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Quantification of calorimetric in situ hybridization<p>This study introduces a novel method for standardized relative quantification of colorimetric in situ hybridization signal that enables a large-scale cross-platform expression level comparison of in situ hybridization with two publicly available microarray brain data sources.</p>

Abstract

With the emergence of genome-wide colorimetric in situ hybridization (ISH) data sets such as the
Allen Brain Atlas, it is important to understand the relationship between this gene expression
modality and those derived from more quantitative based technologies. This study introduces a
novel method for standardized relative quantification of colorimetric ISH signal that enables a large-
scale cross-platform expression level comparison of ISH with two publicly available microarray
brain data sources.

Background
The analysis and interpretation of gene expression data from
diverse expression profiling projects present formidable chal-
lenges. From a technology perspective, all gene expression
profiling methods seek to measure some function of mRNA
abundance, and the available platforms include RT-PCR, oli-
gonucleotide and cDNA microarrays, and serial analysis of
gene expression (SAGE) [1] and its variants. The recent avail-
ability of genomic scale colorimetric in situ hybridization
(ISH) data [2] adds still another data modality to the mix, one
for which strict quantification is more limited and compari-
son with existing gene expression data is challenging. To
properly interpret data sets such as the Allen Brain Atlas
(ABA) [3], it is essential to understand the utility and limits of
non-radioactive colorimetric ISH signal and to determine the
feasibility of comparing this data modality to the dominant
gene expression platforms. This study undertakes this goal,
and after a technique for relative signal measurement of
colorimetric ISH data is presented, the ABA ISH data [2] are

compared with publicly available expression data from two
microarray sources [4,5] in six major structures of the C57Bl/
6J adult mouse brain.

ISH involves anatomic localization of labeled RNA or DNA
probes that hybridize to target complementary RNA or DNA
sequences in the cell. These hybrids are detected either by
using an isotopic probe and emulsion autoradiography, or by
non-isotopic methods using specific antibodies to detect a
hapten incorporated into the probe [6]. One variation of this
methodology involves using dual ISH to detect the expression
of two different mRNAs within the same brain section, allow-
ing for the identification of transcripts co-localized in the
same cell [7]. Both radioactive and non-isotopic ISH have
become powerful tools for detecting and localizing mRNA,
particularly in complex tissues with non-uniform structure
such as the brain [8,9]. Advantages of radioisotopic ISH are
perceived to be sensitivity, quantitative labeling, and rela-
tively unambiguous discrimination of signal versus
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background [10], although there is evidence that proper use
of certain digoxigenin non-radioactive methods are equally
sensitive [11]. While being prone to confusing non-specific
hybridization products with low level expression [12], non-
radioactive colorimetric ISH methods, on the other hand,
often provide better anatomic localization and discrimination
between cells [13,14], as well as provide a measure of density
of labeled cells, a quality lacking with other quantitative
assays. Although non-isotopic ISH is generally considered
less quantitative [15], to date there have been no systematic
efforts to compare genome-scale expression profiles with
more traditional quantitative methods.

One characteristic advantage of colorimetric ISH over its
radioactive counterpart is its high throughput suitability, an
essential component of large-scale studies. The ABA is a
genomic scale ISH project that has generated a cellular level
resolution gene expression atlas of the adult C57BL/6J brain.
The ABA expression profiles are based on a high-throughput
colorimetric ISH technique [2,16] in which digoxigenin-
labeled riboprobes specific to each gene are hybridized to cel-
lular mRNA transcripts in brain tissue sections. Following
tyramide signal amplification to maximize sensitivity, colori-
metric detection of the bound riboprobe produces a vivid
blue/purple label in cells expressing a particular gene. Image
capture is accomplished via an automated microscopy plat-
form, and a suite of automated informatics algorithms has
been developed to anatomically map and measure signal
expression levels and cellular densities from individual tissue
sections and across neuroanatomic regions [2,17]. These
methods provide genome-wide, region-specific quantifica-
tion of ISH signal that can be directly compared with availa-
ble microarray data sets.

In comparison with other techniques for measuring gene
expression, ISH data quantification presents particular chal-
lenges. Signal quantification methodologies for radioactive
ISH based on optical density and light transmittance through
a tissue have been rigorously established [15,18,19]. By con-
trast, it is generally held that there are few options for exact
quantitative measurement of mRNA abundances with digox-
igenin-labeled riboprobes [20,21]. Rather, colorimetric ISH
signal is believed to reflect only relative assessment of the
amount of signal in the region and to measure linear quanti-
tative changes in the transcript copy number. The tyramide
amplification step [22] of non-radioactive ISH, necessary for
detecting low transcript concentrations and signal identifica-
tion, makes calculating the exact number of mRNA molecules
per cell untenable mainly due to signal amplification, varia-
tions in probe permeability into the cell, changes in cell vol-
ume, and probe accessibility to mRNA. Nevertheless,
qualitative comparison between radioactive and non-isotopic
ISH shows very high degrees of concordance [2], and there
have been several successful approaches toward relative
quantification and semi-quantification in the sense of relative
grading of signal intensity [23-26].

Gene expression microarrays remain a dominant technology
in profiling genomic scale expression. Oligonucleotide arrays
such as the widely popular commercial Affymetrix Gene-
Chip™ [27] platform have the added benefit of reproducibil-
ity and convenience in large-scale experimentation.
Significant variability in microarray data generation and sub-
sequent errors in analysis arise from many sources such as
use of non-identical samples on different platforms, variable
protocols, insufficient replicates, lack of preprocessing stand-
ardization, and ambiguous post processing analysis. These
results have been noted and confirmed in an expanding liter-
ature [28-38]. The results of cross-platform comparisons
have also been mixed and continue to be debated [28]. Addi-
tionally, whereas several studies have raised concerns about
the reliability of utilizing microarray data across and within
platforms [30,33,39], more recent comparisons designed
with careful control for probe homology and near identical
implementations have reported higher concordance in differ-
entially expressed genes [28]. Efforts to mandate standards
and documentation help to improve microarray data repro-
ducibility, for example, through Minimum Information
About a Microarray Experiment (MIAME) [40] and the
Microarray Quality Control (MAQC) project [41].

It is worth considering the technical and practical challenges
in comparing microarray data with large-scale colorimetric
ISH data. There are three main issues in comparing these
data modalities. First, the probe sequences differ in length
and/or localization along the target transcript. Oligonucle-
otide arrays use a series of short highly specific sequences to
identify transcripts (Affymetrix, 20-25 nucleotides), whereas
digoxigenin-based ISH typically uses a much longer (400-
1,000 nucleotides) riboprobe; therefore, these longer probes
likely represent 'pan-splice variant' probes, while the shorter
probes may target specific splice variants that are differen-
tially regulated. Second, there are significant differences in
the measurable dynamic range. Affymetrix microarrays have
ranges nearly two orders of magnitude greater than colori-
metric ISH signal, with typically a ten-fold gain in the highest
expressing decile. Colorimetric ISH, in contrast, has a com-
pressed upper range, largely due to signal saturation induced
by tyramide amplification [22]. While normalizing transfor-
mations are possible [42] and the reaction rate in ISH can be
adjusted to reduce high end saturation [43], this latter action
may be at odds with standardized platform comparison, and
essential incompatibilities in signal representation between
platforms remain. Even quantitative RT-PCR, commonly
accepted as a gold standard for relative gene expression, and
with an impressive dynamic range of order 107, has been
shown to have biases for genes with lower or variable expres-
sion rates [44]. Finally, normalization and accurate mapping
of ISH data present unique challenges, and are essential to
allow cross-gene and cross-structure analysis. Summarizing
ISH expression numerically necessitates some form of spatial
normalization or mapping to ensure that like regions are
compared [17].
Genome Biology 2008, 9:R23
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With the completion of the first genome-scale ISH project,
the ABA, and with the initiation of other similar large scale
data sets, it is essential to develop methods for genome-scale
analysis of these data and to understand their relationship to
other genome-scale expression profiling platforms [45]. In
the current study, a metric for relatively quantifying colori-
metric ISH signal suitable for cross-platform comparison is
introduced. The method is novel in that it attempts to define
an expression level analogous to microarray expression level
by using cellular resolution image segmentation corroborated
by tissue optical density. The large-scale ISH mapping envi-
ronment of the ABA [2,17] and associated data validation
studies are described, followed by comparison to two publicly
available microarray data sets (Teragenomics [5] and
Genomics Institute of the Novartis Research Foundation
(GNF) [46]) for six brain structures: the striatum, cortex, cer-
ebellum, hippocampus, olfactory bulb, and hypothalamus.
Several types of correlation results are presented, including
categorical and numerical correlation using a structural ratio
approach designed to minimize cross-platform variability.
The final section demonstrates advantages of using ISH for
identifying distinct patterns of sub-structural and cell type-
specific expression at a given microarray level.

Results
Relative quantification of colorimetric ISH data
Gene expression signal in colorimetric ABA ISH data is clas-
sified using an automated image segmentation algorithm
(described in detail in [2,17]) that identifies contiguous
groups of pixels corresponding to higher visual concentra-
tions of BCIP/NBT (5-bromo,4-chloro,3-indolylphosphate/
nitroblue tetrazolium), a precipitate deposited at riboprobe
binding sites in the cell. Working from a 10× magnification

(1.05 μm/pixel) high-resolution ISH image (Figure 1b), the
algorithm segments and labels putative expressing cells using
a statistical classifier [47] that exploits image intensity distri-
bution and cell shape (morphology) characteristics [17]. Typ-
ical non-radioactive ISH images can have rather high levels of
background intensity contaminated with non-specific hybrid-
ization products that resemble low-level expressing cells. The
ABA ISH expression detection algorithm is designed to focus
on achieving a high recognition probability for medium/high-
level expressing cells while maintaining high specificity for
rejecting non-specific labeling and artifacts among low
expressing genes [17]. The algorithm output is an expression
segmentation heat mask with measurable characteristics
(Figure 1c). High concordance between automated and man-
ual segmentation using these methods has been previously
demonstrated [17].

The traditional approach to quantifying radioactive isotopic
ISH has been to use optical density [11,48] of the underlying
tissue section. If the probe specific binding activity is known,
then the number of probe molecules bound to a certain tissue
area can be calculated [15,18]. In both radioactive and non-
radioactive ISH, most rigorous measures of quantification
have employed optical density of the image area relative to
background as a measure of signal intensity, and in each case
increased optical density correlates with either the number of
mRNA molecules (radioactive) or increased mRNA content
(non-radioactive) [15,49].

In order to correlate gene expression across-platforms and
between distinct brain regions with different underlying cell
densities, a new variant of integrated optical density that is
normalized to the cell density in each region was generated.
For any given cell, ISH signal is a function of both intensity

Signal segmentation of ISH dataFigure 1
Signal segmentation of ISH data. (a) Sagittal plane annotated drawing from Allen Reference Atlas containing the olfactory tubercle (OT), nucleus 
accumbens (ACB) and caudoputamen (above ACB). (b) Plane-matched colorimetric ISH data for the gene Drd1a. (c) Corresponding expression 
segmentation mask for the ISH image shown in (b). High expression is indicated by red and low expression by blue.

(a) (c)(b)
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and fractional area occupied within the cell. To generalize this
to a region R, expression level L is defined as:

that is, the product of  the average pixel intensity for all
expressing cells in R, times the relative fractional area occu-
pied by expressing cells in R. This latter ratio is obtained by
dividing the area of expressing cells aR in R by the effective

maximum possible expression area amax in R, computed by

applying the detection algorithm to a set of ubiquitously
expressed genes [2]. The ubiquitously expressed genes (H2-
T3, Ube2c, 0610008A10Rik, and 1810037K07Rik), genes
expressed in nearly every cell, were identified through man-
ual curation and possess the maximum observable expression
throughout the brain. Expression level L is, therefore, a frac-
tion of the average 8-bit integer pixel intensity and ranges
from [0,255], and all quantities are computed from masks
similar to that shown in Figure 1c. Expression level as defined
is, therefore, a cell density normalized ISH analog to microar-
ray level that models transcript copy number in a given region
R, assuming both average intensity and fractional area of
expressing cells scale with transcript count.

The correlation between the expression level L calculated by
the ABA expression detection algorithm and integrated opti-
cal density [48] was tested. Measurements from expressing
cells were made from the caudoputamen from 30 ISH images
for six genes, five sections per gene (Table S1 in Additional
data file 1). Figure S1 in Additional data file 1 shows a high
correlation (R = 0.99), as expected for a fixed region, between
expression level and optical density measured at a calibrated
microscope and indicates that ISH expression level scales
with relative mRNA signal and transcript count to the extent
that optical density is a realistic measurement of that signal.

The dynamic range of the method was then investigated. This
range remains limited compared to other platform expression
metrics, with truncation in the higher ranges due to signal
saturation. Figure 2 plots on log scale 1,270 of the highest
sorted expression values for Teragenomics, GNF, and ABA
common genes in the striatum and hypothalamus. (A SAGE
library for the striatum is included for reference [50]). Genes
on each curve are sorted independently so that only the rela-
tive range of values is preserved. The profiles are nearly iden-
tical across structures and show that the dynamic range of the
highest 15% of values is comparatively flat for colorimetric
ISH while decreasing by a factor of 10 for microarray data and
by at least a factor of 20 for SAGE. While some rescaling of the
ISH dynamic range is possible to some extent, this essentially
would have to be implemented on a gene by gene basis [51].

A particular advantage of colorimetric ISH is that other statis-
tics, such as the proportion of labeled expressing cells, can be
calculated. Expression density D in a region R is defined as:

where nR is the number of detected expressing cells in R and
nmax is the approximate theoretical maximum computed as
above. If all cells were spherical with identical volumes and
ISH signal uniformly filled those cells, then expression level
would scale linearly with density. However, in real tissue the
relationship between level and density can be complex [2], as
illustrated in the final section. It is also possible to develop
quantitative measures of ISH signal uniformity across a
structure using methods of spatial statistics, such as the k-
estimator of Ripley [52].

ABA ISH platform validation
To perform genomic scale signal mapping, quantification,
and replicate analysis in the ABA requires utilizing the spatial
mapping platform previously described in [2,17]. Briefly, in
this pipeline, image series are white balanced and cropped,
then reconstructed and registered to a three-dimensional
informatics reference atlas for the C57BL/6J mouse brain
[53]. Expression is quantified according to level and density
metrics on a per section basis, and the results for three-
dimensional anatomic regions can be compiled using the reg-
istration reconstruction and the virtual reference atlas.
Details can be found in [17] and on the web site [3].

To examine the fidelity of this high-throughput platform to
produce consistent quantification of regional ISH signal, a set
of experiments were performed to assess variation in hapten
incorporation into riboprobes, day-to-day variability associ-
ated with reagent preparation, and accuracy of mapping sig-
nal to brain anatomy. To assess the first two factors, an
experiment was designed to compare ISH quantification
results for nine genes (Calb1, Calb2, Cst3, Dkk3, Gad1,
Man1a, Plp1, Pvalb, and Nov) processed independently on
four different days. On each day, four independent ribo-
probes were also synthesized for each gene by in vitro tran-
scription. The data generated for each gene consisted of 16
complete sagittal series (20 tissue sections per riboprobe)
through a single brain hemisphere. Figure 3 shows a scatter
plot of the computed level and density measurements at the
whole brain structure level, computed hemisphere wide for 9
genes × 4 riboprobes × 4 days. Clustering of these data reveals
the fidelity of this approach, in that the nearest neighbor in
(level, density) space to any given gene is a replicate of the
same gene in 81.8% of all cases, or a second nearest neighbor
in 90.3% of cases. These results demonstrate the consistency
of the ABA ISH platform day to day, treatment to treatment,
and sample to sample and the reproducibility of the values
level and density at the brain-wide level. It is notable that
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level and density values even at the level of the entire brain
essentially uniquely identify this set of genes.

To examine the fidelity of the automated structural registra-
tion with respect to signal measurement, expression levels in
different brain regions for the same data set described above

were compared. As shown in Figure 4a, a unique reproducible
profile emerges for each gene's expression pattern, highly
consistent with the original ISH shown in Figure 4b and cor-
responding expression segmentation map in Figure 4c. The
mean variation in signal across genes from laboratory
through informatics processing is only 5.09%, with day-to-

Cross-platform comparison of global dynamic range for microarray, ISH, and SAGEFigure 2
Cross-platform comparison of global dynamic range for microarray, ISH, and SAGE. Dynamic range of signal intensities in the striatum (Str; solid lines) and 
hypothalamus (Hyp; dashed lines) observed in GNF (green lines), Teragenomics (Tera; red lines), ABA (blue lines), and SAGE (aqua line) data sets 
(striatum only). The data are plotted on a log scale for 1,270 of the highest expression values. Genes on each curve are sorted independently so that only 
the relative range of values is preserved. The compressed dynamic range at the highest levels in ISH quantification compared to the microarray and SAGE 
platforms is notable.
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day variability 0.26% greater than probe synthesis variability
(Additional data file 2). These control experiments establish
key criteria for making global cross-gene and cross-structure
comparisons, namely reproducibility of high throughput,
semi-automated ISH data generation, mapping and
quantification.

It should be noted that these control experiments are some-
what idealized. First, ABA data were generated over approxi-
mately a three-year period, with consequently larger process
variation than the experiment described above. Second, the
Allen Reference Atlas model used for structural mapping was
produced in the coronal plane, while ABA ISH data for about

ABA ISH data repeatabilityFigure 3
ABA ISH data repeatability. A scatter plot is shown for the average level (x-axis) and density (y-axis) measurements over a multi-day and multi-probe data 
set. For each of 9 genes (Calb1, Calb2, Cst3, Dkk3, Gad1, Man1a, Plp1, Pvalb, and Nov), 16 repeated measurements of expression level [0,255] and density 
[0,100] for an entire brain hemisphere are plotted. Probes were independently generated by in vitro transcription four times on four different days. Each 
independently synthesized probe was hybridized to brain tissue sections over a span of four days.
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78% of genes are available only in the sagittal plane. Cross-
axis registration is somewhat less reliable than same-plane
registration. To investigate these effects further, 2,263 genes
with more than one replicate were selected: either genes with
two image series in the sagittal plane (1,828) or genes with
one replicate in the sagittal plane and the other in the coronal
plane (425). The correlations of ABA ISH expression level
between the replicates retain high repeatability (ρ > 0.8) for
all six structures with the correlation for the sagittal and coro-
nal plane data ranging from 0.790 to 0.873 (lowest correla-
tion in hippocampus and highest correlation in striatum).
The correlation between the sagittal data sets ranged from

0.835 to 0.950, with the lowest and highest correlation in the
same respective structures. These results are based on apply-
ing the automated spatial mapping process and the
correlation results should, therefore, be understood as lower
bounds for reproducibility of the replicate signals.

GNF and Teragenomics microarray data sets
Several studies to date have investigated the relative internal
consistency of microarray platforms under a variety of exper-
imental conditions [28-33,54-56], and high degrees of within
platform consistency have been reported for Affymetrix oligo-
nucleotide microarrays [28,39,41]. In this study, several

Structural profile plot for expression level for six control genes, Calb1, Cst3, Dkk3, Gad1, Nov, and PvalbFigure 4
Structural profile plot for expression level for six control genes, Calb1, Cst3, Dkk3, Gad1, Nov, and Pvalb. (a) Expression levels with error bars for 4 days × 
4 probe measurements after three-dimensional anatomic mapping. (b) Original ISH images at mid-sagittal plane. (c) Segmentation expression mask of 
corresponding ISH sections (b) used as the basis for quantification of expression level and density. CB, cerebellum; CTX, cortex; HIP, hippocampus; HY, 
hypothalamus; MB, midbrain; MD, medulla; OLF, olfactory bulb; P, pons; PAL, pallidum; STR, striatum; TH, thalamus; RHP, retrohippocampal region.

(a)

(b)

(c)
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publicly available Affymetrix-based microarray data sets were
chosen for analysis. The selected data sets profile different
brain regions in mouse strains and ages similar to those used
for the ABA (C57BL/6J, P56), and had replicate data. Both
Teragenomics [57], using the Affymetrix U74Av2 platform,
and GNF [58], using a custom Affymetrix array design,
present two replicates for each of the six brain structures
examined (with the exception of cortex, for which only one

replicate was available from GNF) (see Materials and meth-
ods; Table 1, and Additional data files 3 and 4). The conden-
sation algorithm used for GNF data was MAS5 and a close
variant was developed by Teragenomics (Matthew Zapala,
personal communication). Correlation between replicates
was calculated to examine the variability within each micro-
array platform. To avoid probe to gene mapping issues, the
comparison data set was limited to genes that had a one-to-

Table 1

Gene expression platforms and data used in the cross-platform comparison

Technology Platform Unique probe 
sequences

Unique probe 
sequences with 

Entrez IDs

Mouse strain Mouse age 
(weeks)

Mouse sex

Microarray GNF [58], Affymetrix GNF1M 31,777 26,982 C57BL/6J 10-12 M and F

Teragenomics [57], Affymetrix MG-U74Av2 12,488 11,779 C57BL/6J 8 M

ISH ABA [3] 25,739 21,677 C57BL/6J 8 M

The table shows the technology, followed by the source of the publicly available data (platform), number of probes with unique sequences (unique 
probe sequences), number of probes/sequences that have Entrez IDs (unique probe sequences with Entrez IDs), and the biological samples used to 
generate the expression data (mouse strain, age, and sex). Replicates for GNF consist of GNF1 and GNF2 and are identified by the column names of 
the downloadable data file GNF1M, MGJZ030207007A and MGJZ030207007B, respectively. Teragenomics replicates (TERA1 and TERA2) are 
specified by GEO IDs and are listed in the Materials and methods.

Table 2

Gene selection for ISH and microarray expression comparison

All genes Genes with Entrez ID One-to-one probe/gene 
mapping

Consistent present/
absent call

Present and consistent

ISH (ABA)

Striatum 25,739 21,677 17,066 16,877 8,919

Cortex 25,749 21,683 17,077 16,848 11,358

Cerebellum 25,754 21,690 17,075 16,850 11,393

Hippocampus 25,766 21,691 17,074 16,897 11,465

Olfactory bulb 25,748 21,686 17,078 16,853 11,979

Hypothalamus 25,715 21,652 16,593 16,465 7,188

Microarray (Teragenomics)

Striatum 12,488 11,779 7,062 6,026 3,499

Cortex 12,488 11,779 7,062 5,958 3,488

Cerebellum 12,488 11,779 7,062 6,066 3,470

Hippocampus 12,488 11,779 7,062 5,997 3,363

Olfactory bulb 12,488 11,779 7,062 5,987 3,593

Hypothalamus 12,488 11,779 7,062 6,099 4,000

Microarray (GNF)

Striatum 31,770 26,982 13,582 11,713 3,438

Cortex 31,770 26,982 13,582 12,845 4,746

Cerebellum 31,770 26,982 13,582 11,773 4,121

Hippocampus 31,770 26,982 13,582 11,777 3,837

Olfactory bulb 31,770 26,982 13,582 11,885 4,123

Hypothalamus 31,770 26,982 13,582 11,869 4,341

Tabulated numbers show the number of genes satisfying the given criteria. Consistent present/absent reduces gene counts from one-to-one probe/
gene mapping for genes with inconsistent replicates or genes with ambiguous expression call. (The ABA data contain a limited number of sagittal 
replicates: striatum 698, cortex 700, cerebellum 697, hippocampus 699, olfactory bulb 700, and hypothalamus 666.) The final column indicates those 
genes that are labeled as having present expression by present/absent calling algorithms for each platform minus those genes without consistent calls 
for those data available in replicate.
Genome Biology 2008, 9:R23
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one mapping between probe and gene (see Materials and
methods; Table 2).

It is well known that many factors contribute to variation
between microarray experiments even when using the same
platform, including probe preparation and experimental pro-
tocols [28,33,42]. Table 3 shows a very strong internal corre-
lation between replicates (average ρ > 0.98 for Teragenomics
and ρ > 0.96 for GNF) throughout all six structures. The cor-
relation decreases to an average of 0.724 when comparison is
made between the two Affymetrix platforms for a given brain
structure. Excluding genes with no overlap between probe
sequences from each platform (42%), the correlation shows
slight but not statistically significant improvement at the α =
0.05 level in all six structures (Table 3). Scatter plots for
correlation in the striatum are shown in Figure 5. All six
structures have similar results (Figure S2 in Additional data
file 1).

Cross-platform correlation of gene expression
Expression level and density are computed in the ABA pipe-
line for each anatomic structure (Additional data file 5) and
can be correlated with other data modalities. The standard
correlation for colorimetric ISH expression level (as defined
above) versus microarray level was first considered. A single
replicate is used in computing correlation as the internal con-
sistency of both GNF and Teragenomics is high, and approxi-
mately 80% of ABA data is single replicate. Representative
scatter plots for ABA versus Teragenomics for expression
level are shown in Figure 6 (data for additional structures are
in Figure S3 in Additional data file 1) and values are presented
in Table 4 for ABA versus GNF and ABA versus Teragenomics
with Pearson and Spearman correlations. The table shows
weaker agreement of ISH data with either of the microarray
data sets than the cross-microarray GNF versus Teragenom-
ics correlation. While the difference is obviously significant,
which of GNF or Teragenomics is closer to ABA can be tested
by applying a Fisher r-to-z transformation [59] for observed

Intra- and cross-platform comparison between GNF and Teragenomics data sets for the striatumFigure 5
Intra- and cross-platform comparison between GNF and Teragenomics data sets for the striatum. Scatter plots showing correlation of expression levels 
between replicates in Teragenomics (TERA; left panel), replicates in GNF (center panel), and cross-platform for Teragenomics and GNF (right panel). 
Correlations and gene numbers are from Table 3. Scatter plots for the other five structures are shown in Figure S2 in Additional data file 1.
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all            : 0.711(3398)
overlapped: 0.731(1968)

Table 3

Teragenomics and GNF microarray platforms show strong intra-platform repeatability

Structure TERA1, TERA2 GNF1, GNF2 GNF1, TERA1 GNF1*, TERA1*

Striatum 0.997 (6,026) 0.958 (11,713) 0.711 (3,398) 0.731 (1,968)

Cortex 0.985 (5,958) NA 0.728 (3,693) 0.757 (2,129)

Cerebellum 0.995 (6,066) 0.977 (11,773) 0.731 (3,490) 0.756 (2,035)

Hippocampus 0.992 (5,997) 0.975 (11,777) 0.732 (3,410) 0.755 (1,985)

Olfactory bulb 0.994 (5,987) 0.987 (11,885) 0.727 (3,437) 0.749 (1,992)

Hypothalamus 0.980 (6,099) 0.994 (11,869) 0.716 (3,479) 0.738 (2,017)

Pearson correlation of expression levels is shown followed by the number of genes. Only one replicate from Teragenomics (TERA) and GNF 
(GNF1) is used in the inter-platform comparison (defined in Materials and methods). *Results are based on genes with positive overlapping probe 
sequences determined from NCBI BLAST alignments for Teragenomics and GNF probe sequences against the target gene sequence. NA indicates 
that there is only one GNF cortex data set.
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difference in correlation. An asterisk in Table 4 indicates that
the ISH Pearson correlations in the first two columns are dis-
tinct at significance level α = 0.05, and the only structures
whose correlations are significantly different are cerebellum
and olfactory bulb. In terms of Pearson correlation, the
weighted average ABA-GNF correlation (0.479) is quite simi-
lar to the ABA-Teragenomics correlation (0.471), while the
average ABA-GNF Spearman correlation (0.401) is somewhat
weaker than the corresponding ABA-Teragenomics value
(0.526).

To investigate the effect of increasing probe homology on
platform correlation, Pearson correlation between expression
levels as a function of increasing probe base-pair agreement
after BLAST alignment [60] of probe sequences to the target
gene was computed. Figure 7 shows ABA-Teragenomics cor-
relation as probe overlap ranges from disjoint to 50%. A
regression fit to the data with R2 shown in Figure 7 illustrates
strong increasing correlation with probe homology for cortex
(R2 = 0.861) and hippocampus (R2 = 0.716) and weaker,

although positive, improvement for other structures. Thus,
the results are expectedly strengthened by considering more
homologous targets.

To more fully account for significant data modality and plat-
form differences, a technique originally proposed by van
Ruissen et al. [30] was modified in which microarray and
SAGE cross-platform comparisons are made based on corre-
lation of ratios of expression values for transcripts. Conceptu-
ally, cross-platform variability should be accounted for by
considering expression ratios rather than correlation of
absolute levels. This technique was generalized to enable
structural comparisons as follows: for each of six structures S,
each data point input to the correlation is the log ratio of gene
expression level of S to any of five other structures. (Using the
cortex as an example, cortex/striatum, cortex/olfactory bulb,
cortex/hypothalamus, cortex/hippocampus, and cortex/cer-
ebellum). Similar ratios were obtained for all structures, pro-
vided the denominator structure exhibits positive expression
density D and provided the gene is called 'present' in at least

Scatter plots for ISH ABA expression level versus Teragenomics (TERA) level for striatum, cortex, and cerebellumFigure 6
Scatter plots for ISH ABA expression level versus Teragenomics (TERA) level for striatum, cortex, and cerebellum. Pearson (Pr) and Spearman (Sp) 
correlations are given in the figure with gene numbers shown in parentheses. Scatter plots for the other structures and for ABA versus GNF are shown in 
Figure S3 in Additional data file 1.
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Table 4

Comparison of correlation coefficients for Pearson/Spearman correlations between ABA, GNF, and Teragenomics data sets

Structure ABA, GNF1 ABA, TERA1 GNF1, TERA1

Striatum 0.490/0.373 (8,669) 0.503/0.520 (4,614) 0.711/0.618 (3,398)

Cortex 0.483/0.418 (9,502) 0.506/0.549 (4,568) 0.728/0.647 (3,693)

Cerebellum 0.417/0.388 (8,726)* 0.385/0.496 (4,631)* 0.731/0.661 (3,490)

Hippocampus 0.506/0.427 (8,751) 0.505/0.578 (4,585) 0.732/0.644 (3,410)

Olfactory bulb 0.464/0.403 (8,811)* 0.436/0.515 (4,582)* 0.727/0.656 (3,437)

Hypothalamus 0.518/0.396 (8,571) 0.492/0.501 (4,566) 0.716/0.658 (3,479)

Each correlation (Pearson/Spearman) is shown followed by the number of genes. *Pearson correlation in the first two columns for cerebellum and 
olfactory bulb differ at a significance level α = 0.05.
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one of the two structures forming the ratio. In addition to
reflecting the notion that the ratio of transcript abundance
should be independent of inherent platform differences (par-
ticularly probe sequence differences), the ratio test is poten-
tially a better comparison of relative abundance and is more
consistent with colorimetric ISH expression level as a relative
or qualitative measure.

After normalizing the histogram of ratio values for each plat-
form to a common scale following [30], Pearson and Spear-
man correlation was calculated over the log expression level
ratios. Representative structure ratio scatter plots for ABA
versus Teragenomics for expression level are shown in Figure
8 (the full set is available in Figure S4 in Additional data file
1). Figure 9 shows the summary results of this technique with
mean (median) Pearson correlations: ABA-GNF, 0.404 (0.4);
ABA-Teragenomics, 0.438 (0.46); and GNF-Teragenomics,
0.624 (0.67). On the whole, these results surprisingly do not
illustrate a stronger correlation and are consistent overall
with the standard Pearson approach (this result holds for
Spearman as well (Figure S5 in Additional data file 1)) with a

slightly weaker result for GNF-Teragenomics. The results can
be considerably improved, however, by restricting the analy-
sis to genes exhibiting higher expression fold changes. For
each structure ratio pair S1/S2, those genes that exhibited at
least a two-fold expression difference between the structures
S1, S2 (for either structure) in the Teragenomics data set were
chosen. For these gene subsets the correlation over all pairs
improved to: ABA-Teragenomics mean, 0.73 (mean N = 159;
range, 0.63 (hippocampus/olfactory bulb) to 0.79 (cerebel-
lum/hippocampus)); ABA-GNF mean, 0.71 (mean N = 110;
range, 0.51 (striatum/cortex) to 0.79 (striatum/cerebellum));
and GNF-Teragenomics mean, 0.84 (mean N = 97; range,
0.54 (striatum/cortex) to 0.91 (cerebellum/hypothalamus)).
These results indicate that both ISH and microarrays do well
at identifying genes with the highest relative expression dif-
ferences between brain structures. The combined results also
suggest that comparing colorimetric ISH with microarray
data, as with any platform, may be more problematic for
lower expressing genes.

Pearson correlation between ABA and Teragenomics (TERA) data sets as a function of probe homologyFigure 7
Pearson correlation between ABA and Teragenomics (TERA) data sets as a function of probe homology. Probe overlap ranges from 0 to 50%. Cortex 
(CTX) and hippocampus (HIPPO) exhibit the strongest positive improvement of correlation with probe homology, yet the trend is positive for the other 
four structures (STR, striatum; CB, cerebellum; OLF, olfactory bulb; HYPO, hypothalamus).
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Categorical based platform comparison
To what extent do colorimetric ISH and microarray data yield
reconcilable expression results? To address this question
more fundamentally, correspondence at a binary present/
absent level is considered. Utilizing binary present/absent
calls for expression comparison has been noted as an over-
simplification of true correlation due to class threshold effects
[30], and alternative techniques have been developed
[30,33,61]. However, this type of analysis may be appropriate
where there are substantial differences in platform technol-
ogy as is the case between colorimetric ISH and microarrays
and to gain a benchmark.

A present/absent call for ABA ISH expression in each assayed
structure was made by applying a threshold either to the
expression level L or density D. With respect to density, when
the threshold value for D is very low, numerous artifacts
within ISH images may be detected as expression. On the
other hand, if the threshold is too high, expression sensitivity
is compromised. To determine an optimal threshold value a
receiver operating characteristic (ROC) curve was drawn
based on calling a gene expressed if its density attained a
given value and by using ground truth determined from inde-
pendent expert visual inspection. By examination of image
series for 14,000 genes from the ABA, an optimal threshold
for calling a gene expressed in a given structure based on
expression density D was chosen by requiring that 1.0% of 8
× 8 pixel zones in that structure in the ISH image have
expressing cells. A similar procedure can be used to threshold
the ABA expression level, but thresholding on density D
resulted in a closer call to visual inspection. This method
yielded a sensitivity of 0.82 and specificity of 0.88 (Figure S6
in Additional data file 1).

Assessment of expression level for microarray data in terms
of present/absent calls is generally made by algorithms

counting transcript abundance [62]. For Teragenomics and
GNF data, Affymetrix software [27] is used, and probe set
detection p values are calculated relative to the intensity of all
probes for a given gene (Additional data files 3 and 4). Since
the Teragenomics and GNF data sets have strong repeatabil-
ity (ρ > 0.98, and ρ > 0.96, respectively), only one replicate
from each platform was used in this analysis.

Present/absent call results between ISH and the two microar-
ray platforms for all structures are shown in Table 5. The
present/absent call agreement ranges from 0.581 to 0.717 for
ISH versus microarray, with the highest correlations between
ISH and Teragenomics (0.687-0.717). The higher correlation
for ISH and Teragenomics may be due to the fact the
biological samples were more closely matched in age and sex,
whereas the GNF data included male and female samples that
were 2-4 weeks older. To test these results for significance, a
two-tailed binomial proportions test [59] for observed differ-
ence in values was applied. An asterisk in Table 5 indicates
that a given ABA correlation in either of the first two columns
is statistically significant at level α = 0.05 when compared to
the GNF replicate 1 (GNF1) versus Teragenomics replicate 1
(TERA1) proportion in the final column (see Materials and
methods for the data sets comprising these replicates).
Diagrams of the intersections of genes with present calls in
the ABA, GNF, and Teragenomics platforms in six structures
are displayed in Venn diagrams in Figure S7 in Additional
data file 1.

These results indicate that the ABA versus TERA1 binary cor-
relation is slightly weaker than the GNF1 versus TERA1
binary correlation at 95% confidence, while it is as strong as
in the striatum. The ABA versus GNF1 correlation is some-
what weaker than the GNF1 versus TERA1 binary correlation
at much stronger confidence level. This result is consistent

Structure level ratio scatter plots showing striatum (STR)/hypothalamus (HYPO), cortex (CTX)/cerebellum (CB), and CB/HYPO for ABA versus Teragenomics (TERA) and GNF versus TERA data setsFigure 8
Structure level ratio scatter plots showing striatum (STR)/hypothalamus (HYPO), cortex (CTX)/cerebellum (CB), and CB/HYPO for ABA versus 
Teragenomics (TERA) and GNF versus TERA data sets. Pearson (Pr) and Spearman (Sp) correlations are shown with gene counts in parentheses. Scatter 
plots for the remaining structures and for ABA versus GNF are shown in Figure S4a and S4b in Additional data file 1.
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Structure ratio correlation summary for ABA, GNF, and TeragenomicsFigure 9
Structure ratio correlation summary for ABA, GNF, and Teragenomics. The mean values are shown as dashed lines. ABA-GNF values are in red, ABA-
Teragenomics (Tera) values are in green, and GNF-Teragenomics values are in blue. ctx, cortex; hip, hippocampus; str, striatum; cb, cerebellum; olf, 
olfactory bulb; hypo, hypothalamus.
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with a smaller scale manual comparison for embryonic ISH
versus microarray presented in [14].

Variations on present/absent correlation are possible, includ-
ing binary correlation of log ratios of expression levels for
structures S1, S2 (that is, sgn log(S1/S2); Table S2 in Additional
data file 1) and extensions to quartiles (low, low-medium,
medium-high, and high; Figure S8 and Table S3 in Additional
data file 1). These comparisons (Additional data file 6) show
that these results are expectedly intermediate between binary
and numerical correlation values.

Spatial distribution and cell morphology: ISH 
expression level and density
The ability to examine high-resolution cellular morphology
and spatial expression patterns is a notable advantage of
colorimetric ISH in the analysis of gene expression. In addi-
tion to the visual component of viewing signal in situ, the
relationship between quantifiable variables such as
expression level and density (as defined above) yields more
insight into relative and regional expression characteristics
[2]. To explore this effect more thoroughly, the group of 1,030
genes defining the highest quartile of expression in the Ter-
agenomics data set (shown in Figure 10) was considered, and
a narrow microarray level range (550,650) between the
median (480.7) and mean (766.7) level of this set, consisting
of 84 genes, was selected. Figure 10 shows the ABA log
expression level versus log density plotted in black for the full
set of 1,030 genes with the 84 genes in the narrow microarray
level range indicated by an asterisk. The dotted lines of Figure
10 are the median and third quartile values for level and den-
sity from the entire ABA data set.

From the distribution in Figure 10, the ABA level/density
relationship for Teragenomics high expressors is essentially
linear in log space (R2 = 0.976), and all 1,030 genes are con-
tained in the second to fourth quartile in both level and den-
sity (the first quartile is shown at the axes origin.). The
quartile distribution of the 84 Teragenomics genes is (0, 7, 23,
54) for level and (0, 9, 22, 53) for density, and is consistent
with the present/absent and categorical results presented
earlier (see Additional data file 7 for expression values).

Although there is some variation in the lower values of ABA
level and density, the 84 Teragenomics high expressors are
generally not among the outliers in Figure 10, with the possi-
ble exception of the gene Wfs1. In fact, small variations in the
level/density profile of a gene can account for complexity in
expression cell type and spatial pattern as shown below. To
sample the variety and complexity that colorimetric ISH data
may have within a limited microarray level range, four of the
84 genes were selected for consideration in detail.

Figure 11a shows the annotated image region from the cau-
doputamen of the striatum (Allen Reference Atlas [3]) and
the corresponding Nissl stained section from the Allen Refer-
ence Atlas (Figure 11b). The remaining images are ISH images
for plane matched sections of the caudoputamen for genes
Kcnab1, Wfs1, Gsn, and H3f3b, all having similar microarray
expression levels. The potassium voltage-gated channel,
shaker-related subfamily, beta member 1 (Kcnab1; Figure
11c) is widely expressed in striatal neurons, and highly
enriched in the striatum relative to other brain regions. Fig-
ure 11d shows expression of Wolfram syndrome 1 (Wfs1), a
gene associated with Wolfram syndrome [63], a rare auto-
somal recessive neurodegenerative disorder characterized by
simultaneous presentation of type I diabetes mellitus and
optic atrophy in youth [64]. Unlike Kcnab1, Wfs1 is expressed
in a subset of neurons in the caudal and ventral caudoputa-
men. The spatial expression pattern differences between
Kcnab1 and Wfs1 are not apparent from their similar micro-
array expression levels but can be understood from Figure 10
as Wfs1 having a moderately reduced density for a given level
compared with the more uniformly expressing Kcnab1.

Colorimetric ISH data also help to resolve the cell class by dis-
criminating between non-neuronal and neuronal gene
expression, and this cannot be distinguished by microarray
levels alone. For example, Gelsolin (Gsn; Figure 11e), a
Ca(2+) dependent actin regulatory protein [65], is expressed
highly in oligodendrocytes [66], clearly visible by the high
expression levels in white matter tracts surrounding the stria-
tum and in scattered cells in the caudoputamen. A particu-
larly compelling example of the value of cellular resolution is
shown for the histone family member H3f3b (Figure 11f). Stri-

Table 5

Present/absent call agreement among ISH and microarray platform thresholds with ISH thresholded by density

Structure ABA versus GNF1 ABA versus TERA1 GNF1 versus TERA1

Striatum 0.639* (8,669) 0.717 (4,614) 0.715 (3,398)

Cortex 0.600* (9,502) 0.713* (4,568) 0.750 (3,693)

Cerebellum 0.589* (8,726) 0.687* (4,631) 0.773 (3,490)

Hippocampus 0.600* (8,751) 0.717* (4,585) 0.753 (3,410)

Olfactory bulb 0.581* (8,811) 0.709* (4,582) 0.759 (3,437)

Hypothalamus 0.678* (8,571) 0.689* (4,566) 0.737 (3,479)

The number of genes for each structure comparison is provided in parentheses. *Significance at α = 0.05 compared to GNF1 versus Teragenomics 
replicate 1 (TERA1) call agreement.
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atal detection of H3f3b by microarrays is apparently false and
due to high levels of expression in the subventricular zone
adjacent to the striatum that contains migrating cells in the
rostral migratory stream. Even though Hsfb3 is reported pos-
itive for expression in the striatum by microarrays, the ISH
data clearly show that H3f3b is not expressed in the striatum,
but rather in the adjacent subventricular zone.

The ISH level and density profile in Figure 10 indicates that
quantitative methods in colorimetric ISH may encode some

variation in spatial pattern and cell type, even when restricted
to a set of genes with a comparatively narrow range of high
microarray expression level. The four genes shown in Figure
11c-f illustrate the range of expression characteristics (wide-
spread, regional, cell class specific) that can be seen within a
particular brain region with cellular resolution techniques.
Expression ranges from widespread to highly restricted
patterns and can include both neuronal and non-neuronal
cell populations. While this heterogeneity can be resolved to
some degree with methods for isolating much smaller tissue

Log level/density ISH expression profile for Teragenomics high expressorsFigure 10
Log level/density ISH expression profile for Teragenomics high expressors. The plot shows 1,030 Teragenomics (Tera) high expressing genes in black with 
84 genes in the limited microarray level range [550,650] marked with a red asterisk. The median (dotted line) and third quartiles (Q3, dashed line) are 
shown for both level and density. The first quartile (Q1) is shown at the axes origin. The genes labeled H3f3b, Gsn, Wfs1, and Kcnab1 are further discussed 
in the text and Figure 11.
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samples, such as microdissection [67] or voxellation [68], the
resolution of colorimetric ISH for distinguishing intermin-
gled cell populations remains a significant benefit of the
technique.

Discussion
Development of a technique for anatomic mapping and rela-
tive quantification of colorimetric ISH data has allowed the
first large scale cross-platform comparison of this modality
with publicly available microarray data. Colorimetric ISH and
microarray data are found to agree well on higher expressing
genes and in terms of presence/absence calls, although
inherent cross-platform variability exists and is on the order
of discrepancies observed between microarray and sequence-
based profiling technology. For example, Liu et al. [69] found

correlations in the range 0.45-0.51 when comparing multiple
replicate microarray platforms to massively parallel signature
sequencing (MPSS) methods such as SAGE, and two studies
[30,39] found a range 0.42-0.54 for a similar comparison.
Pearson correlation of expression level was also observed to
be modestly improved by increasing probe homology, and
significantly improved by removing lower expressing genes
and considering ratio techniques.

Both microarrays and ABA ISH data show high internal
reproducibility, while strict numerical correlations between
ISH and microarray data sets are comparatively low, indicat-
ing that cross-platform discrepancies involve some
differences in the fundamental underlying measurements.
The correlations are substantially improved by moving to a
binary present/absent correlation metric, suggesting that

Four genes having Teragenomics expression level [550,650] showing complex regional and cell type expression in ISHFigure 11
Four genes having Teragenomics expression level [550,650] showing complex regional and cell type expression in ISH. (a,b) Reference atlas annotation 
and corresponding Nissl for a section of the caudoputamen (CP) of the striatum. (c) Kcnab1 has widespread neuronal expression, while (d) Wfs1 is 
expressed in neurons but has a strong ventral gradient in the striatum with higher expression in the nucleus accumbens (ACB) than CP. (e) Gsn primarily 
labels the specific cell class oligodendrocytes and (f) H3f3b is expressed in the wall of the lateral ventricle towards the rostral migratory stream and is not 
expressed in the striatum per se.

(a) (b) (c)

Wfs1 Gsn H3f3b

Nissl

(d) (e) (f)

Kcnab1
Genome Biology 2008, 9:R23



http://genomebiology.com/2008/9/1/R23 Genome Biology 2008,     Volume 9, Issue 1, Article R23       Lee et al. R23.17
aspects of thresholding and differences in dynamic range are
involved. Distinguishing signal from noise, and setting appro-
priate thresholds for signal detection, is difficult and a poten-
tial source of numerical discrepancy. A particular concern
with quantifying ISH data is the prevalence of spurious tissue
artifacts that could be misinterpreted for true signal. In
designing the expression detection algorithm mask for the
ABA ISH data [17], it was necessary to avoid these natural
non-specific hybridization products, in the process reducing
sensitivity on the lower end. On the other end of the scale,
there is a compaction of the dynamic range due to signal sat-
uration using colorimetric ISH produced with a single proto-
col for all genes (as for the ABA), illustrated in Figure 2. This
is particularly the case for genes transcribed at very high copy
number in relatively small populations of neurons, and is
another potential source of discrepancy between the binary/
categorical and numerical correlations. Although the best
correlations were achieved with a binary present/absent cor-
relation, there was good agreement for those genes exhibiting
high cross-sample ratios, which is typically the highest value
gene set.

It is difficult to account for all aspects of potential variability
(sample preparation, probe design, spatial mapping accuracy,
and so on) in comparing diverse platforms. Although the ABA
ISH pipeline is highly standardized, more advanced
informatics mapping tools, improved registration and signal
detection might also improve the results further. As remarked
in the introduction, however, there has been considerable
debate on the efficacy of quantification measures for colori-
metric ISH [15,18-21]. One of the key points emphasized in
this work is that, while the absolute chemometric quantifica-
tion for colorimetric ISH is unreliable, there is potentially
great value in standardized relative signal measurement, par-
ticularly when complemented by accurate anatomic mapping.
This combination enables a potentially wide range of rigorous
studies, such as detection of expression level differences to
within statistical significance, measurement of expression
fold changes, and the study of other morphometric properties
in gene expression only enabled by the spatial content of the
signal. These advantages should justify the continued study
and advancement of methods in colorimetric ISH
quantification.

Concordance of gene expression between platforms has not
been simplified by the addition of SAGE [1] to the repertoire
[31,33,39,50], and one study indicates that Affymetrix, cDNA,
and SAGE identified very different measures of coexpression
for most gene pairs with very low correlation between plat-
forms [33]. It would be useful to present a comparative
analysis of ISH data with SAGE or one of its variants, such as
cap analysis of gene expression (CAGE) [70]. However, at
present there are no publicly available mouse brain SAGE
data having replicates that closely match the ISH and micro-
array sample criteria. In the way of preliminary results, the
correlation was calculated between two different SAGE

libraries for the hypothalamus and striatum (Additional data
file 8), which are available from the Cancer Genome Anatomy
Project (CGAP) [71] (age P49) and the Mouse Gene Expres-
sion Atlas Project at the BC Cancer Agency (Mouse Atlas) [72]
(age P84). These results are available in Table S4 in Addi-
tional data file 1 and indicate that the correlation between ISH
and microarray platforms is approximately as close as that
between SAGE and microarray data for the genes expressed
in at least one of the two structures.

Measuring the transcript abundance (level) of a specific gene
clearly depends heavily on the target probe for both microar-
ray and ISH platforms. Most studies have found that both
inter- and intra-platform comparisons are challenging due to
annotation problems related to reconciling which genes are
measured and detected by specific probes. In addition, possi-
ble one-to-many mappings between probes and genes hinder
the ability to quantify expression, and efforts are underway
toward RNA transcript-based annotation [73]. Earlier
releases of Affymetrix GeneChip Murine Genome U74 report-
edly used sequences from the public sequence databases that
were ambiguous or on the wrong strand and, consequently,
the oligonucleotides could not detect their target mRNAs
[74]. This was resolved by Affymetrix prior to use in the Ter-
agenomics data set (Affymetrix Statistical Algorithms Refer-
ence Guide, 2001 [75]) and was corrected in the GNF1M data
set [76]. Whereas the Affymetrix platform uses probes of
length approximately 25 bp, ABA riboprobes are much longer
with a median length of 800 bp. Riboprobes are less prone to
binding to non-targeted transcripts, but do have partial
hybridization issues, particularly when families of related iso-
forms under alternative transcription are present [6]. As indi-
cated above, these issues were avoided to the extent possible,
although this study is based on limited replicates.

The intent of the final section of the paper is to illustrate the
power gained from quantifying colorimetric ISH data over
microarray data. ISH provides a cellular resolution generally
unattainable by other techniques, and in addition to meas-
ures of expression level, important characteristics such as rel-
ative density and uniformity of expression across a structure
can be quantified. Higher spatial resolution can be gained
with microarray analysis by isolating smaller or more discrete
tissues or cell populations, for example, using template based
laser capture microdissection [77] or by techniques such as
voxellation [78]. Several very promising methods for isolation
of discrete cell populations for microarray analysis from
transgenic animals have been recently described [79,80],
although these approaches are currently limited by the avail-
ability of animals with labeled cell populations of interest. In
practice, these two techniques are best seen as complemen-
tary for most research applications. Microarrays provide a
robust, economical method to identify candidate genes that
change in treatment versus control, mutant versus wild type,
and so on, while ISH provides a deeper level of cellular specif-
icity necessary to obtain a mechanistic understanding of
Genome Biology 2008, 9:R23
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altered gene expression in a complex cellular milieu. How-
ever, the availability of large-scale, baseline gene expression
atlases such as the ABA provides a powerful resource to help
select candidates from microarray experiments based on
regionalized anatomical distribution or cellular specificity
(for example, neuronal versus glial) of candidate genes in the
unmanipulated condition.

Several large scale ISH projects for the rodent brain are pro-
posed or underway. One such project is EurExpress [81],
which is assessing gene expression patterns from approxi-
mately 20,000 genes obtained from embryonic day 14.5
(E14.5) mice by utilizing the ABA riboprobe templates.
Another project [82] is an important source of data for the
EurExpress project and is identifying murine expression pat-
terns by colorimetric ISH starting at E10.5 on through adult-
hood, with an emphasis on gene expression in E14.5 [16]. The
Embryo Gene Expression Patterns project [83] is generating
colorimetric ISH data in three developmental stages, E10.5,
E12.5 and E14.5. Other related projects that are producing
gene expression data include the Gene Expression Nervous
System Atlas (GENSAT) [84-87]. A larger scale radioisotopic
ISH project is the Brain Gene Expression Map (BGEM),
which identifies candidate genes for the GENSAT enhanced
green fluorescent protein reporter transgenic mouse pipeline
[85]. A shared characteristic of all ISH efforts is that some
framework of anatomic mapping and quantification is neces-
sary to enable both internal and cross-platform comparison,
as well as to take full advantage of the significance of observed
signal in the data. Much work remains to be done in this area
and independent efforts are underway [88-91].

Conclusion
New large scale implementations of colorimetric ISH are ena-
bling high-throughput approaches such as the ABA. Despite
the aforementioned challenges and difficulties of compari-
son, it is essential to reconcile this modality with existing
standards. Numerous studies have illustrated the care in
process and interpretation required to obtain scientifically
meaningful results with microarray data, and these concerns
are certainly not diminished with high-throughput ISH com-
parisons. Both microarray and colorimetric ISH are gene
expression platforms with considerable variability, yet
valuable content is obtainable from both. The additional mor-
phological and potential cell type information gained through
colorimetric ISH make it a rich source for gene expression
information, and whereas conventional expression profiling
captures only an expression level, ISH enables multiple at
least semi-quantitative metrics that have been seen to
distinguish more subtle characteristics. It is anticipated that
new methods of analysis and comparison for better under-
standing of ISH and its relationship to existing standards will
accompany the numerous emerging high-throughput ISH
data sets.

Materials and methods
Data
Adult mouse brain gene expression data for C57Bl/6J based
on Affymetrix MG-U74Av2 chip (Teragenomics [5,57], Gene
Expression Omnibus (GEO) GSE3594) and Affymetrix
GNF1M chip (Mouse GNF1M(MAS5-condensed; GeneAtlas
[46,58], GEO GSE1133) were used for the microarray plat-
form data. Both data sets have two replicates for six brain
structures: striatum, cortex, cerebellum, hippocampus, olfac-
tory bulb, and hypothalamus, except GNF in the cortex, which
has one. TERA1 and TERA2 are replicates specified by GEO
IDs. Data sets for TERA1 for the striatum, cortex, cerebellum,
hippocampus, olfactory bulb, and hypothalamus are
GSM82978, GSM82974, GSM82988, GSM82952,
GSM82986, and GSM82953, respectively. Data sets for
TERA2 for the striatum, cortex, cerebellum, hippocampus,
olfactory bulb, and hypothalamus are GSM82979,
GSM82975, GSM82989, GSM82951, GSM82987, and
GSM82954, respectively. GNF1 and GNF2 are replicates
identified by the column names of the downloadable data file
GNF1M, MGJZ030207007A and MGJZ030207007B,
respectively. For ISH, data from the ABA was gathered for
these six brain structures following [2]. Microarray, SAGE
and ISH data are provided in Additional data files 3-5 and 8.

Preprocessing
For ABA ISH data, genes with corresponding Entrez IDs and
having positive expression values in one of six structures were
mapped in the pipeline described in [2,17], including pre-
processing steps, image registration and signal segmentation.
From each registered ISH image series the expression level
and density statistics defined can be computed using the for-
mulas from signal segmentation masks (Figure 1c) on a struc-
ture basis. The gene selection process and counts in the
comparisons are shown in Table 2. For microarray data,
probes that mapped to a unique Entrez ID and have one-to-
one mapping between gene and probe ID were chosen. Both
Teragenomics and GNF microarray data sets have two repli-
cates. Replicates were used in all platforms when available in
order to examine the consistency in present/absent calls,
excluding those with inconsistent values. The final column of
Table 2 indicates genes labeled as having present expression
by present/absent calling algorithms for each respective plat-
form minus those genes without consistent calls for those
data available in replicate (except for the ABA, which has
minimal replicates in the sagittal plane). For ABA present/
absent calling, the density threshold values are 1.2582 (stria-
tum), 1.2267 (cortex), 0.7946 (cerebellum), 0.3198 (hippoc-
ampus), 1.7140 (olfactory bulb), and 1.9723 (hypothalamus).
Following preprocessing, each structure has a variable gene
count for comparison (Figure S9 in Additional data file 1).

ImagePro software (MediaCybernetics, Silver Spring, MD,
USA) was used for the manual annotation of the region of
interest and optical density measurements. The statistical
computing package R [92] was used for figure generation.
Genome Biology 2008, 9:R23
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Comparison metrics
Correlation
Pearson and Spearman correlations were calculated using
Matlab (v7.2.0.232, The MathWorks, Inc., Natick, Massachu-
setts, USA). For microarray intraplatform repeatability, the
expression values of the replicates were used. For interplat-
form comparison, the log ratio of gene expression values over
pairs of structures was used to avoid platform differences as
described in [30].

Present/absent call agreement
Each platform makes a call whether each gene is expressed
('present') or not ('absent'). These calls from two platforms
were compared in terms of a 2 × 2 contingency table. Call
agreement is defined as the percentage of total genes either
simultaneously called present or absent by both platforms.

Measuring probe sequence overlap
Probe sequences of Teragenomics, GNF, and ABA were
downloaded from their respective websites and target gene
sequences were obtained from NCBI [93]. Affymetrix MG-
U74Av2 chip for Teragenomics and Affymetrix GNF1M chip
for GNF both have 16 probes for each target gene. In each
platform for each gene, the corresponding probe sequences
were mapped against the target sequence using NCBI BLAST
[60] and the aligned locations were recorded, measuring
sequence overlap for aligned locations. The significance of the
correlation difference before and after filtering out genes with
no overlap was tested since the sample sizes changed
significantly.
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