UnlimitedVehicleVehicleVehicle5: full driving automation

aDDT: dynamic driving task.
bODD: operational design domain.
cOEDR: object and even detection and response.
dN/A: not applicable.

Generally, there are three main steps in the operation of an
autonomous system (Figure 2): the perception stage
(environmental perception and localization), the path planning
stage, and the control stage. The perception stage, which is the
first stage of a self-driving system, is a crucial aspect of
autonomous navigation or self-driving robots. The perception
stage majorly comprises environmental perception and
localization [69]. The success of perception is largely dependent
on the accuracy of the sensors used in the data acquisition. A
combination of sensors helps improve accuracy and confidence
for the best decision task in environmental perception and
autonomous navigation. Although there are high-accuracy

sensors that can work alone without exhibiting some of the
limitations common to regular sensors, they are often
unavailable because of their operating limits and high costs.
This makes them impractical for use in real-world applications
[70]. This limitation, which is common to regular sensors, has
led to the need for multisensor fusion to improve accuracy and
confidence. Multisensor fusion has to do with the process of
combining information from different sensors to provide a robust
and complete description of the environment or process of
interest [71]. Detailed literature about each stage has been
reviewed [67,69,72,73].

Figure 2. Summary of an autonomous system.

Many recent assistive mobility technologies have made
advancements in striving toward fully autonomous navigation,
such as the technologies discussed in the USI (Input and Output
Methods) section (Tables 2-4). Some examples include the P300
BCI-based controlled wheelchairs [38,74], as shown in Table
2. The authors designed the prototype to achieve a level of
autonomy using cheap sensors. A bar code was used for global
positioning, and a proximity sensor was used for collision
avoidance. The use of multisensor fusion was not adopted in

this prototype. Feature extraction classifiers (stepwise linear
discriminant analysis and support vector machine [SVM]) were
used to adequately process the BCI information needed to
autonomously navigate the wheelchair from the point of
command to its predefined location without the help of its user.

In Table 3, the multicontrolled wheelchair [53] used an
algorithm for the control and execution of commands to check
for predefined commands and execute them in the navigation
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and speed control of the wheelchair. An ultrasonic sensor was
used for autonomous navigation.

The visual servoing-controlled wheelchair [61], as shown in
Table 4, used CV with the classic Gaussian sphere projection
framework and line segmentation algorithm for corridor
following. A door detection and tracking framework (for indoor

navigation tasks) and a 2D edge tracker was inspired by the
moving edges algorithm for autonomous doorway passing. In
addition, the autonomous scooter navigation [13], as shown in
Table 4, used CV and the graph-based simultaneous localization
and mapping algorithm for steering control and autonomous
navigation.

Table 2. Brain-computer interface (BCI) technologies for adaptive assistive mobility devices.

DrawbacksContributionsOutput commandClassifier for feature extrac-
tion

Brain signals and auxiliary
sensors

Low information transfer rate, pre-
defined paths, limited testing scenar-
ios, and possible fatigue after long
focus period of the eye on the target
stimulus

High accuracy, no training
required, and autonomous
navigation after successful
selection

A predefined set of
locations and stops

Stepwise linear discriminant
analysis

P300 (laser scanner) [74]

Same as Rebsamen et al [38] and a
modified environment requires an
update of the guiding path

Same as Rebsamen et al [38]A predefined set of
locations and stops

Support vector machineP300 (odometer, barcode
scanner, and a proximity
sensor) [38]

Limited testing scenarios and possi-
ble fatigue after long focus period
of the eye on the target stimulus

Improved performanceLeft, right, acceler-
ate, and decelerate

One versus the rest common
spatial patterns transforma-
tion matrix

MIa-based mu rhythm and
the P300 [39]

Limited testing scenarios, requires
extensive training, and limited
classes (typically three)

Spontaneous and shared
control

Left, right, and keep
moving forward

Gaussian classifierMI-based BCI (10 sonar
sensors and 2 webcams) [41]

Possible fatigue after a long focus
period of the eye on a target stimu-
lus and a significant reduction in
recognition accuracy for inexperi-
enced subjects

Teleoperation control of an
exoskeleton using a brain-
machine interface

Left, right, upwards,
and downwards

Frequency recognition algo-
rithm based on multivariable
synchronization index

Steady-state visual evoked
potentials (camera and
adaptive fuzzy controller)
[42]

Only healthy subjects were used,
with limited testing scenarios (two)

Spontaneous, first of its
kind, and addressed the pos-
sible fatigue after a long fo-
cus period of the eye on the
target stimulus

Turn left, turn right,
and move forward

Regularized linear discrimi-
nant analysis

Steady-state somatosensory
evoked potential [40]

aMI: motor imagery.
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Table 3. Brain-computer interface technologies for adaptive assistive mobility devices.

DrawbacksContributionsMachine learning toolsTechnology name (type): additional
sensors

Tongue piercing can be a painful and
uncomfortable option for some users.
Extensive training is required for cali-
bration.

An alternative USIb for people with
spinal cord injury or upper limb paraly-
sis

Sensor signal processing
algorithm

TDS-iPhone-PWCa (haptic): magnetic
sensors [46]

Young and healthy subjects were used,
so the result is not a true representation
of the typical users of the walker.

An intuitive rule-based speed controller
for a smart walker

N/AcIntelligent smart walker (haptic): force
or torque sensor [49]

Only an indoor experiment was conduct-
ed.

Low cost, lightweight, small and easy
to use electronic travel aid for distance
estimation and navigational assistance,
long battery life (one whole day), intu-
itive to the user, and short training time
(<5 minutes)

N/AEyeCane (CVId, haptic, and auditory):
infrared emitters, auditory frequency ac-
tuator, and tactile actuator [52]

Extensive training time (20 hours); the
cognitive and perceptual load has not
been ascertained

Offers real time multiple obstacle detec-
tion and way-finding assistance simul-
taneously to patients with visual impair-
ments by an auditory (voice message)
and tactile (vibration) feedback

A novel algorithm named
way-finding with reduced
information overload.

Electronic mobility cane (CVI, haptic,
and auditory): liquid detection, 6 ultra-
sonic sensors, a metal detector, a microvi-
bration motor, and a mono earphone [51]

Has not yet been integrated and tested
with assistive mobility aids to deter-
mine its applicability

Intuitive control of robotic platforms
by decoding as many as 20 discrete
hand and finger gestures

A multiclass support
vector machine classifier

Jet Propulsion Laboratory BioSleeve

(haptic): electromyography and IMUe

sensors [44,45]

Fall and near-fall detection was not
considered in its design and implemen-
tation.

To monitor and distinguish between
different walk-related activities during
gait rehabilitation

C4.5 decision tree, artifi-
cial neural network, sup-
port vector machine, and
naive bayes

Smart cane (haptic): IMU and FSRf

sensors [48]

The efficiency of the learning process
is dependent on the human assistant,
who is prone to errors and might miss
out on the certain intent of the user.

Implementation of a learned shared
control policy from human-to-human
interaction

Gaussian process regres-
sion model

An ARTAg power wheelchair platform
(CVI and haptic): haptic controller, laser
scanner, SICK laser measurement, and
IMU sensor. [50]

Lack of details on the performance of
each interface and limited testing sce-
narios

Multiple control interfacesAn algorithm for the
control and execution of
commands

Multiple controlled interfaces smart
wheelchair (haptic and auditory): micro-
phone, joystick, leap motion, and ultra-
sonic sensor [53]

Only one incomplete spinal cord injury
participant was selected for testing, so
it is difficult to validate its perfor-
mance.

Lightweight, soft wearable robot to aid
users with a level of residual mobility
during locomotion tasks

N/AMyoSuit (haptic): IMU sensor and two
electric motors [47]

aTDS-iPhone-PWC: tongue drive system to iPhone electric-powered wheelchair
bUSI: user system interface.
cN/A: not applicable.
dCVI: computer vision interface.
eIMU: inertial measurement unit.
fFSR: force sensitive resistor.
gARTA: assistive robotic transport for adults.
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Table 4. Computer vision (CV) interface technologies for adaptive assistive mobility device.

DrawbacksContributionsMachine learning toolsTechnology name (type): additional
sensors

Extensive training was required, and
testing was limited to certain scenar-
ios.

A framework for the coupling of
optical sensors in the context of
range and color image registration
and the development of a sonic code
that maps colors and depth into mu-
sical instruments

Multilayer artificial neural network
for object classification, Kalman
filter for tracking objects (finger),
and randomized forest algorithm for
object detection

See ColOr (CV, auditory and hap-
tic): 3D Kinect, iPad, and Bone-
Phones [63]

Patient feedback from the Mattoccia
[75] study was considered, and the
result that covered collision rate and
cognitive and perceptual overload
on tested subjects was not presented.

Improves on a preliminary prototype
of Mattoccia [75], enabling dynamic
autonomous mobility capability
combining features of electronic
travel support and self-localization
support in a compact and
lightweight setup

Stereo vision algorithm and
semiglobal matching algorithm; de-
tection: random sample consensus
algorithm and Kalman filter; catego-
rization: convolution neural network

Wearable mobility aid for patients
with visual impairments (visual,

auditory, and haptic): RGBDa, vibro-
tactile glove, and bone-conductive
headsets [64]

Human input in the control was not
considered.

Addresses, in a secure way, the au-
tonomous stability of the
wheelchair’s position along corri-
dors and also detects and passes
through doorways using visual data

Classic Gaussian sphere projection
framework, door detection and
tracking framework, and a 2D edge
tracker inspired by the moving edge
algorithm

Visual servoing-controlled
wheelchair (vision): 1 camera for
corridor following and 2 cameras

for ADPb [61]

A bug-free human trial has not yet
been documented.

A multimodal input smart
wheelchair to identify and classify
objects, build 3D maps, and eventu-
ally facilitate autonomous naviga-
tion

Light communication algorithm,
collision avoidance algorithm, and
an emergency and stress detection
algorithm

iChair (vision, auditory and haptic):
high-definition camera, 3D scanner,

10 LEDsc, touch screen and voice
recognition app, and head mouse
[30]

The outdoor performance noted
clustering of several objects into a
single one and error in identifying
lower parts of the object; no outdoor
and usability test was documented.

Addresses the pervasiveness require-
ment as well as offers sensory sub-
stitution via sound feedback to pa-
tients with visual impairment

Detection and tracking algorithm,
support vector machine classifier,
and a class-specific extremal regions
for text detection

CV for patients with visual impair-
ment (vision, auditory, and haptic):

A stereo RGBd camera (SC), a

depth-of-field camera, and an IMUe

[65]

Extensive documentation of human
testing has not been documented.

Cost-effective and addresses the
navigational and localization chal-
lenges in an unknown environment
by a new hybrid far-field and near-
field mapping solution

A graph-based simultaneous local-
ization and mapping algorithm

Autonomous scooter navigation
(vision): MPU-9250 IMU, long-
range laser, and stereo vision cam-
era [13]

A test to evaluate the performance
of the control strategy with the
robotic mobility assistive device and
patients was not documented.

Human state estimation, pathologi-
cal gait parametrization, and charac-
terization for classifying users asso-
ciated with risk fall

Interacting multiple model particle
filters with probabilistic data associ-
ation framework, Viterbi algorithm
(human gait estimation), support
vector machine classifier, and un-
scented Kalman filter algorithm

User-adaptive intelligent robotic
walker (vision): laser range finder
[62]

aRGBD: red green blue and depth.
bADP: autonomous doorway passing.
cLED: light emitting diode.
dRGB: red green blue.
eIMU: inertial measurement unit.

IoMT Frameworks: Impact of IoMT on the
Adaptability of Assistive Mobility Devices
IoMT generally contributes to the adaptability of assistive
mobility aids in the monitoring and control by users, caregivers,
and medical personnel. The adaptability of assistive mobility
devices involves the acquisition of information and the making
of intelligent decisions based on the acquired information. This
information is obtained from the environment and user via a
means of communication (usually an interface). USIs can send
and receive information from the user (individuals with some
form of disability) to the mobility aid via a communication

channel that could be wired or wireless, such as the JPL
BioSleeve [44,45] and the TDS-iPhone-PWC interface (Table
3) [46] that can wirelessly control a mobility aid, the P300-based
BCI (Table 2) [74] that controls a wheelchair via a wired USB
channel, and the autonomous scooter navigation mobility aid
[13] that connects its computing module to its hard unit via a
wired USB medium or a wireless Bluetooth medium. With the
help of IoMT, interconnectivity between mobile devices and
their environment and the storage or retrieval of relevant
information for control, better autonomy, and monitoring are
possible. Many recent surveys and reviews have been conducted
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on IoMT’s recent technologies, applications, challenges, and
opportunities [3,76-78].

In recent years, many researchers have proposed IoMT
frameworks for assistive devices that leverage or build on
existing IoMT architectures and communication protocols and
restructure them (using algorithms or management systems) to
suit assistive technologies. For instance, Bae et al [79] proposed
a network-based rehabilitation system, for mobility aids (knee
assistive devices), as shown in Table 5. The prototype

framework distributes the control of the mobility device between
the patient’s side and the physiotherapist’s side over a wireless
network using the transmission control protocol for internet
communication. A modified linear quadratic Gaussian algorithm
was used to compensate for packet losses in the wireless network
by modeling the losses as Bernoulli random variables. However,
only simulations and experiments have been conducted.
Therefore, its efficiency in tackling packet loss and robustness
against modeling uncertainties, such as interactions with human
emotions, has not been evaluated in real-world scenarios.

Table 5. Internet of medical things technologies for adaptive assistive mobility devices.

DrawbacksContributions and functionsManagement system or algorithmsName of framework

Only simulations and exper-
iments have been conducted.

Distributes the control of a mobility device between the
patient’s side and the physiotherapist’s side; brings conve-
nience to patients and therapists

Modified linear quadratic Gaussian
algorithm

NBRa system frame-
work [79]

Only one simple experiment
has been conducted.

Designed to address the walking and orientation problem;
functions: user tracking, sending of emergency error or
alert messages to patients with visual impairment, obstacle
detection, walked distance estimation, surface roughness
estimation, and traffic light detection

Intelligent transportation systemGlobal concept

SEESb framework
[64]

Use-case scenario testing
has not been conducted ex-
cept for fall detection of 1
patient.

Monitoring and tracking of patients, personnel, and
biomedical devices in real time; collecting both environ-
mental conditions and patient’s physiological parameters
and delivering them to a control center

Hybrid sensing network, the IoTd

smart gateway, and the user inter-
faces for data visualization and
management

SHSc framework
[80]

At present, the whole archi-
tecture has been tested in
simulation only.

For the cooperation among SWCf and RWg; for the user
to be able to interact with and control the SWC as well as
any object connected to the RW

Navigation, localization, and pick
and place algorithm

ROSe framework
[81]

aNBR: network-based rehabilitation system.
bSEES: Smart Environment Explorer Stick.
cSHS: smart health care system.
dIoT: internet of things.
eROS: robotic operating system.
fSWC: smart wheelchairs.
gRW: robotic workstations.

Yusro et al [82] proposed the global concept Smart Environment
Explorer Stick framework that enhances the white cane to assist
the navigation of patients with visual impairment. As shown in
Table 5, it was designed to address the walking and orientation
problem by assisting some of the walking and orientation
functions and adopting an active multisensor (ultrasonic, camera,
accelerometer, wheel encoder, compass, tactile point-wise, and
audio feedback) context-awareness concept. Cellular IPv6 over
low-power personal area network communication protocols and
routing protocols for low-power and lossy networks were used
to help patients with visual impairment to move safely and easily
in any environment (indoor and outdoor). However, only one
simple experiment was performed. An IoT-aware architecture
for smart health care systems (SHSs), applicable to the
adaptability of assistive mobility devices, was proposed by
Catarinucci et al [80] (Table 5). It promised to guarantee
innovative services for the automatic monitoring and tracking
of patients, personnel, and biomedical devices within hospitals
and nursing institutes in real time. The SHS framework [81]
relies on different but complementary technologies, specifically
radio frequency identification, wireless sensor networks, and
smart mobile, interoperating with each other through a

constrained application protocol or IPv6 over low-power
personal area network or representational state transfer network
infrastructure (Table 5). However, the SHS framework was
proposed to demonstrate its feasibility, and it needs to be tested
in various use-case scenarios to evaluate its performance.
Furthermore, Foresi et al [81] proposed a robotic operating
system framework that connects robotic workstations with a
smart wheelchair via a Wi-Fi protocol. It was designed to
improve the intelligent navigation of the wheelchair and enable
interaction between the wheelchair, its user, and any object
connected to the robotic workstation. However, only a
simulation has been performed on the whole architecture, and
a detailed evaluation of its performance is not available.

Although IoMT assistive mobility device frameworks show
promising signs to improve the adaptability of mobility aids,
most proposed frameworks have not been tested. This is
extremely important for evaluating their performance and
applicability in adapting mobility aids to their intended users.
Notable drawbacks common to IoMT frameworks, such as
packet loss, user privacy and security, network robustness and
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scalability, and commercialization cost [1,83,84], need to be
extensively evaluated.

Discussion

User System Interaction (Input and Output Methods)

BCI Systems
BCIs can generally be categorized into four types: P300, SSVEP,
event-related synchronization or desynchronization, and SSSEP.
P300 is an endogenous response to an oddball stimulus. A
positive wave is evoked in response to an event-related potential
at a latency of 300 ms (P300). SSVEP is also an endogenous
response and is a resonance phenomenon visually evoked by a
stimulus modulated at a specific frequency in the brain signals.
It occurs in response to the observation of a persistent oscillating
visual stimulus. Unlike P300 and SSVEP, event-related
synchronization or desynchronization is spontaneously induced
by performing mental tasks, such as MI, mental arithmetic, or
mental orientation. The SSSEP paradigm is evoked, is
endogenous, and spontaneous. The signal is generated in
response to the feeling of touch or pressure [35,40,85].

Because of its high accuracy and the need for little to no training,
P300 was used by Iturrate et al [74] and Rebsamen et al [38]
for the BCI system in the design of the automated navigational
wheelchair. Both prototypes still had the drawbacks common
with the P300 BCI, such as low information transfer (successful
orders per minute), the need for multiple trials for improved
accuracy, and the fatigue experience that could occur as a result
of the long focus period of the eye on the target stimulus. Other
drawbacks included the limited testing scenarios conducted on
both systems and the fact that only predefined locations could
be reached. Rebsamen et al [38] used the path-following mode
of operation [12] for automated navigation; therefore, a
modification of the environment would require an update to the
guiding path. Both prototypes had a limited number of testing
scenarios and were carried out on healthy (5) subjects. Long et
al [39] adopted the hybrid BCI approach for the control of
wheelchair direction and speed using P300 and MI. Emphasis
was given to the importance of speed and the use of hybrid BCIs
to improve performance and increase command options.
Although accuracy was improved (classification performance)
and speed control was achieved, testing was limited to only two
scenarios (5 subjects for the first and 2 for the second). In
addition, the fatigue experience that could occur as a result of
the long focus period of the eye on the target stimulus was not
addressed.

In an attempt to address the lack of spontaneity associated with
P300 and SSVEP, Carlson and del R Millan [41] adopted an
MI-based BCI to control a wheelchair. The prototype focused
on shared control between the user and the wheelchair, that is,
the ability of the wheelchair to take actions (autonomously
navigate) concerning the user’s input and its perceived
surroundings (using CV). Drawbacks associated with MI BCI,
such as limited classes (typically 3 to avoid difficulties in
discriminating MI patterns), extensive training time (a few
weeks to months) and the calibration time were still evident. It
took a much longer time (>160 seconds) for the 2 inexperienced

MI BCI patients out of the 4 to complete the task. In addition,
if shared control is not properly matched with the user, it could
lead to degradation or loss of function and efficiency. Qiu et al
[42] attempted to address the complex dynamic uncertainty and
input saturation (leading to tracking error), which is common
to exoskeleton robots, by using vision compressive sensing, an
SSVEP-based BCI (as a reference command), and an adaptive
fuzzy controller for control. Limited testing was performed with
2 veterans and 1 greenhorn patient, and the results showed that
training was required. Experienced subjects had a significantly
better recognition accuracy (approximately 14% difference).
To combat the possible fatigue problem and loss of vision to
the environment because of the long focus period of the eye on
a particular target stimulus, Kim et al [40] adopted the use of
SSSEP BCI in the control of a wheelchair. According to Kim
et al [40], this prototype is the first of its kind. Although it tested
significantly better than its MI BCI–controlled equivalent, tests
were limited to only healthy subjects (12) and were conducted
mostly by experienced brain-machine interface subjects. In
addition, only two testing scenarios were considered.

Auditory and Haptic Interface
Although many advances (in USI) have been made in an attempt
to factor in individuals with varying disabilities, the extensive
evaluation of the efficiency and applicability of these
technologies requires more attention. Affordability, accurate
detection of environmental sounds, avoidance of cognitive
overload of the users, ease of use, weight of devices, and
commercialization are important factors to be considered
[15,20,21,31,43]. For instance, JPL BioSleeve [44,45], a very
promising interface for decoding a large number of gestures
(dynamic and static hand positions) at high accuracy, integrates
IMU signals with EMG for gesture recognition. Its intended
goal of gesture recognition with high accuracy was achieved.
However, it is still unclear for which category of users and
devices it would be most suitable. Therefore, proper integration
and testing need to be performed with existing mobility aids to
determine their applicability. TDS-iPhone-PWC [46] was
designed to be an alternative USI for people with SCI or upper
limb paralysis. Latched, unlatched, and semiproportion control
strategies were used to send commands to the wheelchair. The
commands included forward, backward, left, and right motions,
as well as adjustable speed levels. The results showed that it
could effectively be used to both access a computer and drive
a power wheelchair in a unified, wireless, unobtrusive, and
wearable form. However, tongue piercings can be a painful
process, and some patients would be uncomfortable or find it
difficult to use this option for control. In addition, results showed
that extensive training was required for proper calibration and
improved performance (task time, number of collisions, and
out of tracks). MyoSuit [47] focused majorly on comfort and
weight while maintaining its efficiency in aiding its users (ie,
people with incomplete SCI, stroke, and multiple sclerosis or
muscle dystrophy). Using elastomer springs and a tendon driver
unit, MyoSuit was designed to act as an antigravity support
during gait rehabilitation tasks. However, it was tested on only
1 patient with incomplete SCI, and so it is difficult to evaluate
its efficiency and applicability for gait rehabilitation. The
proposed EMC [51] focused on the simultaneous detection of
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multiple obstacles at different levels (in terms of height and
distance) and floor status. EMC was designed using 6 ultrasonic
sensors, a liquid detection sensor, a metal detection sensor, a
wireless transceiver, and microcontroller circuits. Sensors were
positioned on the stick to detect floor-level to head-level
obstacles, as well as for leftward and rightward detection. EMC
effectively provided navigation assistance, and the categorization
or prioritization of detected information was better than with
the white cane. However, more training time was suggested
(even after a lengthy 20-hour training time) to properly ascertain
its cognitive and perceptual load in comparison with similar
devices.

Promising devices, such as EyeCane [52] and intelligent smart
walker [49], had drawbacks as certain testing scenarios were
not considered. EyeCane was tested only indoors, and the
intelligent smart walker was tested using healthy patients who
do not truly represent the typical users of the walker. The smart
wheelchair that was designed to accommodate multiple control
interfaces lacked a detailed evaluation of the performance and
intelligence of the wheelchair for each interface. An example
scenario is how the wheelchair would differentiate the user’s
voice from an outlier when an alternative command option is
in use. Therefore, there is a need for more detailed testing and
evaluation before these technologies become usable and
acceptable to their intended users.

CVI Systems
CVIs play an important role in the perception of mobility
devices for autonomous navigation. CVI has been adopted in
some technologies. For instance, See ColOr [63] was designed
as a framework for the coupling of optical sensors in the context
of range and color image registration. A sonic code was
developed to map colors and depth into musical instruments.
However, as it was the first of its kind, extensive training was
required for the participants to master it, and testing was limited
to certain scenarios (outdoor scenarios were not considered). A
similar drawback was observed with patients with visual
impairment [65]. It was designed to address the pervasiveness
requirement (by integrating both an infrared light–based depth
sensor and a stereo vision system together with an IMU device)
as well as offer sensory substitution via sound feedback to
patients with visual impairment. It was designed to work in any
environment and illumination condition using sensor fusion
techniques. The results seemed promising; however, detection
or 3D representation of small objects or objects close to the
ground needed a lot of improvement. In addition, only testing
for indoor scenarios was conducted. iChair, was designed by
Leaman et al [30], to accommodate a large range of impaired
users by integrating multiple interfaces for control; however,
no bug-free human trial has been documented. The same
drawback was noted in the autonomous scooter [13], which was
designed to be a cost-effective autonomous scooter that
addressed the navigation and localization challenges in an
unknown environment with a new hybrid far-field and near-field
mapping solution.

The work toward autonomous navigation of mobility devices
is ongoing and progressive but not without its challenges. This
is because many stages make up the autonomous navigation

system, and therefore, the overall performance can be hampered
by just a small percentage error in one of its many stages. The
first stage, the perception stage, is crucial to the performance
of an autonomous navigation system as it has to do with the
acquisition and processing of information. This stage, to a very
large extent, determines the adaptability of the mobility device
to the needs of the user. Different USIs are used to accommodate
users with varying impairments; however, the ability to
adequately adapt the mobility device is dependent on the quality
of the information it receives. Many of the reviewed
technologies applied different machine learning tools (classifiers
and algorithms) to help process the acquired information. An
example is the SVM classifier used by JPL BioSleeve in the
studies by Assad et al [44] and Wolf et al [45] to classify gesture
patterns. It was able to achieve an accuracy as high as 96%;
however, as stated by Anguita et al [86], its accuracy was
dependent on the chosen model, presence of noise, and data
size. Drawbacks can be better tested by the comparison of
similar classifiers to know which performs better for a particular
technology, as was done by Wade et al [48].

In recent years, the idea of fusing data acquired from multiple
sensors to improve confidence has been widely adopted because
of the complementary properties exhibited by different sensors.
Although this has proven to be promising, it does not come
without its challenges [24,87]. This is majorly applied to CV.
Examples include CV for patients with visual impairment [65]
and the autonomous scooter [13], which used the fusion of 2
sensors for improved performance. To design CV for patients
with visual impairment, a stereo red-green-blue camera (which
is unreliable for depth estimation in the presence of poor
illumination) was fused with a depth-of-field camera (which
does not cope with bright light from the sun) in an attempt to
improve the reconstructed 3D image output under any
environmental condition. In the design of the autonomous
scooter, long-range laser data were fused with that of a stereo
vision camera to improve confidence under any environmental
condition. Although fusion of data shows promising results, its
efficiency is dependent on the accuracy of the applied fusing
methods. An extensive literature review on fusion algorithms
and the complementary properties of perception sensors and
systems has been discussed by many researchers [24,69]. Some
notable challenges in autonomous navigation and CV include
improved accuracy and robustness in data fusion, trade-off
between cost and performance, the self-localization problem,
the detection of small or far-away objects in real time, training
data set and increased testing scenarios, level of autonomy, and
user training [23-25,60].

Limitations and Future Directions

Overview
This study presents a comprehensive review of the recent
literature on the adaptability of assistive mobility devices in
terms of the acquired information. Discussions that present
interesting facts and technical details regarding recent
technologies have been reported. On the basis of the literature
review, the following challenges and research directions are
presented:
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Improved Training Time and Avoidance of Cognitive
Overload
Although the exact figure for the attention span of an average
human being is extremely variable, research shows that the
attention span of an average human being declines as the
required concentration time increases. Therefore, it is widely
accepted that keeping it simple is better. This is not different
from the training time for users with some form of disability
[88-91]. As highlighted in the Brain-Computer Interface section
under Discussion, most of the reviewed prototypes showed that
training time requires more attention. In addition, in the
Computer Vision Interfaces section, the training time needed
for machine learning algorithms varied depending on the training
data set, which could affect the decision made in autonomously
navigating assistive mobility devices [24]. More research could
be conducted to improve the accuracy of BCI options with
shorter training times and hybrid BCIs. This could be achieved
with the help of machine learning techniques or algorithms that
study user inputs and behaviors to accurately predict commands
and help reduce the number of failed commands. Finally, a
widely accepted standard for validating the training time for
both machine learning algorithms and BCI in a USI could be
developed. This will help researchers adequately compare results
and monitor improvements concerning the adaptability of
assistive mobility devices.

Accuracy
The data reveal that people who are adapted to using their
wheelchairs have little to no tolerance for new functional errors.
This situation is similar to that of every other assistive mobility
device [92]. The highlighted technologies related to autonomous
navigation (perception) and CV have shown that the data fusion
technique has become increasingly accepted in improving
accuracy. However, this also increases the complexity and
robustness of information, thereby presenting challenges such
as fusion, calibration, and classification accuracy [23-25,60].
Machine learning tools or algorithms used in processing this
information also have varying strengths and weaknesses. Similar
to the SVM classifier highlighted earlier, these tools and
algorithms show varying accuracy depending on the selected
model and the level of noise. Future research could be directed
toward improving the accuracy of mobile robots in unfamiliar
environments as this is mostly the case for assistive mobility
devices.

IoMT Latency, Security and Privacy
The integration of IoMT frameworks with the highlighted
technologies shows a lot of promise in improving the
adaptability of assistive mobility devices to their users. With
the IoMT technology option, data stored in the cloud can be
analyzed and used for further research. The user’s progress (for
gait rehabilitation) can also be monitored, and some level of
assistive control can be done by the user’s stakeholders.
However, with IoMT technology come network scalability, user
privacy, and security problems [1,83,84]. Most reviewed papers
acknowledged the packet loss problem when remotely
controlling mobility devices via an IoMT framework and
proposed various management systems to combat this problem;
however, only simulation tests were carried out. The scalability

of these frameworks can only be known when real-world testing
is performed. Frameworks such as the robotic operating system
[81] and the network-based rehabilitation system [79] may have
major issues when implemented on a larger network scale.
Further research could be conducted on management systems
and algorithms developed to improve latency and compensate
for packet loss. The developed frameworks should also indicate
the number of devices that they could accommodate without
any drop in performance. This could all be included in
comprehensive system validation. Finally, a widely accepted
standard for validating these systems or prototypes could be
developed to help researchers compare results and documents
on IoMT-based assistive mobility devices.

Performance Evaluation
In most of the reviewed papers, little attention was paid to
real-world testing and comparing related prototypes to evaluate
performance. For these technologies to be tagged fit for their
intended users, their performance needs to be properly evaluated
and tested under varying conditions. Proper evaluation would
help examine some notable drawbacks, such as ease of use
(without the need for any special training), cognitive overload
(during human-machine communication), and the ease of
wearing these technologies (in terms of weight while
maintaining or improving their functionality) [15,20,21,31,43].
Some users of assistive mobility devices have comorbidities,
such as mental health challenges because of aging or depression.
If the training time or cognitive or perceptual load is high, the
device will be quickly abandoned by its intended users. From
the discussions, it has been shown that machine learning tools
play a key role in the proper classification and processing of
USI information as well as the decision-making of these mobility
devices. These account for the ability of these devices to
navigate autonomously with high accuracy. Future research
could focus on the standardization of performance evaluation
methods and the accepted testing conditions.

Another research direction is the design of prototypes for clearly
defined users. As discussed in previous sections, specific USIs
are most suitable for specific ailments. With the advent of many
different USIs, there is a tendency to want to accommodate a
wider range of users in a prototype design. When assistive
mobility devices are tailored to specific users or ailments, there
will be improved performance and accuracy in the adaptability
of those devices to their specific users.

For a mobility device to be termed adaptable, it has to meet
certain requirements such as the following:

1. Intelligent perception, that is, requires little or no effort to
efficiently perceive its environment and take mobility
decisions (such as obstacle avoidance and collision
detection)

2. Accurate self-localization of user and device (user tracking).
3. User-friendly, that is, the movement speed and direction

are controlled by the user subconsciously without the need
for any special training; in addition, prompt and adequate
control or feedback from and to the user are provided
without cognitive overload, and communication with
necessary stakeholders is easy and secure
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These are needed for developed assistive mobility technologies
to be easily commercialized and gain user acceptance
(widespread adoption) [28,31]. These basic requirements reflect
the need to evaluate the performance of mobility devices
according to their major adaptability elements (ie, USIs,
perception of adaptability—autonomous navigation—and IoMT
framework).

Conclusions
The research community has developed many promising
technologies in the past decade, taking advantage of smart
sensors, machine learning tools, and IoMT frameworks to offer
mobility independence to impaired individuals. For users to
benefit from these technologies, adaptability must be properly
evaluated and considered from design to implementation. This

study has successfully reviewed recent technologies of assistive
mobility devices to identify their adaptability to users in terms
of USI, autonomous navigation (perception stage), and
connectivity. Tables have been presented to highlight the
reviewed technology according to the major adaptability
elements. Furthermore, the review presents some notable
limitations, which have shown the need for improved cohesion
to effectively adapt these technologies to their users. The
findings discussed in the review show that for improved
adaptability, more work needs to be done to reduce the training
time and cognitive overload in the USIs to improve the fusion
and classification accuracy; real-world scenario testing needs
to be conducted and evaluated, and the trade-off between cost
and performance needs to be considered in commercialization.
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CV: computer vision
CVI: computer vision interface
EMC: electronic mobility cane
EMG: electromyography
IMU: inertial measurement unit
IoMT: internet of medical things
IoT: internet of things
MI: motor imagery
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PWC: powered wheelchair
SCI: spinal cord injury
SHS: smart health care system
SSD: sensory substitution device
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SSVEP: steady-state visual evoked potential
SVM: support vector machine
TDS: tongue drive system
TDS-iPhone-PWC: tongue drive system to smartphone (iPhone) electric-powered wheelchair
USI: user system interface
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