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A b s t r a c t .  Monoclonal antibodies were raised against 
the mt-  sexual agglutinin of Chlamydomonas eu- 

gametos gametes. Those that blocked the agglutination 
site were selected. They were divided into two classes 
dependent upon whether they gave a weak (class A) or 
clear positive (class B) reaction with mr- flagellar 
membranes in an ELISA and an indirect im- 
munofluorescence test using glutaraldehyde-fixed mr- 

gametes. Class A antibodies were shown to be specific 
for the agglutinin in an extract of mt-  gametes, based 
on results from immunoblotting, immunoprecipitation, 
affinity chromatography, and the absence of a reaction 
with nonagglutinable cells. Surprisingly, class A mAbs 
also recognized two mt ÷ glycoproteins, one of which is 
the mt ÷ agglutinin. Class B antibodies were shown to 
bind to several glycoproteins in both mt-  and mt ÷ ga- 
metes, including the mt-  agglutinin. Fab fragments 

from class A mAbs blocked the sexual agglutination 
process, but those from class B did not, even though 
the parent antibody did. We conclude that the class A 
epitope lies in or close to the agglutination site of the 
mt-  agglutinin, whereas the class B epitope lies else- 
where on the molecule. We also conclude that the mt-  

agglutinin is the only component on the mt-  flagellar 
surface directly involved in agglutination. Class A 
mAbs were found to elicit several reactions displayed 
by the mt ÷ agglutinin. They bound to the mt-  aggluti- 
nin on gamete flagella and induced most of the reac- 
tions typical of sexual agglutination, with the excep- 
tion of flagellar tip activation. None of these reactions 
was induced by Fab fragments. High concentrations of 
class A mAbs completely repressed the sexual compe- 
tence of live mt-  gametes, but low concentrations 
stimulated cell fusion. 

T 
HE mutual recognition of sexually compatible Chla- 
mydomonas gametes is the best studied cell recogni- 
tion system in plant biology. Not only do we know 

much of the morphological aspects of recognition, but we 
also appreciate many of the physiological consequences 
whereby those gametes that have recognized a partner are ac- 
tivated to prepare themselves for cell fusion (Goodenough 
and Thorner, 1983; Snell, 1985; van den Ende, 1985). More 
importantly, the recognition factors, the agglutinins, have 
been identified and partially characterized for two different 
Chlamydomonas species (Musgrave et al., 1981; Adair, 
1983; Saito and Matsuda, 1984; Collin-Osdoby et al., 1984; 
Collin-Osdoby and Adair, 1985; Klis et al., 1985; Samson 
et al., 1987), and thus a molecular analysis of the recognition 
process is in progress. 

The two species that have commanded most attention are 
Chlamydomonas reinhardtii and Chlamydomonas eugame- 
tos. They are sexually incompatible and, as judged by their 
heterologous chloroplast DNA sequences, are only distantly 
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related to each other (Lemieux and Lemieux, 1985). This is 
also expressed in significant differences in the mating pro- 
cesses of the two species. In this study we have worked solely 
with C. eugametos. If sexually compatible strains, referred 
to as mating type plus (mt +) and mating type minus (mt-), 
are mixed, they collide at random (Tomson et al., 1986) and 
adhere together via the mating type-specific agglutinins ex- 
posed on their flagellar surfaces. Adhesion not only holds 
potential partners in close proximity but triggers responses 
that are essential for fusion. For example, the gametes no 
longer swim normally; they remain relatively stationary, 
even though the flagella move vigorously. Under the micro- 
scope, the agglutinating clumps of cells seem to vibrate, a 
phenomenon we call sexually induced twitching. It can be 
artificially induced by adding the agglutinin from one mating 
type to gametes of the other mating type (Homan et al., 
1980). Agglutination also induces a higher level of agglutina- 
bility because more active sites become exposed on the 
flagellar membrane (Demets et al., 1988). It does not pro- 
duce the shedding of the cell wall, as in C. reinhardtii (Claes, 
1971). Cell fusion can only occur at a restricted location on 
the cell surface where a mating structure (or papilla) pro- 
trudes through the cell wall covering the flagellar ridge (Mes- 
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land, 1976). Because the papilla only just penetrates the cell 
wall, cell fusion can only occur if the flagellar ridges of part- 
ners are brought into direct apposition. This is achieved by 
two flagellar properties. First, agglutinins involved in the ini- 
tial adhesions are transported to the flagellar tips (Musgrave 
et al., 1985; Homan et al., 1987b). This tipping of agglutina- 
tion sites was first observed microscopically in C. reinhardtii 
and is a form of flagellar surface motility that has been well 
documented by Bloodgood (e.g. 1987). In this way, the tips 
of partner flagella become aligned and this allows the rest of 
the flagellar surface to become involved in adhesion via ag- 
glutinins that have not been tipped. Because each papilla pro- 
trudes from the cell body at a middle point situated between 
the bases of the two flagella, aligning the flagellar tips auto- 
matically aligns the papillae. When the flagella adhere over 
their entire length, the papillae tend to be brought into mu- 
tual contact. This is assured by a second property, viz., all 
four partner flagella become positioned around the mt- cell 
body (Musgrave et al., 1985). This results in the cells lying 
vis-a-vis with papillar tips confronting each other. After fu- 
sion, the cells remain for many hours just connected by a nar- 
row plasma bridge. About 24 h later, the cell wall is slowly 
digested so that the protoplasts can fuse completely (Mus- 
grave et al., 1983). The agglutination process in C. reinhard- 
tii is similar to that of C. eugametos, but due to the loss of 
the cell wall the whole papillar surface becomes exposed for 
recognition and fusion (Forest, 1983). 

It should now be obvious that sexual agglutination is not 
just a means of cell recognition but a complete mechanism 
for promoting cell fusion. The whole process is directed by 
the agglutinins. They are extremely large ('M.3 × 103 kD) 
glycoproteins extrinsically bound to the flagellar mem- 
branes. They have been visualized as long linear molecules 
(290-340 nm, Crabbendam et al., 1987) and their equiva- 
lents in C. reinhardtii have been depicted as projecting from 
the flagellar surface, somewhat like the hairs of a "bottle 
cleaner" (Goodenough et al., 1985). To be able to monitor 
the presence and distribution of at least one of the aggluti- 
nins, we have been trying to raise monoclonal antibodies to 
the mt- agglutinin of C. eugametos. In the hope that the an- 
tibody could also be useful in mapping the active site of the 
molecule, antibodies were selected that blocked the activity 
of the agglutinin. Several attempts to produce such antibod- 
ies failed but we have now developed a successful protocol 
that has produced several interesting antibodies. Attempts to 
produce similar antibodies against the C. reinhardtii aggluti- 
nins have already been described. Adair (1985) has charac- 
terized a number of mAbs that bind the mt ÷ agglutinin of 
C. reinhardtii, but none of them seem to block agglutinabil- 
ity and they all recognized other additional flagellar compo- 
nents. More recently, Snell et al. (1986) have reported the 
isolation of a mAb that blocks the agglutination of mt+ ga- 
metes and is capable of inducing sexual responses in C. rein- 
hardtii but its usefulness is limited, for it did not label any 
flagellar components in situ using the immunofluorescence 
technique, nor in vitro on blots of components separated 
in sodium dodecyl sulfate-polyacrylamide electrophoresis 
(SDS-PAGE) gels. In contrast, all the mAbs described here 
label the mt- agglutinin of C. eugametos in blots, block the 
biological activity of the isolated agglutinin, and label the 
flagellar surface of live gametes but not vegetative cells using 
the imunofluorescence test. In binding the mt- agglutinin, 

one group of mAbs is able to induce nearly all the responses 
typical of sexual agglutination, including the formation of 
papillae. 

Materials and Methods 

Cell Culture 

Chlamydomonas eugametos, strains Utex 9 (rot ÷) and Utex l0 (rot-) from 
the Collection of Algae, University of Texas, Austin, TX, were cultured on 
agar as described by Mesland (1978). Vegetatively dividing rot- cells were 
obtained as described by Tomson et al. (1985). The light-sensitive rot- 
strain 5.39.4 (Kooijman et al., 1988) was used in some monoclonal antibody 
binding studies. This strain is nonagglutinable in the dark but fully ag- 
glutinable in the light. 

Production of Monoclonal Antibodies 

A BALB/c mouse was immunized intraperitoneally and subcutaneously 
with 3 l.tg mt-  agglutinin (PAS 1.2) together with 60 p.g rot- isoagglutinin, 
i.e., membrane vesicles in the culture medium that are rich in mt-  aggluti- 
nin but contain all the other flagellar glycoproteins (Musgrave et al., 1981). 
The mouse was immunized first in Freund's complete adjuvant and then ap- 
proximately every 2 wk in Freund's incomplete adjuvant, except that the last 
immunization occurred without adjuvant. On day 127, a booster was given 
that contained twice the normal antigen quantity. The monoclonal antibod- 
ies described in this report result from a fusion with the code number 66. 
They are referred to as mAb 66.X, where X is the clone number. 

The fusion of spleen cells from immunized mice with SPz/0-Ag-14 
mouse myeloma cells, the subcloning of positive hybridomas and the growth 
of hybridoma cell lines in mice for the production of ascites were performed 
as described previously (Kolk et al., 1984). Immunoglobulin subclasses 
were determined by double diffusion using subclass-specific goat antisera 
(Nordic Diagnostics, Tilburg, The Netherlands). 

Isolation of FlageUar Membranes and 
Membrane Glycoproteins: Indirect Immunofluorescence 
and Enzyme-linked Immunoassay 

All these methods and assays were performed as described by Homan et al. 
(1987a). 

Mt--Agglutinin Coupling to Sepharose A H  

Sepharose AH (Pharmacia/LKB, Uppsala, Sweden) was prepared as de- 
scribed by the manufacturers. 1 ml packed gel was incubated with 1 ml 
mr- agglutinin solution (23 0.g, titer 29, purified by gel filtration as de- 
scribed by Musgrave et al., 1981), and 10 mg ethyl-3(3dimethylamino- 
propyl)-carbodiimide (Pierce Chemical Co., Rockford, IL) in 0.5 M sodium 
acetate buffer, pH 4.5, for 18 h at 4°C. The slurry was washed five times 
alternatively in 0.2 M acetate, 0.5 M NaCI, and in 0.2 M sodium carbonate, 
pH 8.3, 0.5 M NaCI. The spheres were stored in 10 mM Hepes, 1 mM 
CaCtz, 1 mM MgCI2, pH 7.6 (Hepes buffer) containing NaN3 at 4°C. Con- 
trol Sepharose beads were treated in the same manner except for the omis- 
sion of the rot- agglutinin. 

Agglutination Inhibition Test 

l0 tttl suspension of agglutinin spheres (1:1 vol/vol suspension in Hepes 
buffer) was pipetted into the wells of a fiat-bottomed microtiter plate (Costar 
Europe Ltd., Badhoevedorp, The Netherlands). 50 I.tl hybridoma culture 
supernatant was added to each well and incubated 45 rain at room tempera- 
ture. Spheres were washed twice for 10 min with 100 p.l Hepes buffer, and 
two drops of mt + gamete suspension (1.3 × 107 cells/ml) were added. Ag- 
glutination of the cells to the spheres was monitored microscopically 1-5 
min after adding the gametes. 

The ability of the mAbs to inhibit the agglutinability of glutaraldehyde- 
fixed and live rot- gametes was also tested. 100 p.1 gametes were mixed 
with different concentrations of antibody and at certain times thereafter, live 
mt÷ gametes were added to a sample under a microscope to assess their 
agglutinability. Because the antibody was able to isoagglutinate at least the 
mt+ test gametes, the mixture had to be critically assessed immedialely af- 
ter mixing. With experience, the effect on sexual agglutination could be dis- 
criminated from other effects. 
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SDS-PAGE and Western Blotting 

SDS-electrophoresis in 2.2-20% acrylamide gradient gels and Western 
blotting were performed as described earlier (Homan et al., 1987a). Gels 
were stained with periodic acid Schiff reagent (PAS) I according to Zac- 
charius et al. (1969) to visualize the glycoproteins. This was followed t3y 
silver staining as described by Morrissey (1981) to visualize any other pro- 
teins present. 

Two sources of molecular weight markers were used m calibrate the dis- 
~ribution of proteins in the gels. Firstly, those from Pharmacia and secondly, 
the proteins in erythrocyte ghosts, which can be used as markers because 
they have been so well characterized (Bennett, 1985). 

Immunoprecipitation of Antigens Exposed 
on Intact rot- Gametes 

25 ml mt- gametes (5 × l0 s) metabolically labeled with 35S as described 
by Pijst et al. (1984) were incubated with protein A-purified mAb 66.3 (40 
~tg/ml) in the presence of 7.5 mg/ml colchicine (which inhibits the redistri- 
bution of agglutinin over the flagellar surface, see later in Discussion), for 
30 rain. Nonbound mAb was quickly washed away by ccntrifugation in 10 
mM Hepes buffer, pH 7.6, and the gametes were extracted in 15 ml 1% Tri- 
ton X-100, 150 mM NaC1, l mM EDTA, 2 mM phenyl methane sulphonyl 
chloride, 5 mg/ml aprotinine in 100 mM Tris buffer, pH 8.1, for 1 h at 4~C. 
The insoluble material was spun down at 50,000 g for 60 rain. The superna- 
tanl was incubated with protein A-Sepharose (Pharmacia/LKB) (5 × l0 b 
dpm/7.5 mg protein A-Sepharose) for 18 h at 4°C. After extensively wash- 
ing the beads in 10 mM Tris buffer, pH 8.1, 150 mM NaCI, 0.2% Triton 
X-100, the bound material was dissolved in sample buffer and loaded onto 
a 2.2-20% gradient SDS-polyacrylamide gel. 

Affinity Purification of mAb 66.3 Antigen 
Immobilization of mAb 66.3 onto protein A-Sepharose (Pharmacia/LKB) 
was performed as described by Schneider et al. (1982), using 20 mM 
dimethyl suberimidate (Pierce Chemical Co.) as cross-linker. The immuno- 
absorbant column was used as described in the same paper. 

Purification of mAbs 

Ascites was diluted with an equal volume of PBS and centrifuged for 30 rain 
at 100,000 g. The supernatant was brought to 50% saturation with ammo- 
nium sulphate and stirred for 4 h at 4°C. After centrifugation for 30 min 
at 10,0(30 g, the pellet was dissolved in 50 mM Tris-HCI, pH 8.6, in 150 
mM NaCI and dialysed extensively against the same buffer. This material 
was loaded onto a protein A-Sepharose column and the monoclonal anti- 
bodies were eluted with 50 raM acetate buffer, pH 4.3, in 150 mM NaCI, 
at a rate of  15 ml/h. The mAbs were dialyzed in the buffer in which they 
were to be used in further experiments, and concentrated by ultrafiltration 
(Amicon Diaflo ultrafilters PMI0). 

Labeling mAbs with a Fluorochrome 

mAhs 66.3 and 66.6 were labeled with ftuorescein isothiocyanate (FITC) ac- 
cording to the procedure of Mishell and Shiigi (1980). 

Production of Monovalent Antibodies (Fabs) 
For each of the mAbs 66.3 and 66.6 (both IgGs), optimal conditions for Fab 
formation were determined as monitored by SDS-PAGE using 12.5 % acryl- 
amide gels. The protein A-purified mAb in (3.1 M phosphate buffer, pH 7.5, 
and 4 mM EDTA was incubated with 10 mM 2-mercaptoethanol and mer- 
curipapain (Sigma Chemical Co., St. Louis, MO, 1% of mAb wt/wt). The 
reaction was stopped with iodoacetamide (final concentration, 14 raM). Op- 
ttmal conditions were 5 rain at 4°C for mAb 66.3 and 30 rain at 4~C for 
mAb 66.6. The binding activity of the Fab fragments was tested in an indirect 
immunofluorescence test using a mixture of  rot + and rot- gametes that had 
been fixed in 1.25 % glutaraldehyde after 10 rain agglutination, because such 
gametes expose a high level of antigens at their tips (Homan et al., 1987b). 
Nondegraded IgG, and fragments with a molecular weight >60 kD were 
separated from the mAbs on a Sepharose G-150 column in 0.1 M phosphate 
buffer, pH 7.5, in 20 mM NaCt. The purity of the lab  fragments was 

I. Abbreviations used in this paper: FTA, flagellar tip activation; PAS, peri- 
odic acid Schiff staining. 

checked via HPLC using a Bio-Sil TSK-t25 column and SDS-PAGE. Fobs 
were stored frozen at -70°C in the presence of 1% BSA. 

Influence of mAbs and Fabs on Live Gametes 

The antibodies were dialyzed against 10 mM Hepes buffer, pH 7.6. When 
added to gamete suspensions the cells reacted as if they were involved in 
sexual agglutination. The following aspects of this response were tested. 

rnAb-inducedlsoagglutination and Twitching. Live gametes (10 lal, 1.3 
× 10 ~ cells) were mixed under a microscope with 10 I.tl mAb 66.3 (final 
concentration, 1-200 ~tg/ml) and assessed for the appearance of clumps of 
isoagglutinating cells, or the presence on the surface of the drop of immobi- 
lized cells that twitched violently in a manner resembling agglutination (Ho- 
man et aI., 1980). In the latter case the cells were not bound to others in 
their vicinity. 

mAb-induced Flagellar Tip Activation (FTA) and Papilla Formation. 
100 lal (1.3 x l& cells) gametes were treated for 60 min with various con- 
centrations of mAb 66.3 and then fixed 10 min in 1.25% glutaraldehyde. 
To visualize FTA, the cells were fixed a further 60 min in 5 % glutaraldehyde 
and then washed consecutively in 50, 80, and 96% ethanol. A 10-pA drop 
of the cells was then brought onto a cover slip on a warming plate such that 
the suspension spread and dried within a few seconds. The coverslip was 
then inverted and fixed to a microscope slide using nail varnish. The dry 
preparation was inspected under phase contrast optics. 

To test for the presence of papillae, the cells were subjected to an indirect 
immuuofluorescence test using mAb 44.2 as described by Musgrave et al. 
(1986). mAb 44.2 only binds to the flagellar and papillar surfaces, as it can 
not penetrate the cell wall. Papillae were then visible as fluorescent points 
between the bases of the flagella. 

mAb4nduced Redistribution o f  Flagellar Antigen. 100 )11 gamete sus- 
pension (1.3 × l06 cells) was incubated for 10 rain at room temperature 
with 5 lat hybridoma culture suspension or FITC-labeled mAb 66.3 (final 
concentration, 5 I~g/ml). Gametes were fixed in 1.25% glutaraldehyde and 
washed in PBS followed by incubation with FITC-labeled goat anti-mouse 
lgG (H and L chain, Tago Inc., Burlingame, CA). In some experiments, in- 
cubation with Fab fragments was followed by an incubation with 5 p.l rabbit 
anti-mouse serum before fixation of the cells. In these cases the antibody 
was visualized with a FITC-labeled goat anti-rabbit IgG (Nordic Diagnos- 
tics, Tilburg, The Nether/ands). The cells were photographed under a Zeiss 
photomicroscope fitted with an epifluorescence attachment. 

mAb Effects on Mating E~iciency. 100 ~tl rat- gametes (1.3 × 10 ° 
cells) were incubated with different concentrations of mAb 66.3 or its Fab 
fragments. At certain time intervals they were mixed with 10 p.l mt+ ga- 
metes (3 x 106 cells). After 40 rain the cells were fixed in t.25% 
glutaraldehyde and the number of vis-a-vis pairs was assessed using a 
hemocytometer. The mating efficiency was then calculated as the percentage 
mr- cells that had fused. 

Modification of the rot- Agglutinin 

The mr- agglutinin was modified to test the effect on the binding of mAb 
66.3 after SDS-PAGE and Western blotting. In each case 0.5 tzg agglutinin 
in 25 ~1 10 mM phosphate buffer, pH 7.5, in 10 mM CaCI2 was treated as 
follows: (a) It was incubated with either 2 mg/ml pronase (Sigma Chemical 
Co.), 2 mg/ml trypsin (Merck, Darmstadt, FRG), 0.25 mg/ml thermolysin 
(Sigma Chemical Co.) or subtilisin C or BPN (Sigma Chemical Co.) for 
24 h at 37°C under toluene with and without the addition of 0.5 % SDS. The 
reaction was stopped by the addition of 25 pA double strength sample buffer 
followed by electrophoresis in SDS-polyacrylamide gels. (b)It  was in- 
cubaled at 37°C for 2 h in 100 mM KOH. The reaction was stopped by neu- 
tralizing the sample and adding sample buffer. (c) It was dialyzed in 100 
mM acetate buffer, pH 4.5, and incubated with 10 mM sodium periodate 
at 4°C in the dark for 20 rain. Excess periodate was inactivated with ethyl- 
ene glycol for 1 h at room temperature in the dark, followed by the addition 
of excess sodium borohydride in 65 mM acetate buffer, pH ~.5, for 2.5 h. 
Excess borohydride was then destroyed by acidification to pH 5 using acetic 
acid. The sample was concentrated in an Amicon micro-concentrator and 
dissolved in double strength sample buffer. 

Results 
When we first started raising mAbs specific for the rat- ag- 
glutinin, we screened for hybridomas producing mating 
type-specific antibodies. Although many were found (Ho- 
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Figure 1. Inhibition of mt- agglutinin activity by antibodies. Agglutinin bound to Sepharose AH beads was mixed with a noninhibiting 
(A) and an inhibiting (B) antiserum for 45 min, after which rnt ÷ gametes were added. Bar, 50 ~m. 

man et al., 1987a), none of them recognized the mt-  agglu- 
tinin in immunoblots. Consequently, a more stringent test 
was designed, in which the antibodies were screened for 
their ability to block m t -  agglutinability. The agglutinin was 
coupled to Sepharose AH beads and the ability to inhibit the 
adhesion of mt ÷ gametes to these beads was visually as- 
sessed under the microscope. The effectiveness of the test is 
illustrated in Fig. 1. A mouse was immunized approximately 
every 2 wk with partially purified m t -  agglutinin mixed 
with mt-  isoagglutinin vesicles (Homan et al., 1980). Just 
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Figure 2. Inhibition titer of the serum from mouse 66 during the 
period of immunization. The titer is the highest binary dilution that 
just inhibits the binding of mt- agglutinin to mt + gametes in the 
test illustrated in Fig. 1. The mouse was immunized on those days 
indicated by open triangles and sera were tapped on days indicated 
by closed triangles. On day 127, the mouse was killed and the 
spleen cells isolated for fusion with the hybridoma cell line. 

before each immunization, a blood sample was taken from 
the mouse and tested for its ability to inhibit agglutinin activ- 
ity. A dramatic increase in titer with time was observed (Fig. 
2). After a booster on day 127, 3 d before the fusion was per- 
formed, the inhibition titer was 2" .  Even with this high 
level of activity, <2 % of the ,~1,000 culture supernatants 
from the hybridomas contained inhibiting antibodies. Half  of 
the positives reacted well with extracts of  both mt-  and mt ÷ 

flagellar membranes in an ELISA test, and with both glutar- 
aldehyde-fixed mt-  and mt ÷ gametes in an indirect immu- 
nofluorescence test. The other supernatants did not react 
convincingly in either test, with either mating type. Nine 
clones were eventually isolated. Their characteristics are 
summarized in Table I. They were divided into two classes 
(A and B) based on their negative or positive reaction in the 
assays just mentioned. It must be emphasized, that for the 
sake of comparison, class A mAbs are registered as nonreac- 
tive, however, in the immunofluorescence test, most of the 
mt-  flagella were weakly labeled. Furthermore, class A 
mAbs (as well as class B mAbs) clearly labeled the flagellar 
tips of gametes that had been agglutinating for a few minutes. 
In contrast, class B mAbs always clearly labeled the flagella 
and cell walls of m t -  and mt ÷ gametes. 

A n t i g e n i c i t y  o f  H i g h  M o l e c u l a r  M a s s  G l y c o p r o t e i n s  

To determine the number of proteins in C. eugametos cells 
that are recognized by the mAbs, proteins were extracted and 
then separated in SDS-polyacrylamide electrophoresis gels, 
blotted onto nitrocellulose and the binding of the different 
mAbs visualized. Only the results from using mAb 66.3 
(class A, IgG3) and mAb 66.6 (class B, IgG3) will be 
presented, for they are representative of their classes. Three 
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Table L Charac ter i s t i c s  o f  Cul ture  Superna tan t s  f r o m  Fus ion  66  

Clone Inhibition 
No. lg class titer 

ELISA* IIF¢ 

mt mr* mr- mt" Class 

1 § 2t2 + 

3 IgGs 2 ~o - 
5 IgM 29 + 
6 IgG3 29 + 
7 lgM 2 s - 
8 IgM 29 + 
9 IgM 211 + 
I0 IgG3 212 - 

1 1  IgG~ 2 s - 

+ + + B 
- -  - -  - -  A 

+ + + B 
+ + + B 
- -  - -  - -  A 

+ + + B 
+ + + B 
- -  - -  - -  A 

- - - -  A 

* Extracts of flagellar membrane vesicles were used in the ELISA. 
IIF, indirect immunofluorescence assay using glutaraldehyde-fixed gametes. 

§ No detectable reaction was found with any of the class-specific sera used. 

sources of C h l a m y d o m o n a s  proteins were used, isolated 
rot- gamete flagella, and 1% Triton extracts of intact rot- 

and mt  ÷ gametes. The immunoblots are illustrated in Fig. 3. 
Considering the reaction with m t -  material first, mAb 66.3 
did not bind to any flagellar components and only a single 
band in the region of  the agglutinin band in the extract of 
whole cells. This implied that mAb 66.3 could be specific 
for the m t -  agglutinin. Its lack of  reactivity with an equiva- 
lent agglutinin band in the flagellar preparation was not sur- 
prising because it is a minor  flagellar component,  particu- 
larly compared with the quantities found on the outside of 
the cell bodies (Pijst et al . ,  1983; Kooijman et al . ,  1986). 
mAb 66.3 also labeled a band in the rnt ÷ extract in the re- 
gion of  the m t  ÷ agglutinin. In Fig. 3 (mt+-cell-66.3) it ap- 
pears as one band but it can sometimes be distinguished as 

two that migrate close to each other. To check whether one 
of  the bands was indeed the mt÷ agglutinin, it was purified 
as described by Samson et al. (1987), subjected to SDS- 
PAGE, blotted onto nitrocellulose and immunostained. The 
m t  ÷ agglutinin was indeed clearly labeled (Fig. 3, extreme 
right). The mAb 66.6 bound to several other glycoproteins 
present in both rot- and m t  ÷ samples (Fig. 3), of  which the 
cell wall proteins (230 and 400 kD) and a glycoprotein of  125 
kD (referred to as PAS-6, see Musgrave et al . ,  1981) were the 
prominent species. Although hardly visible on the blot 
(m t - ,  cell, 66.6), a band migrating with the m t -  agglutinin 
was usually faintly labeled. The reactivity with the wall com- 
ponents was to be expected because in an indirect immu- 
nofluorescence test, the walls were always labeled, as men- 
tioned before. 

Figure 3. SDS-polyacrylamide gels and immu- 
noblots of C. eugametos glycoproteins labeled 
with mAbs 66.3 and 66.6. mt-  gamete flagella 
and 1% Triton X-100 extracts of rat- and mt÷ 
intact gametes, as well as a sample of purified 
mt + agglutinin, were separated in a 2.2-20% 
polyacrylamide gradient gel. The glycoproteins 
were stained with periodic acid Schiff reagent 
(PAS) or all the proteins were blotted onto ni- 
trocellulose and immunostained using mAb 
66.3 as a representative of class A mAbs, or 
mAb 66.6 as a representative of class B. The 
positions ot molecular mass markers are indi- 
cated (kD x 10 -3) together with the position 
of the mt-  and mt ÷ agglutinins (arrows). The 
rat + agglutinin was subjected to electrophore- 
sis in a minigel, which explains why the gel and 
blot on the right are relatively small. 
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Figure 4. Immunostaining of fractionated high molecular weight 
proteins extracted from mr- gametes, using mAb 66.3 and 66.6. 
mt-  gametes were extracted in 3 M guanidine thiocyanate and the 
extract (lane A) was fractionated by gel filtration over Sephacryl 
S-500. Fractions were pooled to provide a void volume fraction 
(lane B); a first active fraction (lane C) containing most of the mt-  
agglutinin (titer 26); a second active fraction (lane D), which al- 
though still active (titer 22) was seen to contain the flagellar glyco- 
proteins designated PAS-I.1 and PAS-1.3 (Musgrave et al., 1981); 
and lastly a nonactive fraction containing a variety of glycoproteins 
eluting before the total volume (lane E). The pooled fractions were 
concentrated, subjected to SDS-PAGE and blotted onto nitrocellu- 
lose. Strips from each blot were then stained with mAbs 66.3 and 
66.6, which resulted in the patterns shown here. The positions of 
the mt-  agglutinin (PAS-1.2, lanes A and C) and the two glycopro- 
teins PAS-I.1 and PAS-I.3 (lane D) are indicated by arrows. Some 
molecular mass markers are also included. Note that lane A is PAS 
stained. The arrowhead form of the band stained by mAb 66.3 
in lane C is due to the corner of the gel being folded back during 
blotting. 

Because the mAbs had been selected for their ability to 
block the activity of  the m t -  agglutinin, it was attractive to 
believe that the labeled high molecular mass band in ex- 
tracts of m t -  material (Fig. 3, mt--cell-66.3) was the agglu- 
tinin, and therefore, that the class A mAbs could be used as 
agglutinin probes. To test this possibility more thoroughly, 
we fractionated a guanidine thiocyanate extract of  m t -  ga- 
metes over a Sephacryl S 500 column to separate the larger 
glycoproteins from each other. The nature of this separation 
has been illustrated before (Musgrave et al., 1981), and has 
the advantage that the m t -  agglutinin elutes first and there- 
fore occurs in a nearly pure form in a few fractions. The pres- 
ence of the agglutinin (PAS 1.2) was confirmed by its biologi- 
cal activity. All the fractions were subjected to SDS-PAGE 
to discover their constitution, and some were then pooled to 
provide samples of  (a) void volume proteins; (b) the first ac- 
tive fractions containing the rot-  agglutinin; (c) subsequent 
active fractions that were also seen to contain the flagellar 

Figure 5. Affinity chromatography of C eugametos proteins over 
a column of mAb 66.3. A 1% Triton X-100 extract (lanes A) of rat- 
gametes was eluted over mAb 66.3 bound to protein A-Sepharose. 
Bound material was eluted in glycine buffer pH 2.3 (lanes B). The 
complete extract and the bound fraction were then subjected to 
SDS-PAGE, blotted onto nitrocellulose, and strips of each fraction 
were immunolabeled with mAb 66.7, mAb 66.6, and mAb 44.2. 

glycoproteins PAS-I.1 and PAS-1.3 (Musgrave et al., 1981); 
(d) several major flagellar glycoproteins eluting before the 
total volume. These fractions were again subjected to elec- 
trophoresis, blotted onto nitrocellulose and tested for their 
antigenicity with mAbs 66.3 and 66.6. The results are 
presented in Fig. 4, A - E .  The labeling of several high molec- 
ular mass components is now more obvious than in Fig. 3, 
because of their relatively higher concentration, mAb 66.3 
only bound to a single band in the biologically active frac- 
tions (lane C and to a lesser extent lane D)  that contained 
the typical PAS-1.2 band. We therefore assume that class A 
mAbs are specific for the m t -  agglutinin in rot- gametes. 
mAb 66.6 again bound to several glycoproteins including 
PAS-1.2, as well as the bands PAS-I.1 and 1.3, that migrate 
in the same region of the gel. 

I f  class A mAbs are specific for the m t -  agglutinin, then 
one should be able to demonstrate this by affinity chromatog- 
raphy using mAb 66.3 covalently bound to protein A-Sepha- 
rose, as described by Schneider et al. (1982). An extract of  
mr-  gametes was passed over the affinity column and the 
nonbound material washed through with excess buffer, fol- 
lowed by 0.1% deoxycholate and 0.1% SDS. The bound mate- 
rial was eluted in a glycine buffer, pH 2.3. A sample of  
the original extract and a sample of the bound material were 
then subjected to SDS-PAGE and blotted onto nitrocellu- 
lose. Any components possessing epitopes recognized by 
class A mAbs, were then detected by immunostaining using 
mAb 66.7 (class A, IgM). The presence of other components 
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was tested by staining a separate part of the blot with mAb 
66.6 for cell wall and other components, and mAb 44.2 for 
the presence of major fagellar glycoproteins (Homan et al., 
1987a) that contain epitopes not present on the agglutinins. 
The results are presented in Fig. 5. The bound fraction (Fig. 
5, B lanes) can be seen to contain only three labeled bands 
(see arrows). The one consistently labeled by mAbs 66.7 and 
66.6 migrated at the position of PAS-1.2, the m t -  agglutinin. 
Of the other two bands, one was specifically labeled by group 
A mAbs (66.7, lane B) and the other by group B mAbs (66.6, 
lane B), but they were not normally encountered in extracts, 
for example they were not present in the original extract used 
here (e.g., lane A, 66.7). They may be breakdown products 
of PAS-I.2 that contain the group A and group B epitopes, 
respectively. This result also confirms that class B mAbs 
recognize PAS-1.2. 

In a similar manner, an immunoprecipitation study of the 
specificity of mAb 66.3 was performed. In this case, we 
tested for the presence of antigens exposed on the flagella of 
live gametes. Cells were radioactively labeled during both 
their vegetative and gamete phases by cultivating them in 
35SO4, such that most of the proteins in the extract were ra- 
dioactive; PAS-1.2 is never more than weakly labeled under 
these conditions (Pijst et al., 1984). These radioactive live 
gametes were then treated 30 min with mAb 66.3 in the pres- 
ence of colchicine (7.5 mg/ml, to prevent the transport of 
surface components, see Discussion) after which they were 
extensively washed and extracted into 1% Triton X-100. Ma- 
terial in solution that was bound to mAb 66.3 was precipi- 
tated with protein A-Sepharose; the Sepharose beads were 
thoroughly washed, and all bound material, including the an- 
tibodies, were taken up into sample buffer for SDS-PAGE. 
When the gel was PAS-stained only an agglutinin band was 
visible (not shown). The gel was then dried and any radioac- 
tive proteins were detected in an autoradiogram. While the 
original extract produced a mass of bands on the autoradio- 
gram, the bound material produced no convincing bands (not 
shown). Though this is a negative result, it illustrates that 
mAb 66.3 did not precipitate any of the many components 
that had incorporated 35S. It did precipitate the agglutinin, 
but this was not sufficiently radioactive to be detected in the 
autoradiogram. Nonetheless, we may safely conclude that 
class A mAbs specifically bind the active form of the aggluti- 
nin on the fagella of m t -  gametes. This is confirmed by the 
fact that nonagglutinable m t -  vegetative cells or gametes of 
light-sensitive strains in the dark (Kooijman et al., 1986), 
did not respond to mAb 66.3 as did gametes (see later). Simi- 
larly, when these nonagglutinating m t -  cells were fixed, 
they could not be shown to bind mAb 66.3 in the indirect im- 
munofluorescence assay (Kooijman et al., 1987), and as such 
could be distinguished from m t -  gametes, because some ga- 
mete flagella invariably fluoresced weakly. In addition, the 
relatively nonagglutinable m t -  flagella of fused pairs, in 
general, did not bind mAb 66.3. This represents a marked 
change from the labeling of the same gamete flagella just be- 
fore cell fusion, when they readily bound mAb A antibodies, 
especially at the flagella tips (Homan et al., 1987b). When 
extracts of vegetatively dividing m t -  cells were subjected to 
SDS-PAGE and blotted onto nitrocellulose, mAb 66.3 did 
not immunostain any high molecular weight components. 

We conclude that class A mAbs (mAb 66.3) specifically 
recognize the m t -  agglutinin in m t -  cells, whereas class B 

mAbs recognize an epitope shared by several glycoproteins, 
including the m t -  agglutinin. 

The nature of the antigenic sites was tested by subjecting 
partially purified agglutinin to various treatments, after 
which it was analyzed by SDS-PAGE, blotted onto nitrocel- 
lulose and immunostained. Treatment with pronase, trypsin, 
thermolysin, or subtilisin or 100°C for 5 min had no effect 
on the binding of any of the mAbs. In contrast, mild alkali 
destroyed all antigenicity towards all the mAbs. This treat- 
ment disrupts O-glycosidic links with serine and threonine 
(Sharon, 1975). Surprisingly then, treatment with 10 mM 
periodate, which opens up the ring structure of many sugars 
containing vicinal hydroxyl groups, did not affect the binding 
of class A mAbs, but abolished that of class B mAbs. This 
suggests that both classes of mAbs recognize sugar-contain- 
ing epitopes but that the class A epitope contains sugars that 
are insensitive to periodate, at least under the conditions 
tested. 

I n h i b i t i o n  o f  m t -  A g g l u t i n a b i l i t y  

All the mAbs characterized here were selected for their abil- 
ity to inactivate isolated m t -  agglutinin bound to Sepharose. 
However, their ability to inactivate glutaraldehyde-fixed m t -  

gametes seemed to depend on the class to which they be- 
longed. Thus none of the class A mAbs inhibited fixed ga- 
metes, although all of the class B mAbs did. There is a trivial 
explanation for this peculiar finding that stems from the fact 
that the agglutinins are minor components, and therefore 
sparsely distributed over the flagellar membrane. It is as fol- 
lows: class A mAbs bind the m t -  agglutinin on gamete 
flagella and block the sexual site, but only one of the antigen- 
binding sites on the antibody is used, leaving the other free 
to bind antigens on m t  + tester gametes. Thus sexual aggluti- 
nation is prevented, but is replaced by antibody-induced ag- 
glutination. This hypothesis was confirmed by the capability 
of class A mAbs to induce the isoagglutination of fixed m t -  

gametes with live m t -  gametes. Isoagglutination was abol- 
ished when a small quantity of m t -  agglutinin was added. 
Reasoning further, class B mAbs effectively block the ag- 
glutinability of fixed gametes because they never have a free 
binding site, for they can react with several other flagellar 
glycoproteins. As proof of this explanation, we made Fab 
fr~igments from each class of mAbs. As suspected, Fabs of 
class A mAbs completely blocked the agglutinability of fixed 
m t -  gametes and isolated m t -  agglutinin coupled to Sepha- 
rose (for a summary of mAb and Fab properties, see Table 
III). It is important to realize that such a fragment is effective 
because it indicates that the antigenic site is close to, or part 
of, the sexual site. In contrast, Fabs of class B mAbs did not 
inhibit m t -  agglutinability, even though the intact antibody 
did. One can predict therefore that the class B epitope lies 
outside, yet close to the sexual site. The intact class B mAb 
is now seen as blocking m t -  agglutinability because it steri- 
cally hinders access to the sexual site. 

Class A and B mAbs were also able to prevent the aggluti- 
nation of live m t -  gametes, although only concentrations 
above 20 Ixg/ml were effective (Table II). 

Although mAb 66.3 has been shown to bind the m t  ÷ ag- 
glutinin, it did not inhibit the activity of fixed or living m t  ÷ 

gametes. The antigenic epitope may therefore be at a distance 
from the sexual binding site. 
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Table H. Biological Responses Induced by mAb 66. 3 in Live Gametes 

Twitch 
effect 

Inhibition mAb 
sex agglutination isoagglutination 

mAb 
conc. m t  m t  + m t  m t  + m t -  r a t  + 

FTA 

r a / -  m t  + 

Tip trans* Papillae 

m t -  m t -  

# g / r a l  

0 . . . . .  

2 - - - + +  - 

5 - - - ++ + -  
10 - - - + +  + 

20 - - - + + 
50 + -  - - + -  + 

100 + - - - + 
200 + - - - + 

+ + -  + -  + - 

+ + -  + -  + - 

+ + -  + -  + +  - 

+ + -  + -  + +  - 

+ + -  + -  + +  - 

+ + -  + -  + +  + 

+ + -  + -  + +  + 

+ + -  + -  + +  + 

( - )  No effect. ( + - )  Effect by some cells. (+ )  Effect by many cells. 
* Transport of agglutinin to the flagellar tips. 

Biological Effects o f  Class A m A b s  

Assuming that class A mAbs bind the mt- agglutination 
site, and in this respect resemble the mt + agglutinin, it is of 
interest to know whether they can induce the responses typi- 
cal of sexual agglutination. If so, this would imply that the 
agglutinins function as both ligand and receptor during ag- 
glutination, and that there is no need to postulate the pres- 
ence of other molecules responsible for invoking the re- 
sponses needed for cell fusion. We tested the effect of 
different concentrations of class A mAbs (mostly mAb 66.3) 
on mt ÷ and mt- gametes for antibody-induced agglutina- 
tion, a change in flagellar movement, gamete activation (ex- 
posure of more agglutination sites), changes in the morphol- 
ogy of the flagellar tips, transport of mAbs to the flagellar 
tips, formation of papillae, and the general effect on gamete 
cell fusion. 

Ant ibody- induced  Isoagglut inat ion 

Because the class A mAbs are at least divalent, we expected 
them to isoagglutinate both mt- and mt + living gametes. 
Surprisingly, that was not the case. mr- gametes were not 
isoagglutinated by mAb 66.3, whereas mt + gametes were 
strongly isoagglutinated (Table II). This peculiar fact is not 
consistent with the report that fixed mt- gametes treated 
with mAb 66.3 isoagglutinated both mr- and mt + live ga- 
metes (previous section). Perhaps the antigenic sites on 
fixed mr- gametes are more exposed than on live mt- ga- 
metes, whereby cross-linking (isoagglutination) is made eas- 
ier. When a multimeric mAb was tested, i.e., mAb 66.7, 
which is an IgM (class A), then rot- gametes were weakly 
isoagglutinated. 

Twitching 

One of the characteristics of sexual agglutination is a change 
in flagellar movement, whereby gametes twitch and vibrate. 
This is best seen when isolated mr- agglutinin is added to 
mt + gametes, the cells congregate in loose films at the sur- 
face of the medium and, without agglutinating, twitch vio- 
lently (Homan et al., 1980). This twitching response was 
also induced by mAb 66.3 (Tables II and III) in mr- as well 
as in mt+ gametes. The mt + response was less obvious he- 

cause the cells tended to isoagglutinate and sediment to the 
substrate, but at high concentrations twitching was clearly 
visible, probably because the antigenic sites were saturated. 

Flagellar Tip Act ivat ion  

During sexual agglutination, the flagellar tip morphology is 
known to change. This was discovered for C. reinhardtii 
(Mesland et al., 1980) but is more conspicuous in C. eu- 
gametos because the central pair of microtubules normally 
project much further than the peripheral tubules, producing 
an obviously pointed end (Elzengaet al., 1982). As a result, 
flagellar tip activation (FTA) can be assessed under the light 
microscope as a change from pointed to dome-shaped flagel- 
lar tips (Fig. 6, A and B, respectively). The effect of mAb 
66.3 was peculiar in that the pointed tip was maintained even 
though the subapical region became swollen (Fig. 6 C). The 
effect was variable in that the flagellar tips of some cell lines 
became more rounded than others, but for the C. eugametos 
strains defined here, the mAb-induced FTA was always 
different to that induced during sexual agglutination. 

Induc t ion  o f  Ant igenic i ty  and Tipping 

The most dramatic result of treating live gametes with mAb 
66.3 is the exposure of new antigenic sites (Demets et al., 
1988) together with their redistribution to the flagellar tips. 
When gametes were treated with mAb 66.3 in the presence 
of colchicine, briefly fixed in glutaraldehyde and subjected 
to the immunofluorescence test, only weak fluorescence on 
some flagella was detected. However, when live cells were 
just treated with mAb 66.3 and fixed at subsequent time in- 
tervals, the labeling of all flagella increased dramatically and 
after 15 min, the label had become concentrated at the flagel- 
lar tips. The intensity of the fluorescence was then so strong 
that it could be photographed under incident light (Fig. 7). 
We do not know to what extent the apparent increase in anti- 
genicity is simply due to the concentration of the fluorescent 
label at the flagellar tips. The phenomenon, called tipping, 
has been described by Homan et al. (1987b) for C. eu- 
gametos, using the same mAbs, and by Goodenough and 
Jurivich 0978) and Bloodgood et al. 0986) for C. reinhardtii 
using a polyclonal serum and mAbs, respectively, both 
raised against vegetative cell components. It is here sufficient 
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Figure 6. Flagellar tip morphology before agglutination (A), during sexual agglutination (B), and during treatment with mAb 66.3 (C). 
Cells were fixed in glutaraldehyde, washed in an alcohol series, and dry-mounted on a coverslip. After inverting the coverslip, the flagella 
were photographed through phase contrast optics. Bar, 5 ~tm. 

to note that it occurred in both mating types in a manner that 
resembled the tipping of agglutination sites during sexual ag- 
glutination. Neither vegetative cells, light-sensitive mt-  ga- 
metes in the dark nor vis-a-vis pairs exhibited tipping when 
incubated with mAb 66.3. 

Format ion  o f  Papil lae 

The climax of  gamete activation is the formation of  a plasma 
papilla by which the cell will eventually fuse with its part- 
ner. When the plasma membrane of  the cell body protrudes 

Figure 7. Redistribution of the flagellar agglutinin after treatment of mt- gametes with mAb 66.3-FITC. mt- gametes were treated for 1 h 
with antibody, fixed in glutaraldehyde and again treated with mAb 66.3-FITC to saturate the antigenic sites. The cells were then pho- 
tographed under a fluorescence microscope fitted with phase contrast optics using weak incident light. In this way the fluorescent flagellar 
tips can be seen in relation to the rest of the cell in a single photograph. Bar, 20 I.tm. 
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Figure 8. Induction of papillae by mAb 66.3 in mt-  gametes. Gametes were treated with 200 ~tg/ml mAb 66.3 for 60 min. They were 
then fixed in glutaraldehyde, washed, and tested for the presence of papillae in an indirect immunofluorescence test using mAb 44.2. While 
the whole plasma membrane surface is highly antigenic for this antibody, only surfaces exposed outside the cell wall can be labeled, viz., 
the flagella and papillae. Bar, 20 P.m. 

through the cell wall, membrane antigens are exposed that 
can be detected on the m t -  cell with mAb 44.2 (Musgrave 
et al., 1986; Homan et al., 1987a). In an immunofluores- 
cence assay, the presence of papillae on a large number of 
cells can be easily judged (Fig. 8). When m t -  cells were 
treated with high concentrations of mAb 66.3, they were in- 
duced to form papillae. The mAb concentration needed was 
40 times higher than that needed to induce a change in flagel- 
lar movement or tipping (Table II). It was similar to that 
needed to block the agglutinability of live m t -  gametes, im- 
plying that most of  the flagellar agglutinins had to be oc- 
cupied before the induction signal was strong enough to trig- 
ger the outgrowth of papillae. 

F u s i o n  C o m p e t e n c e  

Having looked at the individual effects of mAb 66.3 on live 
gametes, we wondered what the general effect on the sexual 
competence of the cells was. On the one hand, agglutination 
is inhibited, but on the other hand, the gametes are activated 
for cell fusion. With this in mind, the treatment of  m t -  ga- 
metes with different concentrations of rnAb 66.3 was tested 
for its effect on cell fusion. The experiment was deliberately 
performed with cells that exhibited a relatively low level of 
mating competence, to detect positive as well as negative 
effects. Only 25 % of the control cells had fused after 40 min 
with an excess of m t  + gametes. The results are presented in 
Fig. 9. The treatment had both negative as well as positive 
effects on cell fusion, dependent upon the concentration and 
the duration of  the treatment. An optimal effect (maximum 
pair formation) was produced by intermediate concentra- 
tions of antibodies (10 and 20 ~tg/ml) added together with the 
m t  ÷ gametes, i.e., without a pretreatment of the m t -  ga- 
metes. The positive effect became less with a pretreatment, 

and the optimal concentration shifted to the lower end of the 
scale. High concentrations that had previously been shown 
to block agglutination, always had a strong negative effect on 
mating competence, and with oretreatment, even lower con- 
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Figure 9. Effect of mAb 66.3 on mt-  mating efficiency. Batches of 
rot- gametes were treated with different concentrations of mAb 
66.3 for different lengths of time before adding mt ÷ partners. After 
40 min, during which the same concentrations of mAb 66.3 were 
present, the mixture was fixed in glutaraldehyde. The number of 
fused mt-  gametes was then calculated as a percentage of the total 
number of mt-  cells. This is referred to as the mating efficiency. 
The length of the mAb pretreatment in minutes is expressed within 
the figure as t = x'. The antibody concentrations are plotted on a 
log scale. 
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Table IlL Responses Exhibited by mt-  Gametes 
o f  C. eugametos Treated with mAb 66.3 (Class A) or 
mAb 66. 6 (Class B) or their Fabs, Compared with 
Responses Induced during Sexual Agglutination 
with mt ÷ Gametes 

66.3 66.6 

Response mAb Fab mAb Fab 

mt÷ 

gamete 

Inh ib i t ion  o f  + 

a g g l u t i n a t i o n  

T w i t c h i n g  + 

F T A  

A g g l u t i n i n  + 

t i pp ing  

F o r m a t i o n  o f  + 

pap i l l ae  

+ + NR 

+ - + 

_ _ A~_ 

+ -- + 

+ - + 

NR, not relevant; ( +  and - )  response and no response. 

centrations inhibited fusion. Nonetheless, antibodies can 
have a stimulating effect on fusion. In this respect, it is 
significant to note that Fab fragments from mAb 66.3 always 
inhibited mt-  agglutination and cell fusion and never stimu- 
lated them. This is significant because the Fabs were unable 
to activate the gametes (Table III). For example, they did not 
induce the exposure of more agglutinins, or tipping. Thus the 
only effect they seem to have is to block agglutination. When 
rot- gametes were treated with Fabs from mAb 66.3, and 
subsequently cross-linked with goat anti-mouse IgG, tipping 
soon became evident. However, we have not tested this com- 
bination of treatments for any other effects on sexual activa- 
tion. In conclusion then, it seems that it is the cross-linking 
of agglutinins that activates the gametes for fusion. 

Discussion 

The mt-  agglutinin from C. eugametos is a poor antigen in 
mice. The immune response was dominated by antibodies 
recognizing epitopes containing methylated sugars, which do 
not occur on either mt-  or mt ÷ agglutinins, but are prevalent 
on several of the major flageUar glycoproteins (Gerwig et al., 
1984; Homan et al., 1987a) that contaminate the antigen 
preparation. Because the synthesis of these sugars is a strain- 
specific property (Schuring et al., 1987), by selecting differ- 
ent mating types with different patterns of methylation, one 
can use the antibodies as mating type-specific labels. How- 
ever, it has hampered the production of agglutinin-specific 
antibodies. Only by using the hyperimmunization scheme 
presented here and by selecting for antibodies blocking ag- 
glutinability, were such mAbs eventually produced. The fact 
that these mAbs initially gave negative results when screened 
in an ELISA or an immunofluorescence assay, illustrates how 
easily they can be overlooked. Significantly, none of the 
mAbs raised against C. reinhardtii agglutinins has so far 
proved to be agglutinin specific (Adair et al., 1985; Snell et 
al., 1986), and only one, again selected in an adhesion- 
blocking assay, has been shown to recognize the sexual bind- 
ing site (Snell et al., 1986). 

The antibodies fall into two classes with those in class A 
being the most interesting because in mt-  gametes, they are 
specific for the mt-  agglutinin. The arguments are as fol- 
lows. (a) Both the intact antibody as well as the Fab fragment 
block mt-  agglutinability (Table III). This implies that they 
bind an epitope in or very close to the sexual binding site, 
and consequently one may expect the epitope to be rare if not 
unique. (b) In blots of separated mt-  gamete proteins, only 
the mt-  agglutinin was labeled. Similarly, the mt-  aggluti- 
nin was the only component consistently purified by affinity 
chromatography or immunoprecipitation using class A 
mAbs. (c) Class A mAbs did not bind to mt-  cells that were 
not agglutinable, e.g., vegetative cells, gametes of light-sen- 
sitive strains that were kept in the dark (Kooijman et al., 
1987) and gametes that had fused. In addition, these cells did 
not exhibit any sexual responses when treated with class A 
mAbs, as did mt-  gametes. In the light of these data, it was 
a surprise to discover that the class A epitope was not mt-  
specific but also occurred on the mt* agglutinin (though not 
in the agglutination site) as well as on a second mt ÷ glyco- 
protein. Perhaps both agglutinins are related, having evolved 
from a common gene. In support, the composition of both 
molecules is similar, with both being dominated by a prepon- 
derance of arabinose, galactose, hydroxyproline, glycine and 
serine (Samson et al., 1987). However, the class A epitope 
probably contains O-glycosidically bound sugars, as wit- 
nessed by its NaOH sensitivity. Therefore the cross- 
reactivity of these mAbs may simply reflect the common 
presence of an unusual oligosaccharide. They are also dis- 
similar in form, for while they are both large linear proteins, 
the mt ÷ agglutinin is more rigid with a globular end, 
whereas the mt-  agglutinin is stringy and without obvious 
asymmetry (Crabbendam et al., 1987). 

Because class A mAbs are specific for the agglutinin on 
mt-  gamete flagella, they can be used to monitor its distri- 
bution during sexual agglutination. A prerequisite is that one 
must be able to distinguish the mating types from each other, 
for the same epitope is also present on mt ÷ gamete flagella. 
A solution to this problem is to use mAb 66.3 coupled to 
FITC, in combination with a mating type-specific mAb (e.g., 
mAb 44.2, see Homan et al., 1987a) coupled to tetramethyl 
rhodamine isothiocyanate. The mt-  gametes can then first 
be selected before registering the distribution of the aggluti- 
nin via mAb 66.3. 

Class B mAbs probably inhibit agglutination by sterically 
hindering the agglutination site, for the intact antibody in- 
hibits agglutination but the Fab fragments do not (Table III). 
The antigenic epitope occurs on several flagellar glycopro- 
teins and also the cell wall proteins. This cross-reactivity is 
interesting in view of Adair's experience with mAbs raised 
against the mt- agglutinin of C. reinhardtii. His group I 
mAbs also gave a strong immunostain with cell wall proteins 
of C. reinhardtii. Based on this result and the obvious 
similarity in composition, Cooper et al. (1983) speculated 
that the agglutinins may have evolved from cell wall progeni- 
tors. In C. eugametos, the wall and agglutinin glycoproteins 
are similar in composition (Samson et al., 1987; Schuring 
et al., 1987), but it is difficult to claim a significant relation- 
ship until we have more idea of the variation that exists be- 
tween the glycoproteins. Nonetheless, those proteins recog- 
nized by class B mAbs are also characterized by the lack of 
methylated sugars in their carbohydrate content (Homan et 
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al., 1987a), so this is further justification for classifying 
them as a group of related compounds. 

Although class A mAbs only bind the mt-  agglutinin on 
the mt- flagellar membrane, they and the Fabs derived from 
them completely block agglutination. This indicates that the 
mt- agglutinin is the receptor for the mt ÷ agglutinin and 
thus the only component directly involved in mr- agglutina- 
tion. This is an important conclusion because until now, an 
alternative possibility was that the mt÷ agglutinin was rec- 
ognized by an as yet unidentified receptor. In binding the 
mt-  agglutinin, class A mAbs seem to behave as if they 
were mt ÷ gametes, for treated mt- gametes reacted as if 
partaking in sexual agglutination (Table III). There was only 
one exception, normal flagellar tip activation did not occur. 
While it can be argued that the sub-tip region did swell, there 
was no apparent extension of the peripheral microtubules, 
as occurred during sexual agglutination. We think that the 
swelling is an artifact of the technique, and is due to the ac- 
cumulation of antigen and antibody in this region. It is not 
obvious why tip activation should not occur as normal, espe- 
cially because later events, such as the protrusion of the 
papilla, all occurred normally. This implies that the intracel- 
lular signal for papillar induction is not dependent on the 
normal change in tip morphology, as has been suggested for 
C. reinhardtii (Mesland et al., 1980). Because mAb 66.3 is 
specific for the mt- agglutinin, it also indicates that the 
stimulation of one flagellar component is sufficient to induce 
practically all the sexual responses without the need to in- 
voke secondary receptors at later stages of agglutination. In- 
duction is not an all or nothing event but a graduated re- 
sponse, with low concentrations of antibody (or flagellar 
membrane material, see Mesland and van den Ende, 1978) 
triggering responses typical of the first stages of agglutina- 
tion, such as twitching, whereas much higher concentrations 
are needed to trigger the formation of the papillae. This indi- 
cates that the chronological succession of events that climax 
in cell fusion, involves an increasing number of agglutinins 
to raise a particular signal level through different thresholds. 
This model suggests that gametes can agglutinate without be- 
ing able to fuse because they do not have enough agglutinins 
exposed on their flagella to induce later events. It is then not 
necessary to invoke secondary receptors that produce a spe- 
cific papillar signal, as was argued by Solter and Gibor 
(1977, 1978). 

ls it essential that an antibody bind to the sexual agglutina- 
tion site to induce the sexual responses? Apparently not, for 
the responses induced by mAb 66.3 can also be induced by 
mAb 66.6 that binds outside the sexual site (Table III). Work- 
ing with C. reinhardtii, Claes (1977) and Goodenough and 
Jurivich (1978) found that polyclonal antisera raised against 
the flagella of vegetative cells, were also able to induce sex- 
ual responses in gametes. Because we may assume that the 
agglutinins were absent from the original antigen, it is un- 
likely that the sexual binding site of the gametes was bound 
and activated. One may even doubt whether the agglutinin 
was bound at all. Indeed, R. Kooijman (personal communi- 
cation) has recently found that the lectin, wheat germ agglu- 
tinin, neither binds to the mt-  nor to the mt ÷ agglutinin of 
C. eugametos, yet is an effective surrogate agglutinin. We 
think the lectin binds a component that is naturally com- 
plexed with the agglutinin, and therefore via cross-linking is 
able to induce the various responses, but it is not the binding 
site per se that instigates the reaction chain. Thus agglutina- 

tion need not change the conformation of the agglutinins, but 
aggregate them into patches to produce an intracellular sig- 
nal. At the same time, patching of receptors could promote 
their attachment to the submembrane cytoskeleton and con- 
sequently their transport to the flagellar tips. Cross-linking 
seems to be essential because Fab fragments did not induce 
tipping or any other biological response (Table III). Simi- 
larly, Goodenough and Jurivich (1978) found for C. rein- 
hardtii that a polyclonal serum raised against isolated flagella 
induced a sexual response in gametes, whereas the Fab frag- 
ments from the same serum did not. 

A significant difference seems to exist between the trans- 
port of flagellar components in C. eugametos and C rein- 
hardtii. In the latter, the major membrane glycoprotein can 
be transported over the flagellar surface (for a review, see 
Bloodgood, 1987). In C. eugametos, that does not seem to 
be the case, for during sexual agglutination, the major glyco- 
proteins do not become redistributed (Homan et al., 1987b), 
and when live gametes are treated with monoclonal antibod- 
ies directed against these proteins, there is no redistribution 
equivalent to that described here for mAb 66.3. It is possible 
that the major glycoproteins in C. eugametos flagellar mem- 
branes are bound to a rigid submembrane skeleton. This 
would suggest that the transport of minor components such 
as the agglutinins, is restricted to tracks that lie between the 
rigid domains. 

It is interesting that colchicine, that prevents the polymer- 
ization of tubulin, effectively inhibits tipping. Although a 
high concentration of colchicine was used (7.5 mg/ml) the 
cells were not adversely affected. Colchicine not only in- 
hibits tipping but can also prevent the formation of ag- 
glutinating clumps, apparently by reducing agglutinability, 
even though the cells do remain weakly agglutinable (Demets, 
R., personal communication). Not surprisingly therefore, 
pair formation can be completely prevented by colchicine, as 
was first reported by Hoffman and Goodenough (1980), who 
used a similarly high concentration of colchicine (10 mg/ml) 
to treat C. reinhardtii. What is colchicine affecting, a tubu- 
lin-dependent transport process or some other phenomenon? 
Flagellar surface motility, that is usually visualized as the 
saltatory movement of polystyrene beads, is not inhibited by 
colchicine (Bloodgood, 1977; Hoffman and Goodenough, 
1980). However, Hoffman and Goodenough found that the 
binding of the beads to the flagellar surface was clearly in- 
hibited. Perhaps colchicine can nonspecifically affect flagel- 
lar adhesions, for example by preventing the aggregation of 
adhesion receptors into effective contact sites. This process 
may involve the polymerization of tubulin. An alternative is 
that tipping itself is affected, for while saltatory motility may 
be insensitive to colchicine, it is not the only surface trans- 
port phenomenon. Bloodgood et al. (1986) have also de- 
scribed the bulk redistribution of flagellar glycoproteins as 
a result of treating live cells with mAbs, and their data indi- 
cate that the mechanism involved is different to that which 
accounts for saltatory movement. 

Intact mAbs have been shown to enhance sexual cell fusion 
even though they can block agglutination. What is the expla- 
nation of this paradox? mAb 66.3-agglutinin interactions 
seem to activate gametes as effectively as agglutinin-aggluti- 
nin interactions. Thus mAb-treatments that do not seriously 
hinder agglutinability could promote cell fusion. In particu- 
lar, the ability of the antibodies to induce the exposure of 
more antigenic sites is important, mAb 66.3 is specific for 
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the agglutination site, thus more antigenic sites is synony- 
mous with more agglutination sites. Thus a critical concen- 
tration of mAb 66.3 could block agglutination sites and yet 
be compensated by the exposure of new sites, which allow 
the gamete-gamete adhesions necessary for cell fusion. 

We thank Dr. E Klis, P. van Egmond, and R. Kooijman for purifying the 
m t  ÷ agglutination factor and testing its antigenicity with mAb 66.3. 
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