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Reconfiguring surface functions using visible-light-
controlled metal-ligand coordination
Chaoming Xie 1,2, Wen Sun2, Hao Lu2, Annika Kretzschmann2, Jiahui Liu2, Manfred Wagner2,

Hans-Jürgen Butt2, Xu Deng1 & Si Wu 2,3

Most surfaces are either static or switchable only between “on” and “off” states for a specific

application. It is a challenge to develop reconfigurable surfaces that can adapt to rapidly

changing environments or applications. Here, we demonstrate fabrication of surfaces that can

be reconfigured for user-defined functions using visible-light-controlled Ru–thioether coor-

dination chemistry. We modify substrates with Ru complex Ru-H2O. To endow a Ru-H2O-

modified substrate with a certain function, a functional thioether ligand is immobilized on the

substrate via Ru–thioether coordination. To change the surface function, the immobilized

thioether ligand is cleaved from the substrate by visible-light-induced ligand dissociation,

and then another thioether ligand with a distinct function is immobilized on the substrate.

Different thioethers endow the surface with different functions. Based on this strategy,

we rewrite surface patterns, manipulate protein adsorption, and control surface wettability.

This strategy enables the fabrication of reconfigurable surfaces with customizable functions

on demand.
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Manipulating surface properties is important for self-
cleaning, guiding liquid flow, controlling protein
adsorption, regulating cell adhesion, and many other

applications1–5. The properties of stimuli-responsive surfaces
can be changed using external stimuli, such as light, heat,
electric field, CO2, glucose, and pH6–12. For example, the surface
properties can be manipulated using pH-controlled dynamic
imine-based covalent reaction13,14. Among these stimuli, light has
attracted increasing attention because of its high spatiotemporal
resolution and remote-control mechanism. To date, a variety of
photolysis and photocoupling reactions have been utilized to con-
trol surface function15–20. However, most of the reported photo-
reactions result in only static and irreversible surface functions
because of the irreversible formation or photocleavage of C–C or
C–O bonds. Reversible surface functions have been realized by
modifying surfaces with photoswitchable compounds such as azo-
benzene21–26, spiropyran27–29, dithienylethene30, and synthetic
molecular shuttles31. Such surfaces can switch only between two
functional states because photoswitchable compounds interconvert
between two isomers under ultraviolet (UV)/visible-light irradia-
tion. Reconfigurable surfaces, which can be converted into multiple
states, have been constructed using photoreactions such as the
photodynamic disulfide exchange reaction18, thiol–quinone
methide reaction32, addition–fragmentation chain-transfer reac-
tion33, and thiol–disulfide interconversion19. These photoreactions
enable fabrication of customized surfaces on demand. However, all
these reconfigurable surfaces are manipulated with UV light, which
can damage biological components and shorten the lifetime of
organic/polymeric materials. Furthermore, UV light cannot
penetrate deeply into tissue, which is not suitable for manip-
ulating biointerfaces in the body (e.g., surfaces on implants).
Compared to UV light, visible light is not invasive, and red light
in the visible region can penetrate deeply into tissue. Therefore, it
is highly desirable to construct reconfigurable surfaces that are
controllable by visible light.

Ligand photosubstitution is a powerful photoreaction for
constructing reconfigurable surfaces. In ligand photosubstitution,
a ligand in a metal complex is replaced by another one under light
irradiation34. In particular, ligands on some Ru complexes can be
substituted under visible light35–37. Light-controlled ligand sub-
stitution has been applied for uncaging neurotransmitters38,39,
activating anticancer drugs40–43, controlling drug release44,45,
actuating hydrogels46,47, and photopatterning48. In particular, we
have demonstrated that red light can pass through tissue and
induce photosubstitution in Ru complexes in vivo41. Although
the abovementioned studies use only one-way photosubstitution,
photosubstitution reactions of some Ru complexes are reversible
at ambient or elevated temperatures49. For example, thioethers
can substitute for the coordinated water molecules in Ru com-
plexes in the dark via thermal substitution; water molecules can
also substitute for the coordinated thioether ligands in Ru com-
plexes under light irradiation50,51. Therefore, Ru complexes can
interconvert between two states (i.e., the water-coordinated and
thioether-coordinated states) in solution via reversible ligand
photosubstitution. However, ligand photosubstitution has never
been used to construct a system that can be reconfigured among
multiple states.

In this work, we constructed a reconfigurable surface, which
can be reconfigured into a number of functional states using
visible-light-controlled metal–ligand coordination. In our design,
the Ru complex [Ru(tpy-COOH)(biq)(H2O)](PF6)2 (hereafter
denoted Ru-H2O, tpy-COOH= 6-2,2’:6’,2”-terpyridin-4’-yloxy
hexanoic acid, biq= 2,2’-biquinoline) acts as the molecular
“multi-bit screwdriver”, and the thioethers with different func-
tional groups (MeSC2H4-R1, MeSC2H4-R2, MeSC2H4-R3…
MeSC2H4-Rn) act as the molecular bits (Fig. 1a). The removal of

the bit on the screwdriver is driven by visible-light-induced
photosubstitution, while the attachment of another bit to the
screwdriver is automatically achieved in the dark via thermal
substitution. To construct a reconfigurable surface, Ru-H2O is
grafted onto a substrate (Fig. 1b). Substitution of the coordinated
H2O molecule in Ru-H2O with the thioether (MeSC2H4-R1)
endows the surface with the function of R1 (step 1 in Fig. 1b). To
change the surface function to that of R2, MeSC2H4-R1 is first
substituted by H2O under light irradiation (step 2). After washing
with water and acetone to remove MeSC2H4-R1, the coordinated
H2O is then substituted by MeSC2H4-R2 in the dark (step 3). The
surface can be reconfigured into user-defined functions using
different thioethers based on the approach in Fig. 1b. This
approach enables fabrication of reconfigurable surfaces with
customized functions. We demonstrate rewriting surface patterns,
manipulating protein adsorption, and controlling wettability
based on visible-light-controlled metal–ligand coordination.

Results
Ru–thioether coordination in aqueous solutions. Ru-H2O was
designed for this study; it has a carboxylic group for surface
modification and a coordinated H2O molecule that can be sub-
stituted by thioethers (Fig. 1). Ru-H2O was synthesized via
a multi-step route and fully characterized using 1H nuclear
magnetic resonance (NMR) spectroscopy, 13C NMR spectro-
scopy, H-H correlation spectroscopy (COSY) spectrum, and mass
spectrometry (Supplementary Figs. 1–8).

To demonstrate that the Ru–thioether bond is dynamic and
reversible, we studied the coordination between Ru-H2O and a
model thioether compound 2-(methylthio)ethanol (MTE) using
UV–vis absorption spectroscopy (Fig. 2a). When Ru-H2O
(1 mM) and MTE (10 mM) were mixed in water, the absorption
band was located at 550 nm, which is attributed to the metal-to-
ligand charge transfer band of Ru-H2O. The absorption band
blueshifted to 535 nm and the absorbance decreased when the
mixture was kept in the dark (Fig. 2b). This spectral change is
identical to the observations of the formation of the Ru–thioether
coordination bond reported in the literature50,51, which indicated
MTE coordinated with the Ru center. The absorption band did
not further blueshift after 40 min, indicating equilibrium was
reached. Then, the sample was irradiated with green light
(530 nm, 50mW cm–2) for 1 min. The absorption band returned
to the original position. This result showed that MTE was
substituted by water upon irradiation. The existence of an
isosbestic point at 530 nm suggested that a single reaction
occurred. The photosubstitution of the Ru complex can also be
induced by UV, blue, and red light in solution because the Ru
complex has a broad absorption band in the UV and visible
regions (Supplementary Fig. 9 and Supplementary Note 1).

To demonstrate the reversibility of the substitution, we studied
the ligand substitution for four cycles using absorption spectro-
scopy (Fig. 2c). In each cycle, an aqueous mixture of Ru-H2O
(1 mM) and MTE (10 mM) was kept in the dark for 40 min and
then irradiated with green light (530 nm, 50 mW cm–2) for 1 min.
The absorption change shows that the ligand substitution was
fully reversible (Fig. 2c).

We also studied the ligand substitution using 1H NMR
spectroscopy (Supplementary Fig. 10 and Supplementary Note 2).
The 1H NMR data confirmed that MTE coordinated with the
Ru center in the dark and was substituted by a water molecule
upon green-light irradiation. The formation and cleavage of the
Ru–thioether bond can be cycled for at least 10 times under dark/
light irradiation conditions (Supplementary Fig. 11a). The MTE-
coordinated Ru centers were approximately 80% in each cycle
(Supplementary Fig. 11b and Supplementary Note 3). The
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equilibrium constant K of the MTE/Ru-H2O coordination
reaction was 107 ± 4M–1 at 298 K (Supplementary Fig. 12 and
Supplementary Note 4). The pseudo first-order rate constant k′1
was 1 × 10–3 s–1 at 298 K (Supplementary Fig. 13 and Supple-
mentary Note 5). The formation of the Ru-MTE complex in the
dark was also quantified using UV–vis absorption spectroscopy
(Supplementary Fig. 14 and Supplementary Note 6). Based on
these results, we conclude that the Ru–thioether bond is dynamic,
and a reversible ligand substitution occurs under mild conditions
without the addition of any other reagents such as catalysts or
photoinitiators.

Ru–thioether coordination on surfaces. Encouraged by the
reversible ligand substitution in solution, we studied visible-light-
controlled Ru–thioether coordination on surfaces. To fabricate
a reconfigurable surface, a quartz substrate was modified with
(3-aminopropyl)triethoxysilane (APTES) and then Ru-H2O was
grafted onto the substrate via amidation. Subsequently, we ver-
tically inserted the Ru-H2O-modified quartz substrate (1 × 2 cm2)
into an MTE aqueous solution (10 mM) in a quartz cuvette and

studied the ligand substitution at the surface using absorption
spectroscopy. The absorption band of the grafted Ru-H2O at
550 nm decreased and slightly blueshifted in the dark. The
absorption band returned to the initial state after green-light
irradiation (530 nm, 40 mW cm–2) for 10 min (Supplementary
Fig. 15). The spectral change was similar to that observed in
solution, which indicated that the ligand substitution on the
surface was reversible.

We studied the released photoproduct from the surface
using mass spectrometry, which showed that MTE was intact
after photoinduced releasing from the surface (Supplementary
Fig. 16 and Supplementary Note 7). Moreover, the surfaces
were stable when stored in a fridge at –4 °C, in air and under
vacuum for 5 days in the dark (Supplementary Fig. 17
and Supplementary Note 8). The photostability of the Ru-MTE-
modified surfaces in solution (Supplementary Fig. 18 and
Supplementary Note 9) and in air (Supplementary Fig. 19
and Supplementary Note 10) was also studied. The Ru-MTE-
modified surfaces were stable in dry air even under UV or visible
light irradiation.
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The reversible substitution on the surface was quantified using
X-ray photoelectron spectroscopy (XPS). The reversible change of
S 2p signal in the XPS spectra revealed that MTE was grafted on
the surface in the dark and cleaved from the surface after light
irradiation (Supplementary Fig. 20 and Supplementary Note 11).
The quantitative analysis of XPS spectra also showed that the
substitution was reversible for at least 10 cycles (Supplementary
Table 1). Almost all thioether ligands were cleaved from the
surface after light irradiation and washing. In the dark, 49.6 to
70.9% of Ru centers (average 62%) on the surface was
coordinated with MTE (Supplementary Table 1).

Rewriting surface patterns with visible light. To demonstrate
the reconfigurable features of the Ru-H2O-modified surface,
we synthesized thioether-containing fluorescein isothiocyanate
(MeSC2H4-FITC) and thioether-containing rhodamine B iso-
thiocyanate (MeSC2H4-RhB) to create rewritable patterns
(Fig. 3a). First, the Ru-H2O-modified surface was immersed
in an aqueous solution of MeSC2H4-FITC (10 mM) in the
dark for 2 h and then washed with water and acetone. The non-
fluorescent surface (Fig. 3b) developed a strong green fluores-
cence (Fig. 3c), showing MeSC2H4-FITC was successfully
immobilized on the surface. Then, the substrate was wetted
with water, covered by a photomask, and irradiated using
green light (530 nm, 40 mW cm–2) for 10 min. The disappearance
of the fluorescence in the exposed regions demonstrated that
MeSC2H4-FITC was cleaved from the surface (Fig. 3d). After that,
the substrate was immersed into an aqueous solution of
MeSC2H4-RhB (10 mM) in the dark for 2 h and then washed
with water and acetone. Red fluorescence appeared in the pre-
viously exposed regions (Fig. 3e), which suggested MeSC2H4-
RhB was immobilized on the surface. Moreover, the well-
defined structure showed that the visible-light-induced ligand
substitution can pattern different functional ligands with a
good spatial resolution. Importantly, the patterned surface
returned to the original state upon irradiation with green light
in water, revealing the rewritable feature of the Ru-H2O-modified
surface.

Manipulating protein adsorption with visible light. Surfaces
that either resist or enhance protein adsorption are important for
biomedical applications. Visible-light-controlled metal–ligand
coordination enables reconfiguration of a surface from a protein-
repellent state to a protein-adsorptive state. To fabricate a
protein-resistant surface, a thioether-terminated polyethylene
glycol ligand (MeSC2H4-PEG) was synthesized, which can form a
dynamic coordination bond with Ru-H2O (Supplementary
Fig. 21). The coordination of MeSC2H4-PEG and Ru-H2O was
reversible in solution (Supplementary Fig. 22). To fabricate a
protein-resistant surface, MeSC2H4-PEG was immobilized on
a Ru-H2O-modified surface via Ru–thioether coordination
(Fig. 4a, left). The Ru-MeSC2H4-PEG-modified surface was non-
fluorescent (Fig. 4b). Then, the Ru-MeSC2H4-PEG-modified
surface was immersed into a solution of fluorescently labeled
bovine serum albumin (BSA) (0.5 mgmL–1) for 2 h and washed
with an aqueous solution of NaCl (1 mM, pH= 9). After this
treatment, the Ru-MeSC2H4-PEG-modified surface was still non-
fluorescent (Fig. 4c), showing the surface was resistant to protein
adsorption. To convert the protein-resistant surface into a
protein-adsorptive surface, the surface was wetted with the
fluorescently labeled BSA solution and irradiated with masked
green light (530 nm, 40 mW cm–2) for 10 min (Fig. 4a, middle
and right). The MeSC2H4-PEG on the exposed areas was
cleaved from the surface and the fluorescently labeled BSA was
captured by the exposed regions via electrostatic interactions
(Fig. 4d). These results demonstrate that visible-light-controlled
metal–ligand coordination can manipulate protein adsorption.

Manipulating protein adsorption on biomaterials in the body
(e.g., implants) with light requires light that can penetrate deeply
into tissue. We have demonstrated that red light can pass through
biological tissue and activate Ru complexes with absorption and
photoreactivity properties similar to Ru-MeSC2H4-PEG41,52. To
test the potential deep-tissue applications of the Ru-MeSC2H4-
PEG-modified surface, we placed a piece of 4-mm-thick pork
tissue between the Ru-MeSC2H4-PEG-modified surface and a red
laser (671 nm, 110 mW cm–2). The surface was wetted with the
fluorescently labeled BSA solution (0.5 mgmL–1) and irradiated
with masked red light for 40 min (Fig. 5a). The exposed areas
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changed from non-fluorescent to fluorescent after light illumina-
tion, which indicated the proteins were adsorbed on the exposed
areas (Fig. 5b, c). The laser wavelength (671 nm) is in the
therapeutic window (600–1000 nm) and the laser intensity (110
mW cm–2) is lower than the maximum permissible exposure for
skin exposure (200 mW cm–2)53,54. Therefore, manipulating
protein adsorption using our system is a noninvasive method
for deep-tissue applications. Furthermore, we tested biocompat-
ibility of Ru-H2O-modified surfaces by measuring cell viability
with a quartz substrate or a Ru-H2O-modified quartz substrate
(Supplementary Fig. 23 and Supplementary Note 12). The
biocompatibility of Ru-H2O-modified quartz is comparable to
unmodified quartz.

Controlling wettability with visible light. Another application of
visible-light-controlled metal–ligand coordination is manipulat-
ing the wettability of surfaces. We can adjust the wettability using
suitable thioether ligands and switch the wettability with visible
light. As a proof of concept, we prepared a surface that showed
reversible hydrophilic-to-superhydrophobic transitions (Fig. 6).
For this purpose, we prepared a porous silica coating, which was
created from a candle soot template developed in our previous
work55 (Fig. 6a, b and Supplementary Fig. 24). The coating
was grafted with APTES and subsequently modified with Ru-
H2O. The coating was purple after it was modified with Ru-H2O
(Fig. 6a, right).

MTE was used as the hydrophilic thioether ligand and
(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)(methyl)
sulfane (HFDMS) was used as the hydrophobic thioether ligand
(Supplementary Fig. 25). The coordination of HFDMS and Ru-
H2O was also reversible in solution (Supplementary Fig. 26). The

coating with these two thioether ligands can be interconverted
via visible-light-controlled metal–ligand coordination (Fig. 6c).
First, the Ru-MTE-modified coating was prepared by immersing
the Ru-H2O-modified substrate into an aqueous solution of
MTE (10 mM) for 2 h in the dark, and the coating had a
static water contact angle of 27 ± 2° (Fig. 6d). The low contact
angle is because of the nanostructure of the coating and
the hydrophilic feature of the surface groups. Subsequently,
MTE was cleaved from the surface by irradiating the coating
with green-light irradiation (530 nm, 40 mW cm–2, 10 min) in
water. After that, HFDMS was immobilized on the substrate
by immersing the substrate into an acetone/H2O (1/1) solution
of HFDMS (10 mM) in the dark for 2 h and washing with
acetone. After drying, the coating had a static water contact
angle of 154 ± 2° and a roll-off angle less than 2°. This result
shows the coating changed from hydrophilic to superhydropho-
bic because of the low surface free energy of the fluorocarbon
chains. To switch the coating back to the hydrophilic state, the
Ru-HFDMS-modified coating was irradiated with green light
(530 nm, 40 mW cm–2, 10 min) in an acetone/H2O mixture and
immersed into an aqueous solution of MTE (10 mM) for 2 h in
the dark. The hydrophilic-to-superhydrophobic transitions were
recyclable (Fig. 6d). Our reconfigurable surfaces based on the
Ru–thioether dynamic bond are different from conventional
photoswitchable surfaces based on photoisomerization. Conven-
tional photoswitchable surfaces have two steady states. We can
endow the surface with multiple steady states. As a proof of
concept, we demonstrated the wettability of the surface can also
be switched between a hydrophilic state and a hydrophobic state
using another thioether (Supplementary Fig. 27 and Supplemen-
tary Note 13).
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Discussion
In conclusion, we showed a universal strategy for constructing
dynamic surfaces that can be reconfigured into user-defined
functional states using visible-light-controlled metal–ligand
coordination. As a proof of concept, we demonstrated rewriting
surface patterns using Ru-MeSC2H4-FITC and Ru-MeSC2H4-
RhB coordination, manipulating protein adsorption using Ru-
MeSC2H4-PEG coordination, and controlling wettability using
Ru-MTE, Ru-HFDMS and Ru-DMS coordination. In principle,
customizable surfaces can be readily obtained using desirable
thioether ligands, which are either commercially available or can
be easily synthesized by modifying MTE, 3-(methylthio)propionic
acid, or 2-(methylthio)ethylamine. The highly customizable
functions of thioether ligands can endow the Ru–thioether-
modified surfaces with different applications. The functions and
applications can be easily reconfigured with visible light, which is
a noninvasive stimulus. Importantly, the reported reconfigurable
surfaces were also responsive to red light, which can penetrate
deeply into tissue for biomedical applications. We believe that our
strategy is versatile for customizable surface functionalization and
opens exciting opportunities for a wide range of applications.

Methods
Synthesis. Detailed procedures for the synthesis and characterization of the Ru
complexes and ligands are provided in the Supplementary Information.

Modifying quartz substrates with Ru-H2O. First, a quartz substrate (2 × 2 cm2)
was immersed in piranha solution (H2SO4/H2O2= 2/1) for 1 h at 90°, washed with
water, ethanol, and acetone, and dried using a stream of N2. Then, the substrate
was immersed in an ethanol solution of 1% APTES for 24 h, washed with water,
ethanol, and acetone, and dried using a stream of N2. Afterwards, the substrate
was immersed into a dry dichloromethane (DCM) solution (10 mL) of Ru-H2O
(100 mg, 0.097 mmol), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide
hydrochloride (EDC, 68 mg, 0.355 mmol), and 4-(dimethylamino)pyridine
(DMAP, 40 mg, 0.327 mmol) for 24 h before it was washed with water, ethanol,
and acetone, and finally dried using a stream of N2.

Rewriting surface patterns with visible light. First, FITC and RhB were sepa-
rately dissolved in dimethyl sulfoxide (20 mgmL–1). Subsequently, the FITC
(0.96 mL, 0.05 mmol) and RhB (1.35 mL, 0.05 mmol) solutions were added into
4.04 mL and 3.65 mL aqueous MTE solutions (0.05 mmol), respectively, and stirred
overnight to obtain FITC- and RhB-modified thioethers (MeSC2H4-FITC and
MeSC2H4-RhB). Afterwards, the Ru-H2O-modified substrate was immersed into a
MeSC2H4-FITC solution (10 mM) in the dark for 2 h, and washed with water
and acetone. After drying with a stream of N2, the Ru-MeSC2H4-FITC-modified
substrate was wetted by water, covered by a photomask, and irradiated using green
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light (530 nm, 40 mW cm–2) for 10 min. After it was washed and dried again, the
substrate was immersed into a MeSC2H4-RhB solution (10 mM) in the dark for 2 h
to form a patterned surface. To regenerate the Ru-H2O-modified surface, the
patterned surface was irradiated with green light (530 nm, 40 mW cm–2) in water
for 10 min. The substrate was imaged using an inverted fluorescence microscope
(DMi8, Leica).

Manipulating protein adsorption with visible light. A Ru-H2O-modified sub-
strate was immersed into an aqueous solution of MeSC2H4-PEG (10 mL, 10 mM)
in the dark overnight, washed with water and acetone, and dried using a stream of
N2. Afterwards, the substrate was wetted by the fluorescently labeled BSA
(0.5 mgmL–1) solution and irradiated with green light (530 nm, 40 mW cm–2) with
a photomask for 10 min. Subsequently, the light was turned off, and the substrate
was kept in the dark for 10 min. After washing and drying, the substrate was
imaged using an inverted fluorescence microscope.

For the deep-tissue protein adsorption experiment, a piece of 4-mm-thick pork
tissue and a red laser (671 nm, 110 mW cm–2) were used. First, the Ru-H2O-
modified substrate was immersed into an aqueous solution of MeSC2H4-PEG
(10 mL, 10 mM) in the dark overnight. Then, the substrate was washed with water
and acetone, and dried using a stream of N2. Afterwards, the substrate was wetted
by the fluorescently labeled BSA solution (0.5 mg mL–1) and placed between the
red laser and a photomask covered with the tissue. After irradiation for 40 min, the
laser was turned off, and the substrate was kept in the dark for 10 min. After
washing and drying, the substrate was imaged using an inverted fluorescence
microscope.

Ru-H2O-modified porous silica coating. The porous silica coating (2 × 2 cm2) was
prepared according to our previous work55. First, the candle soot-coated substrate
was deposited by tetraethoxysilane using chemical vapor deposition for 72 h.
Afterwards, the substrate was heated at 600 °C in air for 4 h to remove the carbon
cores. Subsequently, the substrate was treated with oxygen plasma for 2 s and then
placed into an ethanol solution of 1% APTES for 24 h. After that, the substrate was
immersed in a dry DCM solution (10 mL) of Ru-H2O (100 mg, 0.097 mmol), EDC
(68 mg, 0.355 mmol), and DMAP (40 mg, 0.327 mmol) for 24 h. After washing and
drying, the Ru-H2O-modified porous silica coating was obtained.

Reversible surface wettability. To obtain a hydrophilic surface, the Ru-H2O-
modified porous silica coating was immersed in an aqueous solution of MTE
(10 mL, 10 mM) for 2 h in the dark, washed with acetone and water, and dried
using a stream of N2. To switch the hydrophilic surface to a superhydrophobic/
hydrophobic surface, the hydrophilic Ru-MTE-modified coating was immersed
into water and irradiated with green light (530 nm, 40 mW cm–2) for 10 min to

cleave the MTE, washed with acetone and water, and dried using a stream of N2.
After that, the coating was immersed into an acetone/H2O mixed solution of
HFDMS or DMS (10 mL, 10 mM) for 2 h in the dark, washed with acetone, and
dried with a stream of N2 to obtain a superhydrophobic/hydrophobic surface. The
reversible hydrophilic-to-superhydrophobic/hydrophobic transitions were induced
using the procedure mentioned above. The static water contact angles were mea-
sured using a contact angle meter (Dataphysics OCA35) by placing a 10 µL water
droplet on each sample.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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