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The thyroid nodule is one of the endocrine issues caused by an irregular cell development. This rate of survival can be improved
by earlier nodule detection. Accordingly, the accurate recognition of the nodule is of the utmost importance in providing powerful
results in building the survival rate.The reduction in the accuracy of manual or semiautomatic segmentation methods for thyroid
nodule detection is due to many factors, basically, the lack of experience of the sonographer and latency of operation. Most lesion
regions in ultrasound images are homogeneous.Therefore, the value of entropy in these regions is high compared to its neighbours.
Based on this criterion, a novel procedure for automatically selecting the seed point in thyroid nodule images is proposed. The
proposed system consists of three components: neutrosophic image enhancement and speckle reduction to reduce speckle noise and
automatic seed selection algorithm extracted from the centre of candidate block in ultrasound thyroid images based on the principle
that most of its Higher Order Spectra Entropies (HOSE) from Radon Transform (RT) at different angles are within the range
between average and maximum entropies, and the region growing image segmentation is applied with the constant threshold. The
performance of proposed automatic segmentation method is compared with other methods in terms of calculating, True Positive
(TP) value (96.44 ± 3.01%), False Positive (FP) value (3.55 ± 1.45%), Dice Coefficient (DC) value (92.24 ± 6.47%), Similarity Index
(SI) (80.57 ± 1.06%), and Hausdroff Distance (HD) (0.42 ± 0.24 pixels). The proposed system can be considered as an added value
to the malignancy diagnosis in thyroid nodule by an endocrinologist.

1. Introduction

Thyroid nodulemalignancy is one of the vital life-threatening
issues that occurred due to irregular growth of cells thatmight
be benign or malignant [1]. As categorized by American
Cancer Society’s evaluations for thyroid malignancy in 2018,
out of 53,990 new instances of thyroid cancer, 13,090 were
males and 40,900 were females in the United States [2].

For an endocrinologist, the basic problem is to physically
identify the exact thyroid nodule in the ultrasound image
and classify it as benign or malignant [3]. Computer-aided
detection frameworks are becoming increasingly popular and
help endocrinologists make accurate decisions to understand
an enormous amount of image information [4]. One of the
main difficulties to be considered in designing a fully comput-
erized recognition framework is the accurate representation
of nodules with automatic extraction of the region of interest

(ROI) within the thyroid organ. Alternative difficulties are
speckle noise suppression in ultrasound images which was
addressed in this study.

Koundal et al. [5] in 2018 utilized full automated com-
puter-aided detection framework for speckle reduction and
segmentation of nodules from thyroid ultrasound images.
Speckle is an unfortunate obstruction impact, happening
when at least two ultrasound waves interfere with each
other, constructively or destructively, producing bright and
dark spots [6]. For preprocessing of ROI speckle reducing
anisotropic diffusion (SRAD) filter has been used by Yu et al.
[7]. SRAD is a filter, which iteratively reduces speckle noise,
preserves edges, and simultaneously enhances the contrast of
the image.

In recent decades, further studies have been carried out
to remove speckle noise, e.g., the nonlocal means (NLM)
filter utilized by Avazpour 2009 [8] and anisotropic diffusion
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(SRAD) filter proposed and created by Mat Isa et al., 2006
[9].

Recently, numerous researchers have used neutrosophy
in various applications such as image noise reduction and
segmentation, which have shown that the theory of neutros-
ophy provides a good execution due to its indeterminacy and
performance [10–13].

The proposed technique of thyroid nodule summation
is mainly based on entropies derived after the application
of radon transformation using HOS. Its spectra sometimes
referred to as poly-spectra are spectral representations of
higher order statistics, i.e., moments, and cumulated by third
order and beyond. HOS was first applied to real signal
processing problems in 1970. It may be more advantageous
to analyze biomedical signals because it is nonlinear, non-
stationary, and non-Gaussian [14]. HOS has been applied to
various applications, for instance, 1D pattern recognition [15],
array signal processing [16], and ultrasound image processing
[17].

A seed is a test pixel with a perfect trademark that belongs
to the suspicious region and ought to be the piece of the
region of interest [18]. Since the region growing outcome is
delicate to the underlying seeds, the precise seed choice is
essential for image segmentation [19].

Segmentation is a standout of the most troublesome
and essential assignments in medical image processing. This
dynamic field of research throughout the most recent two
decades makes a basic organization or format of the medical
image, to indicate a region of interest (ROI). Segmentation
is the way toward apportioning image into a few areas as
per particular standards. The reason for segmentation is
utilizing these regions for ROI detection to recognize any
irregularities or lesions. Nature of segmentation decides the
possible achievement or disappointment of the investigation
or analysis.

Segmentation of medical images utilizing seeded region
growing (SRG) procedure is progressively turning into a
well-known technique as a result of its capacity to include
abnormal state information of anatomical structures in seed
choice process [20]. Poonguzhali and Ravindran [21] depict
a fully automatic technique for segmentation of masses on
ultrasound images by utilizing region growing technique.
In their work, the region growing begins by selecting a
seed pixel, followed by adding new pixels to the segment
(augmented fragment) until the segmentation standard is
fulfilled [22]. Seeded region growing has the benefit of
indicating only one interested region by putting a seed in it.
Be that as it may, the execution of SRG calculations relies on
this position.

Various works can be discovered with respect to auto-
matic seed selection. Michahial et al. [23] proposed a tech-
nique to calculate and recognize the seed point automatically
by which automatic contour initialization is done. Chang et
al. in 1994 [24] and Avazpour et al. in 2009 [8] pointed out
how the Histogram Feature technique can be used in seeded
selection based on feature extraction approach. Mat Isa et al.
in 2006 [9], Saad et al. in 2012 [25], and Al-Faris et al. in 2014
[26] utilizedmovingK-means technique for seeding selection
based on region extraction, respectively. On the other hand,

Mustafa et al. in 2010 [27] used active contour model for seed
selection based on edge extraction approach.

The idea presented in this work is to identify a seed pixel
from the abnormal regions based on entropy capability in
differentiating between nonhomogeneous and homogeneous
regions in ultrasound images. The previous techniques were
depending on entropies derived from spatial domain [21].
HOS is employed as a nonlinear method that helps to capture
the subtle changes in pixels of the image and hence to identify
the seed point. It was noticed that HOS methods would be
a superior methodology than the conventional time domain
and frequency domain methods in analyzing the biosignals.
It is a great apparatus for the nondirect dynamical investi-
gation of the biomedical signals, so as the case it can battle
commotion and give great outcomes even with the case it can
combat noise and give good results even with weak signals. In
another place, HOS is valuable in recognizing nonlinear cou-
pling and deviation from Gaussianity and features obtained
from it tend to be made invariant to move, rotation, and
enhancement. Thenew approach in this research is to depend
on the important entropies’ values, namely, phase entropy
and bispectrum entropies using HOS, these parameters can
be used to select a suitable seed pixel from the suspicious
regions. The proposed system is beginning with applying
Radon transform to each image block; then HOS based
entropies values extracted from different ultrasound image
resulting from blocks at different orientations (angles) were
carried out. Finally, we select the center of candidate block
for which most of its entropy’s features are high (above the
average value derived from all blocks).The spectral entropies
are high for a homogeneous region of the possible lesion and
low for nonhomogeneous regions. These feature scans are
explored for numerous healthcare applications.

2. Materials and Methods

2.1. Dataset. The ultrasound image dataset has been utilized
in this paper to compute the efficiency of proposed seg-
mentation method from the open access Digital Database of
thyroid ultrasound images from the Universidad Nacional
de Colombia Laboratory [28]. It consists of 92 thyroid
ultrasound images, out of which 50 were males and 42
were females with various ages. The images were extracted
from thyroid ultrasound video sequences captured with a
TOSHIBA linear transducer. Thyroid nodules images are
saved in ultrasonography system that includes a complete
annotation and diagnostic description of suspicious thyroid
lesions, using the TI-RADS lexicon description performed by
at least two expert radiologists.

2.2. Pre-Processing

2.2.1. Image Enhancement and Sharpening. Theprincipal goal
of an image enhancement is to draw out the hidden image
details or to expand the image contrast from another pow-
erful range [29]. Neutrosophic based image enhancement is
used in this research. Neutrosophy is a part of philosophy
displayed in [30] as a generalization of dialectics and studies
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the origin, nature, and extent of neutralities, close to their
interactions with different ideational spectra. In neutrosophy
hypothesis, only one out of every event has a specific level
of reality, in addition to a misrepresentation degree and an
indeterminacy degree that must be considered uninhibitedly
from each other.

(1) The Image in Neutrosophic Set. Assume U is a universe of
discourse and W is an arrangement of U, which is made by
bright pixels. A neutrosophic image PNS is described by three
participation sets T, I, F. A pixel P in the image is described
as P(T, I, F) and related to W in an accompanying way: It is
t, true, in the set, i, indeterminate in the set, and f, false, in
the set, where t varies in T, i varies in 𝐼, and f varies in 𝐹. The
component pixels’ functions TC, IC, and FC are calculated
to transform image from gray-level domain to neutrosophic
domain. The participant functions as mentioned before are
computed [31], as shown below:

𝑇𝐶 = 𝑞𝑖𝑗 − 𝑞min𝑞max
(1)

where i varies from 0 to n-1, j varies from 0 to m-1, 𝑞𝑖𝑗 is the
local mean obtained using a window, 𝑞min is the minimum
grey level value, and 𝑞max is the maximum grey level value.

𝑞𝑖𝑗 = 1𝑤 × 𝑤 𝑖+𝑤/2∑
𝑚=𝑖−𝑤/2

𝑗+𝑤/2∑
𝑛=𝑗−𝑤/2

𝑞𝑚𝑛 (2)

where 𝑞𝑚𝑛 is the noisy image and 𝑤 is the size of the window.

𝐼𝐶 = 𝛿𝑖𝑗 − 𝛿min𝛿max
(3)

𝛿𝑖𝑗 = 𝑎𝑏𝑠 (𝑞𝑖𝑗 − 𝑞𝑖𝑗) (4)

where 𝛿𝑖𝑗 is the absolute value of the difference between
intensity 𝑞𝑖𝑗 and its local mean value 𝑞𝑖𝑗.The false component
in the neutrosophic domain is calculated as

𝐹𝐶 = 1 − 𝑇𝐶 (5)

(2) Map Image and Decide {𝑇, 𝐹}. Consider an image A, P(x,
y) is a pixel in the image, and (x, y) is the position of this pixel.
A 5x5 mean filter (the size of filter may fluctuate contingent
upon the measure of the input image) is applied to A to
evacuate noise and make the image uniform. Next, the image
is changed by utilizing the S-function:

𝑇 (𝑥, 𝑦) = 𝑆 (𝑔𝑥𝑦, 𝑎, 𝑏, 𝑐)

=
[[[[[[[[[[[

0 0 ≤ 𝑔𝑥𝑦 ≤ 𝑎(𝑔𝑥𝑦 − 𝑎)2(𝑏 − 𝑎) (𝑐 − 𝑎) 𝑎 ≤ 𝑔𝑥𝑦 ≤ 𝑏
1 − (𝑔𝑥𝑦 − 𝑐)2(𝑐 − 𝑏) (𝑐 − 𝑎) 𝑏 ≤ 𝑔𝑥𝑦 ≤ 𝑐1 𝑔𝑥𝑦 ≥ 𝑐

(6)
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Figure 1: S-function.

where𝑔𝑥𝑦 is the intensity value of pixel P(i, j). Factors a, b, and
c are the parameters that evaluate the state of the S-function
as appeared in Figure 1.

Estimations of parameters a, b, and c can be computed
by utilizing the simulated annealing method [32]. However,
the simulated annealing algorithm is quite time-consuming.
Thus, we utilize another histogram-based technique to com-
pute a, b, and c [33].

(1) Calculate the histogram of the image.
(2) Find the local maxima of the histogram:

Hismax(g1),Hismax(g2), . . .Hismax(gn).
Calculate the mean of local maxima:

𝐻𝑖𝑠max (𝑔) = ∑𝑛𝑖=1𝐻𝑖𝑠max (𝑔𝑖)𝑛 (7)

(3) Find the peaks greater than 𝐻𝑖𝑠max(𝑔); let the first
peak be 𝑔min and the last peak be 𝑔max.

(4) Define low limit B1 and high limit B2:

𝐵1∑
𝑖=𝑔min

𝐻𝑖𝑠 (𝑖) = 𝑓1
𝑔max∑
𝑖=𝐵2

𝐻𝑖𝑠 (𝑖) = 𝑓1
(8)

where the datamisfortune is permitted in the range [𝑔max , 𝐵1]
and [𝐵2, 𝑔min], which is in 𝑓1 (𝑓1=0.01 in the experiments).

(5) Compute 𝑎 and c:𝑎 = (1 − 𝑓2) (𝑔1 − 𝑔min) + 𝑔min (9)

if (𝑎 > 𝐵1) then 𝑎 = 𝐵1𝑐 = 𝑓2 (𝑔max − 𝑔𝑛) + 𝑔𝑛 (10)

If (𝑐 > 𝐵2), then 𝑐 = 𝐵2, where 𝑓2= 0.01, and 𝐵1 and 𝐵2 are
utilized to keep away from imperative data misfortune. The
intensity less than 𝐵1 is considered as background, and the
intensity more than 𝐵2 is considered as noise.
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(6) Compute parameter b by utilizing the most extreme
entropy central [34].

𝐻(𝑥) = 1𝑀 × 𝑁 𝑀∑𝑖=1
𝑁∑
𝑗=1

𝑆𝑛 (𝑇 (𝑥, 𝑦)) (11)

where Sn is a Shannon function defined as𝑆𝑛 (𝑇 (𝑥, 𝑦)) = −𝑇 (𝑥, 𝑦)− (1 − 𝑇 (𝑥, 𝑦)) log2 (1 − 𝑇 (𝑥, 𝑦))𝑥 = 1, 2, . . . ,𝑀, 𝑦 = 1, 2, . . . 𝑁 (12)

The maximum entropy principle expresses that the more
noteworthy the entropy is, the more data the framework
includes [35]. To determine the optimal b try every b∈[a +1,c
-1]. The optimal b will produce the largest H(X):

𝐻max (𝑋, 𝑎, 𝑏𝑜𝑝𝑡, 𝑐)= max {𝐻 [𝑋; 𝑎, 𝑏, 𝑐] | 𝑔min ≤ 𝑎 < 𝑏 < 𝑐 ≤ 𝑔max} (13)

After a, b, and 𝑐 are calculated, the image can be mapped
from the intensity domain 𝑔𝑥𝑦 to the new domain T (x, y).
Use intensification transformation to enhance the image in
the new domain [36]:

𝐸 (𝑇 (𝑥, 𝑦)) = 2𝑇2 (𝑥, 𝑦) 0 ≤ 𝑇 (𝑥, 𝑦) ≤ 0.5
𝐸 (𝑇 (𝑥, 𝑦)) = 1 − 2 (1 − 𝑇 (𝑥, 𝑦))2

0.5 < 𝑇 (𝑥, 𝑦) ≤ 1
(14)

Then image sharpening stage involves applying unsharp
mask [36] image sharping technique on the output of image
enhancement stage.

2.2.2. Speckle Noise Reducing (SRAD). SRAD is a type of
filters generally utilized for removing speckle noise in ultra-
sound images and it can save edges, as well as enhances edges.
SRAD is a Partial Differential Equation (PDE) that had been
adjusted byYu andAction [7] fromanisotropic diffusionfilter
to fit the speckle noise produced by the ultrasound image.
In this algorithm, Instantaneous Coefficient of Variation
(ICOV) is utilized to separate the edge regions in the image.
ICOV is given by

𝑞 (𝑥, 𝑦; 𝑡) = √ (1/2) (∇𝐼/𝐼)2 − (1/16) (∇2𝐼/𝐼)2[1 + (1/4) (∇2𝐼/𝐼)]2 (15)

where ∇ and ∇2 denote the gradient and the Laplacian,
separately.

∇𝑔𝐼𝑛𝑖,𝑗 = [𝐼𝑛𝑖+1,𝑗 − 𝐼𝑛𝑖,𝑗ℎ , 𝐼𝑛𝑖,𝑗+1 − 𝐼𝑛𝑖,𝑗ℎ ] (16)

∇𝐿𝐼𝑛𝑖,𝑗 = [𝐼𝑛𝑖,𝑗 − 𝐼𝑛𝑖−1,𝑗ℎ , 𝐼𝑛𝑖,𝑗 − 𝐼𝑛𝑖,𝑗−1ℎ ] (17)

∇2𝐼𝑛𝑖,𝑗 = [𝐼𝑛𝑖+1,𝑗 + 𝐼𝑛𝑖−1,𝑗 + 𝐼𝑛𝑖,𝑗+1 + 𝐼𝑛𝑖,𝑗−1 − 4𝐼𝑛𝑖,𝑗ℎ ] (18)

ICOV indicate the high value in the edge region and low value
in the homogeneous region.

𝐶 (𝑞)
= 1(1 + [𝑞2 (𝑥, 𝑦; 𝑡) − 𝑞2𝑜 (𝑡)]) / [𝑞2𝑜 (𝑡) (1 + 𝑞2𝑜 (𝑡))] (19)

where 𝑞𝑜(t) is the scale factor of speckle utilized in the
dispersion coefficient C(q). Equation (19) controls the mea-
sure of smoothing in the homogeneous region (17). In this
manner, the speckle scale function removes the noise from
the homogeneous region.

𝑞𝑜 (𝑡) = √𝑉𝑎𝑟 [𝑍 (𝑡)]𝑍 (𝑡) (20)

where Var[Z(t)] and 𝑍(𝑡) denote the intensity variance and
mean over a homogenous region at t.

2.3. Seed Point Generation Stage. This stage is started by
dividing the thyroid ultrasound nodule images into nonover-
lapped square blocks of size 11 by 11 pixels. The Radon trans-
form and HOSwere implemented on each block separately to
calculate 3rd order entropies at different angles.

2.3.1. Radon Transform. Radon transform is generally uti-
lized in processed tomography to make an image from the
dispersing information related to cross-sectional outputs of
an object. It transforms the two-dimensional images with
lines into a domain of possible line parameters, where each
line in the imagewill give a pinnacle situated at the comparing
line parameters [37]. Subsequently, the lines of the images
are transformed into the points in the Radon domain. An
equation of the line can be expressed as

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 (21)

where 𝜃 is the small angle and 𝑟 is the small distance to the
origin of the coordinate system. Given a function g(x, y),
Radon transform is defined as

𝑅 (𝑟, 𝜃) = ∫+𝛼
−𝛼
𝐴 (𝑟 cos 𝜃 − 𝑠 sin 𝜃, 𝑟 sin 𝜃 − 𝑠 cos 𝜃) 𝑑𝑠 (22)

Equation (22) depicts the vital along a line through the image,
where 𝑟 is the distance of the line from the origin and 𝜃 is
the angle from the horizontal. So, radon transform changed
2D signal into the 1D parallel beam projections, at different
angles 𝜃.
2.3.2. Higher Order Spectra Entropy (HOSE). Higher request
spectra are nondirect strategies, characterized to be spectral
representations of higher request cumulants (i.e. c1, c2, and
c3) of a random process [14]. Both amplitude and phase
information for a given signal appear.
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The mean value (m) and variance (𝜎2𝑅) are computed
by utilizing second-order statistics. They are described by
expectation operation as

𝑚𝑟 = 𝐸 [𝑅] (23)

𝜎2𝑅 = 𝐸 [(𝑅 − 𝑚𝑟)2] (24)

where r is a discrete time signal, and the second-order
moment autocorrelation function can be defined as

𝑚2𝑟 (𝑖) = 𝐸 [𝑅 (𝑛) .𝑅 (𝑛 + 𝑖)] (25)

Thus, HOS is composed of moment and cumulant spectra.
They are utilized for both deterministic signals and random
processes [38].The third- and fourth-order cumulant spectra
are characterized as bispectrum and the trispectrum, respec-
tively [14].

Bispectrum is the Fourier transform of the third order
correlation of the data utilized in this work to determine the
features is given by

𝐵 (𝑓1, 𝑓2) = 𝐸 [𝑅 (𝑓1) 𝑅 (𝑓2) 𝑅∗ (𝑓1 + 𝑓2)] (26)

where 𝑅(𝑓) is the Fourier transform of the random signal𝑅(𝑛𝑇), n is an integer index, T is the sampling interval,
and E[.] refers to nondeterministic signals (i.e., expectation
operation).

Features are utilized in our work based on the inte-
grated bispectrum along the dashed line with slope = r. The
frequency (f) normalized by the Nyquist frequency to be
between 0 and 1.

HOS will give information about signal wave shape. If
there is no Bispectral associating, the bispectrum of a real
signal is uniquely defined with the triangle:

0 ≤ 𝑓2 ≤ 𝑓1 ≤ 𝑓1 + 𝑓2 ≤ 1; (27)

parameters are obtained by integrating along the straight
lines passing through the origin in bifrequency space. The
district of calculation and the line of integration are depicted
in Figure 2.

In this work, we calculated these features within the
region Ω.

(1) The Bispectral phase entropy (𝑃ℎ𝑒):𝑃ℎ𝑒 = ∑𝑝 (𝑤𝑛) log𝑝 (𝑤𝑛) (28)

(2) Bispectral entropy (𝑃1):𝑃1 = −∑
𝑛

𝑝𝑖 log (𝑝𝑖) (29)

where 𝑝𝑖 = |𝐵(𝑓1, 𝑓2)|/∑Ω |𝐵(𝑓1, 𝑓2)|Ω is the region as shown in Figure 2.
(3) Bispectral Squared Entropy (𝑃2):𝑃2 = −∑

𝑛

𝑝𝑛 log (𝑝𝑛) (30)

where 𝑝𝑛 = |𝐵(𝑓1, 𝑓2)2|/ ∑Ω |𝐵(𝑓1, 𝑓2)2|
(4) Bispectral Cubic Entropy (𝑃3):𝑃3 = −∑

𝑛

𝑝𝑞 log (𝑝𝑞) (31)

where 𝑝𝑞 = |𝐵(𝑓1, 𝑓2)3|/ ∑Ω |𝐵(𝑓1, 𝑓2)3|.
In our work, we have extracted the four bispectrum invari-
ants, depicted over every radon-transformed thyroid nodule
image.

2.3.3. Proposed System. The block diagram of the proposed
system which is depicted in Figure 3. It is started with image
preprocessing stage where the entire set of thyroid nodule
images (Benign and malignant) is preprocessed by enhanc-
ing images visual contrast using neutrosophic based image
enhancement followed by image sharpening technique to
highlight images edges. Then image speckle noise reduction
block using SRAD applied on visually enhanced ultrasound
images. The images then are subdivided into equally sized
nonoverlapped square blocks B(m,n); then the 3rd order
HOSE cumulants entropies at different angles are calculated
after applying the Radon transform on the preprocessed
ultrasound image blocks. The seed selection process is then
started by constructing the entropies vector Ev for every
image block which includes entropies values from different
categories (Bispectral phase entropy (Phe), Bispectral Entropy
(P1), Bispectral Squared Entropy (P2), and Bispectral Cubic
Entropy (P3)) at different angles (0

∘,60∘,120∘,180∘) within the
range between maximum and average values calculated from
all image blocks. The candidate block then is selected by
considering the longest Ev vector: Max(L(Ev)), and hence the
center of the candidate block is calculated and considered as
a seed point. In the case of more than one candidate block
(having Ev with the same length),

Max (𝐿 (𝐸V1)) = Max (𝐿 (𝐸V2))= . . . ..Max (𝐿 (𝐸V𝑛)) (32)

The one with highest Structures Similarity Index (SSIM)
is becoming the candidate block. The SSIM used for mea-
suring the similarity between two images (or image blocks).
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Figure 3: The flowchart of the proposed system.

Table 1: Depicts the five-selected images with their candidates block and blocks center.

Image name Best Block No. of Blocks Block XY-Position Center point(s)
12-malignant 237 18×31 (8,20) (83,215)
22-benign 78 19×22 (4,12) (39,127)
28-benign (137, 187) (19×25,19×25) (6,12), (8,12) (61,127), (83,127)
31- malignant 180 19×24 (10,9) (105,94)
48-benign 302 17×28 (11,22) (116,237)

The SSIM index is a full reference metric. Thus, if there
is a higher amount of homogeneity between the candidate
block and its neighbors block its center is selected as a
seed. After seed selection, the region growing technique is
applied to each thyroid nodule ultrasound images to extract
the suspicious area. The ground truth manually segmented
images by the specialist are compared with the automatically
segmented images and, finally, a group of measurements
was carried out to evaluate the output of the proposed
system.

2.4. Performance Measures. In this work to explore the
performance of segmentation methods, both area-based and
boundary-based metrics have been utilized. Area based error
metrics, True Positive (TP), False Positive (FP), and Dice
Coefficient (DC) have been employed. The boundary-based
error metrics, for example, Hausdorff Distance (HD), are
utilized to decide the possible disagreement over two curves
[39].

3. Results and Discussion

The proposed segmentation scheme is called seed selection
based on higher order spectra (SSHOS). Five real thyroid
ultrasound images from dataset are selected and displayed
from the used dataset. All images have low contrast withweak
boundaries between nodules and abutting tissues.

Table 2 shows the values ofmaximum SSIM calculated for
the 4-nighbour blocks for the candidate blocks. It is clear that
the image 28-benign has two candidate blocks (137,187) (see
Table 1). The block numbered 187 is selected because it has
higher SSIM as compared to the block 137. And this is obvious
in Table 2.TheMaxNeighbor SSIM is calculated by summing
out all 4- neighbor’s SSIMs.

Figure 4(a) shows an original ultrasound image. Fig-
ure 4(b) demonstrates ground truth segmented image. Neu-
trosophic image enhancement and sharpening is introduced
in Figure 4(c); Figure 4(d) represented despeckled image
utilizing SRAD method. Figures 4(e) and 4(f) demonstrate
the visual consequences of SSHOS and segmented sectioned
utilizing region growing. It is additionally demonstrating
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Table 2: The SSIM for the 4-neighbor blocks.

Image name Max Neighbor SSIM SSIM BLK1 SSIM BLK2 SSIM BLK3 SSIM BLK4
12-malignant 3.467184
22-benign 1.64305
28-benign (0.9594,2.2008) (0.0443,0.443) (0.3386,0.5748) (0.19089,0.55709) (0.4742,0.62586)
31-malignant 2.160953
48-benign 1.879466

(a) Original image (b) Ground truth segmented image boundaries

(c) Neutrosophic enhanced image (d) Despeckled image using SRAD

(e) Calculated seed point by SSHOS (f) Segmented area using region growing

(g) Boarders of segmented area (h) Overlapped area between ground truth and
segmented image

Figure 4: Ultrasound image (image 12 M).

that SSHOS can be utilized for accurate segmentation and
separation of particular tissues. Figure 4(g) illustrated that
the SSHOS can better preserved the nodule’s boundaries in
thyroid ultrasound image while overlapped area between
ground truth and segmented image clearly showed up in

Figure 4(h). Figures 5–8 show the same details as presented
by Figure 4 for the other images listed in Table 1.

Figures 9(a), 9(b), 9(c), and 9(d) show graphical illustra-
tion for the spectral entropies (P1, P2, P3, andPph) at different
angles for the image (12-malignant). It is clear that the values
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(a) Original image (b) Ground truth segmented image boundaries

(c) Neutrosophic enhanced image (d) Despeckled image using SRAD

(e) Calculated seed point by SSHOS (f) Segmented area using region growing

(g) Boarders of segmented area (h) Overlapped area between ground truth and segmented image

Figure 5: Ultrasound image (image 22B).

of different entropies at block numbered (237) are higher than
the other blocks entropies. So it is selected as a candidate
block automatically.

The performance of segmentation method has been
compared with other methods which were applied on the
same data set of thyroid ultrasound images as listed in
Table 3. As apparent from results, it is seen that SSHOS

outperforms all other methods by accomplishing highest
qualities regarding TP, SI. The larger estimations of area-
based metrics created by SSHOS guarantee more similarity
between the regions segmented by segmentation methods.
TheSSHOSuncovers a change in FP andHDwhen contrasted
with different techniques. Moreover, smallest HD and FP
determines the prevalence of proposed techniques as looked
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(a) Original image (b) Ground truth segmented image boundaries

(c) Neutrosophic enhanced image (d) Despeckled image using SRAD

(e) Calculated seed point by SSHOS (f) Segmented area using region growing

(g) Boarders of segmented area (h) Overlapped area between ground truth and seg-
mented image

Figure 6: Ultrasound image (image 28B).

Table 3: Performance measures of segmentation method (SSHOS) of dataset.

Scheme Name HD (Pixels) TP (%) FP (%) SI (%) Dice coefficient Density Area density k area k
SSHOS 0.42 ± 0.24 96.44 ± 3.01 3.55 ± 1.45 80.57 ± 1.06 92.24 ± 6.47 0.60 ± 0.17 3123 ± 950 0.60 ± 0.19 3627 ± 1313
Poonguzh et al. [21] 0.66 ± 0.22 93.51 ± 5.94 6.48 ± 3.94 67.85 ± 1.37 80.85 ± 9.04 0.97 ± 0.09 5122 ± 1049 0.80 ± 0.05 6727 ± 1787
Mohammed et al.
[40] 0.68 ± 0.28 52.26 ± 4.71 47.73 ± 4.95 51.44 ± 3.01 67.93 ± 2.19 0.76 ± 0.01 4772 ± 699 0.611 ± 0.19 2570 ± 1378

NDRLS [5] 0.2 ± 0.82 95.4 ± 3.5 7.3 ± 5.3 94.2 ± 4.6
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(a) Original image (b) Ground truth
segmented image
boundaries

(c) Neutrosophic
enhanced image

(d) Despeckled
image using SRAD

(e) Calculated seed
point by SSHOS

(f) Segmented area
using region growing

(g) Boarders of seg-
mented area

(h) Overlapped area
between ground
truth and segmented
image

Figure 7: Ultrasound image (image 31M).

Table 4: Performance measures of segmentation method (SSHOS) with and without enhancement images.

Scheme Name HD (Pixels) TP (%) FP (%) SI (%) Dice coefficient density area density k area k
SSHOS 0.42 ± 0.24 96.445 ± 3.01 3.55 ± 1.45 80.57 ± 1.06 92.24 ± 6.47 0.60 ± 0.17 3123 ± 950 0.6086 ± 0.195 3627 ± 1313
without
neutrosophic
enhancement

0.38 ± 0.12 95.82 ± 3.63 4.17 ± 3.12 72.06 ± 9.55 85.77 ± 6.11 0.69 ± 0.08 2466 ± 1607 0.68 ± 0.17 3175 ± 1765

at over different methods. The SSHOS is superior to the
greater part of different techniques as far as FP, TP, DC, SI,
and HD.

The performance of SSHOS with or without speckle
reduction is additionally demonstrated by the boundary
error measurements as well, which demonstrate that the
forms created by SSHOS with or without speckle reduc-
tion are significantly nearer to the manual depictions as
given in Table 5. As obvious from these outcomes, it is
seen that SSHOS can be applied without speckle reduction
for the nodule segmentation. All these results justify the
great indeterminacy dealing with capacity of neutrosophic
domain.

Furthermore, SSHOS can prevent leakage through weak
edges resulting in exact extraction of nodule boundaries by
dealing with the intensity in homogeneity well. The mean
values of TP, FP, DC, SI, and HD acquired with SSHOS are
(96.44 ± 3.01%), (3.55 ± 1.45%), (92.24 ± 6.47%), (80.57 ±
1.06%), and (0.42 ± 0.24 pixels). For the most part, SSHOS
join to higher qualities than [21, 40].

Table 4 shows a comparison between the proposed
method with and without neutrosophic enhancement. It is
clear that a degradation in the TP, FP, SI, and all other
measures.

Table 5 also shows a comparison between the proposed
method (SSHOS)with andwithout speckle noise reduction. It
is clear that the noise reduction technique (SRADA) improves
system performance.

4. Conclusions

Thegoal of this study is to improve a robust algorithm for seg-
menting thyroid nodules onultrasound image that is a unique
challenge in ultrasound segmentation. The result showed that
our algorithm is one of the best automatic segmentation
methods for thyroid nodules on ultrasound images. In seed
selection based on Higher Order Spectra (SSHOS), however,
the initial contours are automatically identified very close
to the actual thyroid gland nodule boundaries, which can
be quickly refined by the level set. Experiments (SSHOS)
are highly efficient, robust, and accurate. The experimental
results show that SSHOS has better performance results
as compared to other methods. It can also prevent border
leakage into adjacent tissues and smooth the background.

SSHOS also needs no training and user input. In addition,
despite intensity variations, the method can reveal thyroid
nodule borders. The higher values of quality meters achieved
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(a) Original image (b) Ground truth segmented image boundaries

(c) Neutrosophic enhanced image (d) Despeckled image using SRAD

(e) Calculated seed point by SSHOS (f) Segmented area using region growing

(g) Boarders of segmented area (h) Overlapped area between ground truth and seg-
mented image

Figure 8: Ultrasound image (image 48B).

Table 5: Performance measures of segmentation method with and without speckle noise reduction.

Scheme Name HD (Pixels) TP (%) FP (%) SI (%) Dice coefficient Density area density k area k
Without speckle
reduction 0.51 ± 0.10 94.19 ± 5.25 5.80 ± 2.56 83.35 ± 1.71 87.92 ± 10.30 0.88 ± 0.10 5923 ± 1850 0.77 ± 0.25 6349 ± 1409

SSHOS 0.42 ± 0.24 96.44 ± 3.01 3.55 ± 1.45 80.57 ± 1.06 92.24 ± 6.47 0.60 ± 0.17 3123 ± 950 0.60 ± 0.19 3627 ± 1313

by the SSHOS method over other state-of-the-art methods
are recommended in medical practice.

Thus, without any human intervention, a fully auto-
mated CADe system for segmenting nodules in thyroid
ultrasound images was developed. It can be used as a

second tool for assisting endocrinologists in the auto-
mated and accurate delineation of thyroid nodules in
ultrasound images. This helps reduce the number of false
positives and improves accurate thyroid nodules detec-
tion.
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Figure 9: HOSE for different blocks and angles in image (12-malignant).

Further research may be extended to validate the pro-
posed system for three-dimensional ultrasound images and
Doppler ultrasound images, since this work deals only with
B-mode ultrasound images.This system still needs to explore
other imaging modalities.

Data Availability

We took all data (images) for both Benign and Malignant
states in TDID (Thyroid DIgital Image database) which con-
sists of a set of B-mode ultrasound images from the website
of Computer Imaging & Medical Applications Laboratory,
Universidad Nacional de Colombia Laboratory.
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