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ABSTRACT

Protein–DNA bindings between transcription factors
(TFs) and transcription factor binding sites (TFBSs)
play an essential role in transcriptional regulation.
Over the past decades, significant efforts have
been made to study the principles for protein–DNA
bindings. However, it is considered that there are no
simple one-to-one rules between amino acids and
nucleotides. Many methods impose complicated
features beyond sequence patterns. Protein-DNA
bindings are formed from associated amino acid
and nucleotide sequence pairs, which determine
many functional characteristics. Therefore, it is de-
sirable to investigate associated sequence patterns
between TFs and TFBSs. With increasing computa-
tional power, availability of massive experimental
databases on DNA and proteins, and mature data
mining techniques, we propose a framework to
discover associated TF–TFBS binding sequence
patterns in the most explicit and interpretable form
from TRANSFAC. The framework is based on asso-
ciation rule mining with Apriori algorithm. The
patterns found are evaluated by quantitative meas-
urements at several levels on TRANSFAC. With
further independent verifications from literatures,
Protein Data Bank and homology modeling, there
are strong evidences that the patterns discovered
reveal real TF–TFBS bindings across different TFs
and TFBSs, which can drive for further knowledge
to better understand TF–TFBS bindings.

INTRODUCTION

We first introduce protein–DNA bindings in this section.
Existing bioinformatics methods are briefly described,
followed by the layout of this article.

Protein–DNA binding

Protein–DNA binding plays a central role in genetic
activities such as transcription, packaging, rearrangement,
and replication (1,2). Therefor, it is very important to
identify and understand the protein–DNA bindings
as the basis for further deciphering biological systems.
We focus on protein–DNA bindings between transcrip-
tion factors (TFs) and transcription factor binding sites
(TFBSs), which are the primary regulatory activities
with abundant data support. TFs bind in a sequence-
specific manner to TFBSs to regulate gene transcription
(gene expression). The DNA binding domain(s) of a TF
can recognize and bind to a collection of similar TFBSs,
from which a conserved pattern called motif can be
obtained. TFBSs, the nucleotide fragments bound by
TFs, are usually short (usually about 5–20 bp) in the cis-
regulatory/intergenic regions and can assume very differ-
ent locations from the transcription start site.

It is expensive and laborious to experimentally identify
TF–TFBS binding sequence pairs, for example, using
DNA footprinting (3) or gel electrophoresis (4). The tech-
nology of chromatin immunoprecipitation (ChIP) (5,6)
measures the binding of a particular TF to DNA of
co-regulated genes on a genome-wide scale in vivo, but
at low resolution. Further processing are needed to
extract precise TFBSs (7). TRANSFAC (8) is one of the
largest and most representative databases for regulatory
elements including TFs, TFBSs, nucleotide distribution
matrices of the TFBSs and regulated genes. The data are
expertly annotated and manually curated from
peer-reviewed and experimentally proved publications.
Other annotation databases of TF families and binding
domains are also available [e.g. PROSITE (9), Pfam
(10)]. It is even more difficult and time-consuming to
extract high-resolution 3D TF–TFBS complex structures
with X-ray crystallography or nuclear magnetic resonance
(NMR) spectroscopic analysis. Nevertheless, the high-
quality TF–TFBS binding structures provide valuable
insights into verifications of putative principles of

*To whom correspondence should be addressed. Tel: 852 26098440; Fax: 852 26035024; Email: kcwong@cse.cuhk.edu.hk

6324–6337 Nucleic Acids Research, 2010, Vol. 38, No. 19 Published online 6 June 2010
doi:10.1093/nar/gkq500

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



binding. The Protein Data Bank (PDB) (11) serves as a
representative repository of such experimentally extracted
protein–DNA (in particular TF–TFBS) complexes with
high resolution at atomic levels. However, the available
3D structures are far from complete. As a result, there is
strong motivation to have automatic methods, particular-
ly, computational approaches based on existing abundant
data, to provide testable candidates of novel TF domains
and/or TFBS motifs with high confidence to guide and
accelerate the wet-lab experiments.

Existing methods

The first attempt of computational methods related
to TF–TFBS bindings was to discover the motifs of TF
domains and TFBSs separately. Moreover, researchers
have been trying hard to generalize the one-to-one
binding codes from existing 3D structures. Data mining
methods have also been proposed with feature transform-
ations and machine learning to decipher complicated
binding rules. They are briefly described as follows:

Motif discovery. TF domains and TFBSs sequences are
somewhat conserved due to their functional similarity
and importance. By exploiting conservation in the se-
quences, Bioinformatics methods called motif discovery
save some of the expensive and laborious laboratory ex-
periments. Motif discovery (6) can be categorized into two
types: (i) motif matching and (ii) de novo motif discovery.
(i) Motif matching is to identify putative TF domains
(9,10) or TFBSs (12) based on motif knowledge
obtained from annotated data. (ii) de novo motif discovery
predicts conserved patterns without knowledge on their
appearances, based on certain motif models and scoring
functions (13,14) from a set of protein/DNA promoter
sequences with similar regulatory functions. While
de novo motif discovery is successful for well-conserved
TF functional domain motifs, the counterpart for TFBSs
remains very challenging with poor performances on real
benchmarks (6,15,16). A significant limitation of motif
discovery is the lack of linkage between the binding coun-
terparts for revealing TF–TFBS relationships.

One-to-one binding codes. Numerous studies have been
carried out to analyze existing protein–DNA binding 3D
structures comprehensively (2,17,18) or with focus on
specific families (1) [e.g. zinc fingers (19)]. Various
properties have been discovered concerning, e.g. bonding
and force types, TF conservation and mutation (1), and
bending of the DNA (17). Some are already applicable to
predict binding amino acids on the TF side (20). However,
annotated data are far from complete. Alternatively, re-
searchers have sought hard for general binding ‘codes’
between proteins and DNA, in particular the one-to-one
mapping between amino acids from TFs and nucleotides
from TFBSs. Despite many proposed one-one binding
propensity mappings (1,21,22), it has come to a consensus
that there are no simple binding ‘codes’ (23).

Data mining. In the hope of better understanding for
protein–DNA bindings, many data mining approaches
have also been proposed (24). Researchers employ and

transfer additional detailed information such as base com-
positions, structures, thermodynamic properties (25,26)
as well as expressions (27), into sophisticated features to
fit into certain data mining techniques. Although some
approaches may provide interpretable rules, most of
them have stringent data requirements which cannot be
obtained trivially. Existing data beyond sequences are also
insufficient and limited for practitioners. These methods
usually extract complicated features rather than working
on interpretable data directly. Many data mining tech-
niques, such as neural networks, support vector
machines (SVM) (28) and regressions (24), may generate
rules which are not trivial to interpret. Furthermore, many
data mining approaches are based on specific families or
particular data sets, where the generality of the results are
limited. On the other hand, sequences serve as the most
handy primary data that carry important information for
protein–DNA bindings (23). It is desirable to make use of
the large-scale and comprehensive sequence data to mine
explicit and interpretable TF–TFBS binding rules.

Article layout

In this article, we propose a framework based on associ-
ation rule mining to discover protein–DNA binding
sequence patterns from TRANSFAC. The article layout
is as follows: the proposed methods are presented in the
next section: ‘Materials and Methods’ section; experimen-
tal results and verifications are reported in sections
‘Results and Analysis’ and ‘Verifications’ section, respect-
ively; and finally we have the ‘Discussion’ section for the
approach.

MATERIALS AND METHODS

In this section, we propose a framework for mining, dis-
covering and verifying TF–TFBS bindings on large-scale
databases. The framework starts from data cleansing and
transformation on TRANSFAC, and then applies associ-
ation rule mining to discover TF-TFBS binding sequence
patterns. Comprehensive 3D verifications and evaluations
are carried out on PDB. Detailed bonding analysis is
performed to provide strong support to the discovered
rules.
In the following subsections, Apriori algorithm for as-

sociation rule mining is first introduced. We then elabor-
ate how the algorithm is applied to protein–DNA binding
pattern discovery. Finally, we present how the data are
preprocessed for the task with a running example.

Association rule mining and Apriori Algorithm

Association rule mining (29) aims at discovering frequent-
ly co-occurring items, called frequent itemsets, from a
large number of data samples above a certain count
threshold (minimum support) (30). The support of an
itemset is defined as the number of data samples where
all the items in the itemset co-occur. In the case of protein–
DNA binding, the binding domains of TFs can recognize
and form strong bondings with certain sequence-specific
patterns of the TFBSs. Therefore, they are likely to
co-occur frequently among the combinations between all
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possible TF and TFBS subsequences, and can be thus
identified by association rule mining. In this study, we
use the notation of k-mer (a subsequence with k amino
acid or nucleotide residues) to represent a candidate item.
A frequent TF–TFBS itemset is a TF k-mer and TFBS
k-mer (the two k’s can be different) pair, or simply a pair,
co-occurring with a frequency no less than the minimum
support in the TF–TFBS sequence records (TRANSFAC
database).
Apriori algorithm proposed by Agrawal et al. (29) is

a classical approach to find out frequent itemsets. It is
outlined in Algorithm 1 in the Appendix 1. It is a
branch and bound algorithm for discovering association
rules in a database. With its downward closure property,
an optimal performance is guaranteed. The algorithm first
obtains frequent 1-itemsets. Iteratively, it uses the frequent
n-itemsets (itemsets with n items) to generate all possible
candidate (n+1)-itemsets. They are then evaluated for their
supports (30). If the support of an (n+1)-itemset is lower
than a threshold, the (n+1)-itemset is removed. After the
removal, the resultant (n+1)-itemsets are the frequent
(n+1)-itemsets. The above procedure is repeated until an
empty set is found.

Discovering associated TF–TFBS sequence patterns

To formulate the TF–TFBS sequence pattern discovery
problem into association rule mining, we have to trans-
form the protein–DNA binding records into the formats
of itemsets (k-mers). An illustrative example for the TF–
TFBS binding records from TRANSFAC 2008.3 is shown
in Figure 1. The TF (e.g. T01333 RXR-g) can bind to
several TFBS DNA sequences. The DNA sequences may
be different in lengths due to experimental methods and
noises. Both the TF and TFBS sequences are chopped into
overlapping short k-mers, as illustrated in Figure 2 (first
part). They together with the corresponding reverse
complements (e.g. GACCT and reverse complement: AG
GTC) form one data sample. To generate the itemsets, all
the k-mers are recorded in a binary array where appearing
k-mers are marked 1; and 0 otherwise. Thus, the length of
the array depends on the number of all possible TF k-mers
and TFBS k-mers (Figure 2, second part). Since k is
usually short (4–6), all the possible 4k combinations of
TFBS DNA k-mers can be adopted. However, it is com-
putationally infeasible to obtain all the possible 20k com-
binations of TF k-mers. Thus a data-driven approach is

employed by scanning the whole TRANSFAC to obtain
frequent TF amino acid k-mers.

Since there are multiple TFBSs for each TF (e.g. Figure
1), a question arises: how to define the ‘commonly found’
TFBS k-mers of a TF? Without loss of generality, the
majority rule (31) is applied. If the majority of a TF’s
TFBS sequences contains a certain DNA residue k-mer,
then the k-mer is considered ‘commonly found’. We set the
majority to be 50% for TFBS k-mers. We only count the
number of TFBS sequences in which a certain k-mer
appears, in order not to be biased by multiple occurrences
of the k-mer appearing in only a few TFBS sequences.
Figure 1 illustrates an example where there are five
TFBS sequences. The TFBS DNA k-mer AGGTC (or
its reverse complement: GACCT) can be found in three
of the TFBS sequences. The k-mer appears in 60% (3/5) of
the TFBS sequences of the TF, and thus is considered
‘commonly found’. On the other hand, GTTCA is not
considered ‘commonly found’ because it only appears in
2 (40%) out of the 5 TFBS sequences of the TF.

After all valid TF data samples are transformed into
itemsets, Apriori algorithm is applied to generate
frequent TF–TFBS k-mer sequence patterns (the links in
Figure 2, second part). The special feature in this study is
that the co-occurring pairs should contain both TF and
TFBS k-mer items, as illustrated in the third part of
Figure 2. In the current study, we only consider one TF
k-mer with one TFBS k-mer in the frequent itemsets, but it
is straightforward to generalize it to be multiple TF and
TFBS k-mers in principle. The huge computational inten-
sity for the generalization, when applied on the large
TRANSFAC database, prevents us from doing so at this
time. Finally, the association rules are computed based on
the confidence measurements for the frequent itemsets,
which are defined as follows:

confðk-merDNA) k-merAAÞ¼
supportðk-merDNA\k-merAAÞ

supportðk-merDNAÞ

confðk-merDNA( k-merAAÞ¼
supportðk-merDNA\k-merAAÞ

supportðk-merAAÞ

where conf(k-merDNA) k-merAA) is called forward con-
fidence, conf(k-merDNA( k-merAA) is called backward
confidence and support(X) is the support of itemset X.
For each association rule, its forward confidence
measures the posterior probability that the corresponding
amino acid k-mer can be found in a TF’s sequence if
the DNA k-mer is commonly found in the TF’s TFBS
sequences. Its backward confidence measures the posterior
probability that the corresponding DNA k-mer can be
commonly found in a TF’s TFBS sequences if the amino
acid k-mer is found in the TF’s sequence. The minimum of
them is taken as confidence in this article. The higher the
confidence, the better the association rule is (Figure 2,
fourth part). The whole proposed approach is summarized
in Figure 2.

Data preparation

To apply the methodology on TRANSFAC, TF and
TFBS data were downloaded and extracted from the flatFigure 1. TFBS sequences of a TF (TRANSFAC 2008.3 ID: T01333).
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files of TRANSFAC 2008.3 [a free public (older) version
is also available (http://www.gene-regulation.com/pub/
database.html)]. The entries without sequence data were
discarded. Since a TF can bind to one or more TFBSs,
TFBS data were grouped by TF. TFBS sequences were
extracted for each TF to form a TF data set—a TF
sequence and the corresponding TFBS sequences—and
finally to be transformed into itemsets. To avoid

sampling error, TF data sets with less than five TFBS se-
quences were discarded. Furthermore, the redundancy of
TF sequences was removed by BLASTClust using 90%
TF sequence identity (32). Only one TF data set was
selected for each cluster. Note that we only used
sequence data in TRANSFAC. None of the prior infor-
mation (e.g. the binding domains of TFs) other than se-
quences was used. Importantly, it turns out that the results

Figure 2. Flowchart of the proposed framework to discover association rules from TRANSFAC.
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of the proposed approach can be verified by annotations,
3D structures from PDB and even homology modeling as
described in the subsequent sections.
After data preparation, the 631 TF data sets (listed in

Table 5 in the Appendix 1) were selected. The minimum
support (30) was set to seven TF data sets to avoid
sampling error. For the values of k, we try 4–6 for both
TF k-mers and TFBS k-mers, resulting in 9 (3� 3) differ-
ent combinations. In particular, 256 DNA 4-mers, 1024
DNA 5-mers and 4096 DNA 6-mers were adopted for
TFBS, whereas 99 621 amino acid 4-mers, 82 561 amino
acid 5-mers, and 39 320 amino acid 6-mers were adopted
for TF, as the frequent 1-itemsets.
Apriori algorithm was then applied to discover frequent-

ly co-occurring TF–TFBS k-mer pairs (2-itemsets). Finally,
the resultant pairs were rescanned in TRANSFAC to
measure their forward and backward confidences (33).

RESULTS AND ANALYSIS

In this section, the discovered rules are reported, followed
by analysis with different measurements.

Rules discovered

Varying k from 4 to 6 for both TF k-mers and TFBS
k-mers, we have obtained nine sets of associated pairs.
For each set of pairs, the forward and backward confi-
dences of each pair were calculated. Then, the pairs in the
same set were sorted by the minima of their forward and
backward confidences in descending order. The nine sets
of rules (pairs) exhibit a similar trend that the number of
rules decreases as the association criterion becomes more
stringent (with higher confidence levels). The TFBS 5-mers
settings in general show the most available rules when the
confidence level is high (�0.5), indicating more conserved
and significant results. Therefore, we focus on them and
use TFBS 5-mer–TF 5-mer as the representative example
throughout the article. The results for all other settings are
available in the Supplementary Data.
The number of rules (pairs) discovered is summarized in

Table 1. For instance, there are 70 TF 5-mer–TFBS 5-mer
pairs without any further removal (in the N column) with
both forward and backward confidences �0.5.
Considering direct and reverse complement TFBS DNA
k-mers as equivalent, we further removed the duplicated
pairs (e.g. leaving AGGTC–CEGCK and removing GAC
CT–CEGCK because AGGTC and GACCT are reverse
complements). The results are shown in the N0 column in
Table 1. For instance, the 70 TF 5-mer–TFBS 5-mer pairs
were reduced to 35 at a confidence level of 0.5.
Furthermore, we found that most pairs could be merged
together to form a longer pair. For instance, GGTCA–
SGYHY and GGTCA–GYHYG could be merged to
form a pair GGTCA–SGYHYG. Thus the pairs have
been merged and the rule numbers are shown in the Nm

column in Table 1. For instance, 35 TF 5-mer–TFBS
5-mer pairs are merged to form 11 merged pairs when
the confidence level is equal to 0.5.

Quantitative analysis

To evaluate the number of TF data sets supporting each
pair (support), the support for each pair was counted.
In general, more supports are found when the confidence
level is increased. For instance, the average support of
the TFBS 5-mer–TF 5-mer pairs is generally increased
when the confidence level is increased in the S column
of Table 1. The overall results are summarized in
Supplementary Table S4.

Support is considered the degree of co-occurrence
between a TF amino acid k-mer and a TFBS DNA
k-mer. Forward and backward confidences consider the
cases when either one of them is absent. Some may have
questions about the remaining case. How about the case
when both of them are absent? To take the case into
account, f-coefficients (35) were measured for each pair,
as shown in the f column in Table 2. The overall results
are summarized in Supplementary Table S5. Most values
are >0.4, indicating that positive correlations exist among
pairs.

Consider the following scenario: if a TFBS DNA k-mer
and a TF amino acid k-mer are both frequently found in
the data sets, it will be very likely that they co-occur

Table 1. Number of the TFBS 5-mer–TF 5-mer pairs across different

confidence levels

Confidence N N
0

Nm S

0.0 262 131 29 9.88±3.68
0.1 262 131 29 9.88±3.68
0.2 240 120 24 10.14±3.73
0.3 180 90 23 10.63±4.11
0.4 126 63 21 11.40±4.59
0.5 70 35 11 13.63±5.05
0.6 24 12 8 15.08±5.28
0.7 6 3 2 10.33±2.36
0.8 0 0 0 N/A
0.9 0 0 0 N/A
1.0 0 0 0 N/A

N, number of pairs, N, number of pairs (duplicated pairs removed);
Nm, number of merged pairs; S, mean and SD of the support of the
pairs in N

0

.)

Table 2. Quantitative measurements for the TFBS 5-mer–TF 5-mer

pairs across different confidence levels

Confidence � L FC BC

0.0 0.49±0.11 17.92±7.34 1.89±0.67 3.50±2.29
0.1 0.49±0.11 17.92±7.34 1.89±0.67 3.50±2.29
0.2 0.51±0.11 18.32±7.46 1.94±0.68 3.51±2.30
0.3 0.54±0.10 19.81±7.79 2.02±0.64 3.46±2.31
0.4 0.58±0.09 21.41±8.53 2.23±0.66 3.61±2.40
0.5 0.64±0.07 22.57±10.46 2.49±0.70 4.35±2.65
0.6 0.71±0.06 25.80±13.76 3.33±0.57 4.21±2.55
0.7 0.79±0.03 42.07±14.87 3.70±0.29 4.87±0.00
0.8 N/A N/A N/A N/A
0.9 N/A N/A N/A N/A
1.0 N/A N/A N/A N/A

f, mean and SD of f-coefficient; L, mean and SD of lift; FC, mean and
SD of forward conviction; BC, mean and SD of backward conviction.
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frequently merely by chance. To tackle such scenario,
forward and backward confidences do play their import-
ant roles in pruning them. But for clarity, lift (36) that
estimates the ratio of the actual support to the expected
support was measured for each pair, where the expected
support was calculated from the random model that
the TFBS DNA k-mer is independent of the TF amino
acid k-mer for each pair. For instance, the average
lift for the TFBS 5-mer–TF 5-mer pairs is shown in
the L column in Table 2. The overall results are
summarized in Supplementary Table S6. Most values of
the lift are >5. Thus the DNA residue k-mer and the
amino acid residue k-mer of most pairs co-occur at least
five times more frequently than the prediction based
on the independent assumption made by the lift
measurement.

To estimate the validity of the pairs, both forward
and backward convictions (the same directions as the
forward and backward confidences, respectively) (36)
were measured for each pair. The measurements were
averaged for each set of pairs. For instance, the average
forward and backward convictions for the TFBS 5-mer–
TF 5-mer pairs is shown in the FC and BC columns in
Table 2. The overall results are summarized in
Supplementary Tables S7 and S8. Most values are >1.
The pairs commit fewer errors than the prediction based
on the statistically independent assumption made by
the measurements: forward and backward convictions.
In other words, the pairs would have committed more
errors if the association between its TFBS k-mer and TF
k-mer had happened purely by chance.

Annotation analysis

If the pairs in our results are the actual binding cores
between TFs and TFBSs, most of their TF amino acid
k-mers should be inside DNA binding domains. Thus,
the TF amino acid k-mers were scanned in TRANSFAC
to check whether they were within the annotated DNA
binding domains. As stated in the previous section, the
set of TFBS 4-mer–TF 4-mer pairs constitutes all the
pairs in the other sets by the downward closure
property. Thus only the TF amino acid 4-mers of the set
of TFBS 4-mer–TF 4-mer pairs were needed for the
checking: of the 792 TF amino acid 4-mers, 92:2 % of
them were found within the DNA binding domains
listed in the ‘PFAM 18’ list downloaded from DBD (37)
on 25 January 2010.

Empirical analysis

Since the numbers of results are quite large, they are
tabulated in a statistical perspective in the previous
sections. This section provides readers with empirical
insights into the results obtained. Comparing with the
other sets, the set of TFBS 5-mer–TF 5-mer pairs shows
its relative invariability to confidence level pruning. Thus,
it motivates us to have an in-depth empirical analysis on
them. They are listed in Table 3.

Among the 131 pairs in Table 3, the TFBS DNA k-mers
are quite conserved. There are only 15 distinct TFBS

DNA k-mers. Each TFBS DNA k-mer forms pairs with
8.73 TF amino acid k-mers on average. One of the reasons
may be the specificity of DNA residue, is lower in view of
its alphabet size (4) as compared to the amino acid
alphabet size (20).
To act as a DNA binding protein, a TF needs to provide

a basic interacting surface for the recognition of major/
minor grooves as well as the phosphate backbone of
DNA. Therefore, we searched through the set of pairs in
Table 3 to count the occurring frequency for each residue.
Interestingly, we found that the basic residues, lysine
(50 times) and arginine (131 times), occur at the highest
frequency among 131 pairs of TFBS–TF. On the other
hand, the hydrophobic residues (38) such as isoleucine
(15) and valine (13) occur at the lowest frequency. These
results suggest the potential of the TF sequences for being
the binding sequences between TFs and TFBSs. On the
other hand, as the nucleotides of TFBSs are somehow
negatively charged, it can be deduced that their binding
amino acid residues of TFs should be positively charged.
Thus the occurring frequencies were further examined.
Among the 131 pairs, the positively charged residues:
arginine (R) and lysine (K) occur 131 and 50 times,
respectively. In contrast, the negatively charged residues
aspartic acid (D) and glutamic acid (E) occur 8 and
30 times, respectively. Such discrepancy supports their po-
tential for being the binding sequences between TFs and
TFBSs.

Experimental analysis

This section follows the same approach in empirical ana-
lysis. The set of TFBS 5-mer–TF5mer pairs in Table 3
is selected for experimental analysis. Out of the 131
pairs, 5 of them were selected and analyzed. The first
pair is GGTCA–CEGCK, which have been experimental-
ly proved as binding sequences in Ref. (39). The TF amino
acid k-mer (CEGCK) is considered part of P-box
(CEGCKG) within the DNA binding domain of
Bp-nhr-2, which is believed to bind the DNA k-mer (G
GTCA). The second pair is AAACA–IRHNL mentioned
in Ref. (40). Based on the corresponding PDB entry
3CO6, it is believed that the pair was the binding pair
between a TF and a TFBS as shown in Figure 3.
Similarly, the remaining pairs are GATAA–NACGL, G
GTCA–GFFRR and CTTCC–LRYYY. They are found
as binding pairs in PDB entries 3DFV (41), 3DZY (42)
and 2NNY (43) as shown in Figure 3a, b and c, respect-
ively. The above five pairs reveal that the pairs generated
from the proposed approach have biological evidences in
literatures. Among the previous figures, two of them
(3CO6 and 2NNY) were further analyzed in terms of
hydrogen bonding, which also means the specificity of
the interaction between amino acids and the bases, as
shown in Figure 4a and b. We have also highlighted the
hydrogen bonds as black lines as well as the residues that
make contact with the base (only predicted residues),
which are the evidence of the significance and accuracy
of the prediction of the TF–TFBS pairs. Nevertheless,
as the proposed approach is applied on a large-scale
database, such extensive and detailed analysis of
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all the binding core pairs discovered are not practical.
Therefore, a scalable verification approach will be pre-
sented in the next section to verify the massive results
generated.

VERIFICATIONS

In this section, we try to verify the discovered pairs with
external data sources, in particular the 3D protein-DNA
complex structures experimentally determined from PDB.

Table 3. The set of TFBS 5-mer–TF 5-mer pairs (duplicated pairs removed and sorted in alphabetical order)

Confidence Forward
confidence

Backward
confidence

Pairs Confidence Forward
confidence

Backward
confidence

Pairs Confidence Forward
confidence

Backward
confidence

Pairs

0.7 0.7 0.8 AAACA–HNLSL 0.4 0.4 0.7 AGGTC–CQYCR 0.3 0.5 0.3 GCCAC–ARRSR
0.5 0.5 0.7 AAACA–IRHNL 0.2 0.2 0.6 AGGTC–CVVCG 0.4 0.5 0.4 GCCAC–ESARR
0.5 0.5 0.6 AAACA–KPPYS 0.6 0.6 0.7 AGGTC–EGCKG 0.4 0.4 0.6 GCCAC–KQSNR
0.4 0.4 0.7 AAACA–NLSLN 0.2 0.2 0.7 AGGTC–FFRRT 0.4 0.6 0.4 GCCAC–NRESA
0.6 0.6 0.6 AAACA–NSIRH 0.2 0.2 0.8 AGGTC–FRRTI 0.4 0.4 0.6 GCCAC–QSNRE
0.5 0.5 0.6 AAACA–PPYSY 0.6 0.6 0.6 AGGTC–GCKGF 0.4 0.5 0.4 GCCAC–RESAR
0.4 0.4 0.6 AAACA–PYSYI 0.3 0.3 0.5 AGGTC–GFFKR 0.4 0.4 0.6 GCCAC–RKQSN
0.4 0.4 0.6 AAACA–QNSIR 0.4 0.4 0.5 AGGTC–GFFRR 0.4 0.4 0.5 GCCAC–RLRKQ
0.7 0.7 0.8 AAACA–RHNLS 0.3 0.3 0.6 AGGTC–KGFFK 0.4 0.4 0.5 GCCAC–RRSRL
0.5 0.5 0.8 AAACA–SIRHN 0.4 0.4 0.5 AGGTC–KGFFR 0.4 0.4 0.6 GCCAC–RSRLR
0.4 0.4 0.6 AAACA–WQNSI 0.4 0.4 0.9 AGGTC–RNRCQ 0.4 0.5 0.4 GCCAC–SARRS
0.4 0.4 0.6 AACAA–HNLSL 0.3 0.3 0.5 AGGTC–TCEGC 0.4 0.5 0.4 GCCAC–SNRES
0.3 0.3 0.6 AACAA–IRHNL 0.4 0.4 0.5 AGGTC–VCGDK 0.4 0.5 0.4 GCCAC–SRLRK
0.3 0.3 0.5 AACAA–NSIRH 0.2 0.2 0.5 AGGTC–VVCGD 0.6 0.6 0.8 GGTCA–CEGCK
0.3 0.3 0.7 AACAA–PMNAF 0.2 0.7 0.2 ATTAA–FQNRR 0.2 0.2 0.9 GGTCA–CGDKA
0.4 0.4 0.6 AACAA–RHNLS 0.2 0.6 0.2 ATTAA–IWFQN 0.5 0.5 0.6 GGTCA–CKGFF
0.3 0.3 0.7 AACAA–RPMNA 0.2 0.6 0.2 ATTAA–KIWFQ 0.3 0.3 0.9 GGTCA–CQYCR
0.3 0.3 0.7 AACAA–SIRHN 0.3 0.5 0.3 ATTAA–NRRMK 0.2 0.2 0.8 GGTCA–CVVCG
0.2 0.6 0.2 AAGGT–CKGFF 0.3 0.5 0.3 ATTAA–QNRRM 0.1 0.1 1 GGTCA–DLVLD
0.2 0.5 0.2 AATTA–FQNRR 0.2 0.7 0.2 ATTAA–WFQNR 0.5 0.5 0.8 GGTCA–EGCKG
0.3 0.3 0.3 AATTA–NRRAK 0.2 0.5 0.2 CACCC–GEKPY 0.2 0.2 0.8 GGTCA–FFKRS
0.4 0.4 0.5 AATTA–QNRRA 0.1 0.5 0.1 CACCC–HTGEK 0.2 0.2 0.8 GGTCA–FFRRT
0.3 0.3 0.7 AATTA–QVWFQ 0.1 0.5 0.1 CACCC–TGEKP 0.2 0.2 1 GGTCA–FRRTI
0.5 0.5 0.5 AATTA–VWFQN 0.5 0.5 0.5 CCACG–ARRSR 0.5 0.5 0.7 GGTCA–GCKGF
0.2 0.5 0.2 AATTA–WFQNR 0.5 0.5 0.6 CCACG–ESARR 0.2 0.2 0.5 GGTCA–GFFKR
0.5 0.5 0.7 ACGTG–ARRSR 0.3 0.3 0.7 CCACG–KQSNR 0.3 0.3 0.6 GGTCA–GFFRR
0.1 0.1 0.7 ACGTG–ERELK 0.2 0.2 0.6 CCACG–LRKQA 0.1 0.1 0.6 GGTCA–GYHYG
0.5 0.5 0.9 ACGTG–ESARR 0.6 0.6 0.6 CCACG–NRESA 0.1 0.1 1 GGTCA–ITCEG
0.2 0.2 0.8 ACGTG–KQSNR 0.3 0.3 0.6 CCACG–QSNRE 0.2 0.2 0.6 GGTCA–KGFFK
0.2 0.2 0.7 ACGTG–LRKQA 0.5 0.5 0.6 CCACG–RESAR 0.3 0.3 0.6 GGTCA–KGFFR
0.6 0.6 0.9 ACGTG–NRESA 0.2 0.2 0.7 CCACG–RKQAE 0.1 0.1 1 GGTCA–NRCQY
0.2 0.2 0.7 ACGTG–QSNRE 0.3 0.3 0.7 CCACG–RKQSN 0.1 0.1 1 GGTCA–RCQYC
0.5 0.5 0.9 ACGTG–RESAR 0.3 0.3 0.5 CCACG–RLRKQ 0.1 0.1 0.8 GGTCA–RNQCQ
0.1 0.1 0.7 ACGTG–RKQAE 0.3 0.3 0.6 CCACG–RRSRL 0.3 0.3 1 GGTCA–RNRCQ
0.2 0.2 0.8 ACGTG–RKQSN 0.3 0.3 0.6 CCACG–RSRLR 0.2 0.2 1 GGTCA–SCEGC
0.2 0.2 0.6 ACGTG–RLRKQ 0.5 0.5 0.6 CCACG–SARRS 0.1 0.1 0.5 GGTCA–SGYHY
0.2 0.2 0.7 ACGTG–RRSRL 0.5 0.5 0.6 CCACG–SNRES 0.3 0.3 0.6 GGTCA–TCEGC
0.2 0.2 0.8 ACGTG–RSRLR 0.4 0.4 0.4 CCACG–SRLRK 0.3 0.3 0.6 GGTCA–VCGDK
0.5 0.5 0.9 ACGTG–SARRS 0.5 0.5 0.5 CGGAA–LRYYY 0.2 0.2 0.7 GGTCA–VVCGD
0.5 0.5 0.9 ACGTG–SNRES 0.5 0.5 0.8 CTTCC–LRYYY 0.5 0.5 0.7 GTCAA–KYGQK
0.3 0.3 0.5 ACGTG–SRLRK 0.4 0.4 0.7 CTTCC–LWQFL 0.5 0.5 0.7 GTCAA–RKYGQ
0.6 0.7 0.6 AGGTC–CEGCK 0.4 0.7 0.4 GATAA–CNACG 0.5 0.5 0.7 GTCAA–WRKYG
0.3 0.3 0.8 AGGTC–CGDKA 0.4 0.7 0.4 GATAA–LCNAC 0.7 0.7 1 TGACA–NWFIN
0.6 0.7 0.6 AGGTC–CKGFF 0.6 0.7 0.6 GATAA–NACGL

Figure 3. Four representative TF–TFBS pairs are shown in ribbon diagram. (a) AAACA–IRHNL pair in 3C06, (b) GATAA–NACGL pair in
3DFV, (c) GGTCA–GFFRR pair in 3DZY and (d) CTTCC–LRYYY pair in 2NNY are shown. The TF amino acids and TFBS nucleotides are
highlighted in ball and stick format. The sequences of the TF–TFBS pairs are also labeled in the figures. The figures are generated using Protein
Workshop (34).
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Homology modeling has also been done for further
verifications.

Verification by PDB

In this article, PDB is selected for providing 3D protein–
DNA complex data for 3D structural verification.
The PDB data were downloaded from RCSB PDB
(http://www.pdb.org) from 16 September 2009 to 22
September 2009, where the protein–DNA complexes
were selected based on the entry-type list provided in
ftp://ftp.wwpdb.org/.

For each set of pairs in Supplementary Table S2, each
pair is independently evaluated as shown in Figure 5. For
each pair, its TF k-mer is used to query which PDB chain
has the TF k-mer. Once the corresponding set of PDB
chains has been identified and returned, its redundancy
is removed by BLASTClust using 90% sequence identity
(32). The removal is to ensure that redundant PDB chains
are not double counted. After the removal, the pair is
evaluated for binding in the 3D space:

. A TFBS k-mer–TF k-mer pair is considered binding
for a PDB chain if and only if an atom of the TFBS
k-mer and an atom of the TF k-mer are close to each
other. Two atoms are considered close if and only if
their distance is <3.5 Å (25,28).

With the pair evaluated in its PDB chains, its PDB
chains can be classified into the following three categories:

. PDB chains only having the TF k-mer (a)

. PDB chains having both TF k-mer and TFBS k-mer
. The pair binds together (b)
. The pair does not bind together (c)

Thus the number of chains in each category is counted
and converted into the following performance metrics:

. TFBS prediction score=(b+c)/(a+b+c)

. TFBS binding prediction score =b/(a+b+c)

. Binding prediction score=b/(b+c)

Given the resultant PDB chains queried by a TF k-mer,
TFBS prediction score measures the proportion of PDB
chains that contain the corresponding TFBS k-mer.

In other words, it measures the backward confidence of
a pair in PDB. TFBS binding prediction score is a more
stringent metric. It measures the proportion of PDB
chains that have the corresponding TFBS k-mer binding
with the queried TF k-mer. Lastly, binding prediction
score is the most important metric. It measures the pro-
portion of PDB chains in which the pair is really binding.
To verify the cases when (b+c)=0 (i.e. the pairs do not
appear in PDB), homology modeling is also performed.
For each setting, we have a set of pairs. For each pair,

the above performance metrics are calculated. The overall
results are averaged and summarized in Supplementary
Tables S9–S11. For each setting, we also have a set of
merged pairs. For each merged pair, the above perform-
ance metrics are also calculated. The overall results are
averaged and summarized in Supplementary Tables S12–
S14. Note that the most conservative calculation has been
used for each performance metric for each pair. If a

Figure 4. The interactions between the TF and TFBS of two representative pairs (a) AAACA–IRHNL in 3CO6 and (b) CTTCC–LRYYY in 2NNY
are shown. The proteins are shown in ribbon diagram with the highlighted TF amino acids in ball and stick format. The helices and strands
are colored in red and cyan, respectively. The amino acids that interact with the nucleotides are labeled. The hydrogen bonds are shown in dark line.
The figures are generated using DS visualizer, Accelrys.

Figure 5. Flowchart of 3D verification for each set of pairs.
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performance metric of a pair does not have enough PDB
data for calculation, a value of zero will be given to the
performance metric of the pair. For instance, the cases
when (b+c)=0 or (a+b+c)=0. Despite the above
setting, the performance metrics of the pairs still have rea-
sonable performances. They are shown to be significantly
better than the maximal performance of 50 random runs
in a later section.
Nevertheless, although the above metrics can capture

the performance of a pair quantitatively, the most import-
ant point is to know how many generated pairs could be
verified [with at least one binding evidence in PDB data
(b> 0)]. To gain more insights, the number of pairs with at
least one related PDB chain [(b+c)> 0] are tabulated in
Supplementary Tables S15 and S16. Correspondingly,
the percentage of verified pairs ((Number of pairs with
b> 0/Number of pairs with (b+c)> 0)) are calculated
and tabulated in Supplementary Tables S17 and S18. In
the tables, the percentage of verified pairs is high enough
to justify that the proposed approach has produced pairs
proven to be binding in PDB. For instance, the statistics
for the TFBS 5-mer–TF 5-mer pairs is extracted in Table 4
and Figure 6. Among the 80 TFBS 5-mer–TF 5-mer pairs
with at least one related PDB chain [(b+c)> 0] when the
confidence level=0.0, more than 81% of them have at
least one binding evidence (b> 0).
The TFBS–TF pairs that we found to have binding evi-

dences in the PDB show typical structural features
of DNA–protein interactions. Such features include the
’recognition helix’ of the DNA–binding protein making
base contacts in the major groove and direct hydrogen
bonds between the side chains and the bases. These inter-
actions play the crucial role in the DNA recognition and
site-specific binding, respectively (44). Interestingly, the
nucleotides of TFBS are located in the major groove of
the DNA, which are close to, and make contacts with the
amino acids of the ‘recognition helix’ of the TF (as for
example shown in Figure 3).

The verification is considered satisfactory since those
pairs not found in PDB [(b+c)=0] may be unannotated
discovery as shown in the following verification by
homology modeling.

Verification by homology modeling

Regarding the pairs without any related PDB chain
[(b+c)=0], there is no PDB data for us to verify them.
Thus, we have taken the most conservative approach to

Figure 7. The pair ACGTG–SNRESARRSR using homology
modeling.

Table 4. Number of the TFBS 5-mer–TF 5-mer pairs verified across

different confidence levels

Confidence Nrelated Nverified Mrelated Mverified

0.0 80 65 19 16
0.1 80 65 19 16
0.2 71 59 15 13
0.3 50 44 15 13
0.4 32 28 12 11
0.5 19 17 7 6
0.6 9 9 5 5
0.7 2 2 1 1
0.8 0 0 0 0
0.9 0 0 0 0
1.0 0 0 0 0

Nrelated, number of the TFBS 5-mer–TF 5-mer pairs with at least one
related PDB chain [ðb+cÞ > 0]; Nverified, number of the TFBS 5-mer–TF
5-mer pairs with at least one PDB chain as a binding evidence [ðbÞ > 0];
Mrelated, number of the TFBS 5-mer–TF 5-mer merged pairs with at
least one related PDB chain [ðb+cÞ > 0]; Mverified, number of the TFBS
5-mer–TF 5-mer merged pairs with at least one PDB chain as a binding
evidence [ðbÞ > 0)].

Figure 6. Percentage of the TFBS 5-mer–TF 5-mer pairs verified across
different confidence levels.
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Table 5. 631 TRANSFAC 2008.3 IDs and factor names used in this article

ID Factor name ID Factor name ID Factor name ID Factor name ID Factor name ID Factor name

T00003 AS-CT3 T00842 Tra-1(long form) T01950 HNF-1a-B T04378 Mad T08676 STAT6 T09986 NF-AT4
T00008 Adf-1 T00843 Ttk69K T01951 HNF-1a-C T04446 Nkx5-1 T08787 ARF1isoform-1 T09990 CDP-isoform1
T00011 ADR1 T00851 T3R-b1 T01973 REST-form2 T04539 RPN4 T08797 MCB1 T10028 SREBP-1c
T00019 AhR T00863 Ubx T01992 Abd-A T04610 SXR T08805 WRKY1 T10030 POU3F2
T00026 Antp T00886 v-ErbA T02003 Cdx-3 T04651 ER-b T08823 E2F T10059 GCMa
T00028 YAP1 T00891 HNF-1b-A T02008 Ems T04665 Xvent-1 T08853 myogenin T10068 COUP-TF2
T00033 AP-2a T00893 v-Jun T02030 Sd T04674 IRF-7A T08858 REVERB-a T10083 HNF-3a
T00063 Bcd T00894 Vmw65 T02033 HsfA1 T04675 MRF-2-

isoform1
T08863 S8 T10144 Gfi1b

T00077 CACCC-
binding
factor

T00895 v-Myb T02039 HAC1 T04679 dri T08868 CTCF T10187 NF-E2p45

T00079 Cad T00899 WT1 T02050 Nkx6-2 T04728 CDC5L T08878 Opaque-2 T10207 GATA-6
T00080 CBF1 T00910 YB-1 T02054 HOX11 T04733 Alfin1 T08972 EAR2 T10209 Nkx2-1
T00104 C/EBPa T00915 YY1 T02063 KNOX3 T04734 Topors-

isoform1
T08978 Dl-A T10211 Evi-1

T00106 C/EBP T00917 Zen-1 T02068 PU.1 T04783 mtTFA T08985 Pti4 T10265 LRH-1
T00109 C/EBPd T00918 Zeste T02099 Zen-2 T04784 PF1 T08989 Fra-1 T10276 Erm
T00112 c-Ets-1 T00923 Zta T02100 Zeste T04811 FOXP1a T08994 HIF-1a-

isoform1
T10282 Otx2

T00113 c-Ets-2 T00925 AMT1 T02128 SAP-1b T04817 LIM1 T09001 BPC1 T10317 IA-1
T00115 c-Ets-168 T00937 HBP-1a T02142 OCA-B T04819 EmBP-1a T09018 N-Myc T10331 NRF-1
T00117 CF1 T00938 HBP-1b T02216 TFIIA-a/b

precursor
(major)

T04886 Tel-2b T09033 TEF-1 T10392 GATA-3

T00120 CF2-II T00969 POU3F1 T02217 TFIIA-a/b
precursor
(minor)

T04931 p73a T09051 AhR T10393 GATA-2

T00128 HOXA4 T01005 MEF2A-
isoform1

T02235 PEBP2aB1 T04957 EKLF T09059 SEF2-1B T10429 PU.1

T00140 c-Myc T01017 CRE-BP2 T02248 StuAp T04961 GLI2a T09071 AG T10459 Alx-3
T00151 CP2a T01019 Elf-1 T02256 AML1a T04996 ZBP89 T09089 PIF3 T10462 Prop-1
T00163 CREB T01027 BAS1 T02288 HFH-1 T04998 Tel-2a T09093 IPF1 T10473 TEF-5
T00167 ATF-2-xbb4 T01035 Isl-1a T02290 FOXD3 T04999 Tel-2c T09097 SRY T10482 AP-2g
T00176 CTF-1 T01051 FOXA4a T02291 Croc T05021 NERF-1a T09098 SREBP-2 T10484 TEF-3
T00177 CTF-2 T01053 HNF-3b T02294 FOXI1a T05051 BTEB3 T09102 FOXO4 T10543 Sox5
T00179 CUP2 T01059 MNB1a T02302 GCM T05137 CIZ6-1 T09106 RelA-p65 T10573 DREB1A
T00183 DBP T01072 TEF T02313 MIBP1 T05181 DSF T09117 E2F-1 T10588 Snai3
T00193 Dfd T01074 Ap T02330 G/HBF-1 T05553 MYBAS1 T09129 BCL-6 T10638 HY5
T00204 E12 T01078 GBF1 T02361 CREBb T05587 BZI-1 T09156 TGIF-isoform2 T10644 MTF-1
T00208 E74A T01083 NF-mNR T02378 USF1 T05682 ERRa1 T09158 BZR1 T10664 Gfi1
T00217 EcR T01085 abaA T02419 Sp3 T05705 GATA-1 T09159 PITX2A T10666 SRY
T00253 En T01109 TCF-1(P) T02420 Sox13 T05706 GATA-2 T09162 Pax-3 T10674 MafK
T00262 ER-a T01112 EBF1-L T02422 HNF-4a2 T05707 GATA-3 T09177 MyoD T10712 DMRT1
T00264 ER-a T01147 SF-1isoform2 T02429 HNF-4a1 T05708 GATA-4 T09178 C/EBPa T10720 GCR1
T00272 Eve T01152 T3R-a1 T02463 GBF1 T05737 PCF3 T09182 Pax-5 T10721 DMRT2
T00295 Ftz T01154 c-Rel T02469 AP-2b T05743 ABI4 T09183 WRKY53 T10723 DMRT3
T00296 FTZ-F1 T01258 MSN4 T02529 PPARg1 T05770 DREB1A T09184 Pax-8 T10725 DMRT7
T00301 GAGA

factor
T01265 MAC1 T02636 CBF1 T05834 CBF2 T09190 AGL15 T10727 DMRT4

T00302 GAL4 T01274 ABF2 T02639 ANT T05835 DRF1.1 T09194 NF-AT1C T10731 DMRT5
T00303 GAL80 T01275 mat1-Mc T02654 ERF2 T05837 DRF1.3 T09195 SPL14 T10739 MRP1
T00315 GBF T01286 ROX1 T02669 EmBP-1a T05929 SUSIBA2 T09196 HSF2A T10745 HSFA2
T00329 Glass T01313 ATF3 T02672 GBF1 T05943 FOXP1d T09199 STAT5A T10747 MTF-1
T00330 GLI1 T01333 RXR-g T02690 Dof2 T05975 E2F1 T09218 Msx-1 T10754 ABF1
T00331 GLI3 T01346 Arnt T02691 Dof3 T05977 PEND T09225 En-1 T10760 HAP1
T00337 GR-a T01350 T3R-b2 T02772 GCNF T05982 POTH1 T09226 Lhx2 T10795 C/EBPg
T00349 HAP2 T01352 PPARa T02786 RITA-1 T06004 DeltaNp63a T09230 Prep1 T10849 STB5
T00350 HAP3 T01388 C/EBP T02789 bZIP910 T06029 Sox17 T09243 MafG T10854 GCN4
T00368 HNF-1a-A T01400 Ets-1deltaVII T02790 bZIP911 T06043 AGP1 T09287 MITF-A2 T10881 TRAB1
T00377 HOXA5 T01422 ste11 T02807 OSBZ8 T06137 p73b T09304 Smad4 T10928 TGA2
T00383 HSF T01427 p300 T02809 ROM1 T06168 p63a T09319 IRF-1 T10958 ATHB-2
T00385 HSF1 T01431 c-Maf (long form) T02810 ROM2 T06341 BEL5 T09323 IRF-1 T10959 PCF1
T00386 HSTF T01470 Ik-2 T02818 GLN3 T06356 Rim101p T09343 SRF T10960 PCF2
T00395 Hb T01471 Ik-3 T02825 gaf2 T06404 WRKY38 T09355 Alx-4 T11115 ZIC1
T00401 ICP4 T01476 Abd-B T02841 FACB T06429 HIC-1-

isoform2
T09356 HOXA3 T11136 DEC2

T00445 KNIRPS T01477 BR-CZ1 T02846 UAY T06532 NAC69-1 T09383 GABP-a T11158 HELIOS-B
T00456 Kr T01478 BR-CZ2 T02878 TCF-4E T06533 MYB80 T09424 WRKY2 T11164 FOXJ1
T00458 LAC9 T01479 BR-CZ3 T02897 Sox6-Isoform1 T06537 Ci T09426 Sp3-isoform1 T11166 FOXF1
T00459 C/EBPb(LAP) T01480 BR-CZ4 T02905 LEF-1 T08158 ABZ1 T09427 RAP-1-xbb1 T11180 Gli1
T00480 MAL63 T01481 Pbx1a T02907 MYB305 T08251 FBI-1 T09431 Sp1 T11200 DEC1
T00487 MATa2 T01482 Exd T02929 MYB340 T08252 NF-AT3 T09441 RBP-Jk T11217 Gzf1
T00488 MATa1 T01484 Cdx-1 T02936 FOXO1 T08279 USF1 T09444 CPRF-3 T11246 ZIC2
T00489 Max-isoform2 T01492 STAT1a T02983 Pax-4a T08291 GATA-1 T09449 CPRF-2 T11250 Brachyury
T00490 MAZ T01517 Twi T02999 OCSBF-1 T08292 GATA-

1isoform1
T09450 CPRF-1 T11256 GCMb

T00497 MBP-1(1) T01527 RORa1 T03031 Pax-2.1 T08293 GATA-1 T09462 Egr-1 T11258 GCMa

(continued)
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assign zero to their performance metrics in the aforemen-
tioned evaluations. Nevertheless, we believe that most
of those pairs are true and our approach can be used
as an effective protein–DNA binding discovery tool.
Thus 6 TFBS 5-mer–TF 5-mer pairs were taken and
merged. The resultant pair ACGTG-SNRESARRSR
was analyzed by homology modeling as follows:
The model of DNA–protein complex was built by

homology modeling (INSIGHT II, MSI) based on the
structure of the GCN4–DNA complex (1YSA) (45).
Briefly, three amino acids (R234S, T236R and A238S)
and two nucleotides (T29C and A31T) were mutated in
the original structure. The side chains of the mutated
amino acids were chosen from the rotamer database and
examined using the Ramachandran plots to prevent any
steric effect. The interactions between the amino acids and
the nucleotides were searched based on the distance of the
hydrogen bond.
As shown in Figure 3, we found that the pair ACGTG

-SNRESARRSR exists in plant as the basic leucine-zipper
(bZIP) transcription factor which binds to G-box binding
factors (GBF) of DNA (46). Moreover, the ACGTG
sequence is the consensus sequence, which is defined as
G-box core and locates at the major groove of the

double-stranded DNA. It is believed that the G-box core
is the DNA sequence of GBF that provides the specificity
of the binding to bZIP proteins. In order to further under-
stand the interactions between the TF–TFBS, we built a
model by using homology modeling based on the structure
of GCN4–DNA (1YSA) complex (45). As shown in the
model, the protein helix fits into the major groove of the
DNA very well and forms extensive interactions (black
lines) between the amino acids and the nucleotides.
Interestingly, the mutations of the protein (R234S,
T236R and A238S) as well as nucleotides (T29C and
A31T) increases the number of hydrogen bonds
compared with the original structure (1YSA), suggesting
the binding specificity between this pair of TF–TFBS. In
conclusion, we believe that the protein–DNA binding
sequence patterns found using association rule mining
on the large-scale database reveal real TF–TFBS pairs in
physiologically relevant situation and this method could
guide us to discover new and undescribed TF–TFBS pairs
in the future.

Verification by random analysis

For each set of pairs in Supplementary Table S1, we use a
random process to generate a random set with the same

Table 5. Continued

ID Factor name ID Factor name ID Factor name ID Factor name ID Factor name ID Factor name

T00500 MCM1 T01528 RORa2 T03178 SQUA T08298 Kaiso T09478 TGA1a T11310 MafA
T00509 MIG1 T01556 SREBP-1a T03227 CAT8 T08300 ER-a-L T09507 Sox-xbb1 T11372 HOXB8
T00529 MZF1B-C T01590 P (long form) T03256 HNF-3b T08313 USF2a T09514 HTF4g T11383 HOXD13
T00535 NF-1 T01592 C1 (long form) T03258 HNF-6b T08318 Elf-1 T09531 ATF-4 T11390 Cart-1
T00594 RelA-p65 T01599 LCR-F1 T03388 Meis-1a T08319 Zec T09540 c-Krox T11394 PR-b
T00625 ZEB(1124AA) T01615 Su T03389 Meis-1b T08321 p53-isoform1 T09548 IRF-3 T11402 Crx
T00627 NIT2 T01649 HES-1 T03447 LHX3b T08323 p53 T09561 Roaz T11425 Chx10
T00642 POU2F1 T01660 PR-a T03481 SKN7 T08340 Egr-2 T09569 Hlf T11440 FAC1-xbb1
T00644 POU2F1a T01661 PRA T03491 MED8 T08348 RXR-a T09571 MYB1 T11453 TAF-1
T00651 POU5F1 T01664 TR2-11 T03500 MOT3 T08358 GATA-4 T09588 E4BP4 T13753 HsfB1
T00653 POU5F1(Oct-5) T01667 RFX2 T03524 PDR1 T08409 GAMYB T09608 Kid3 T13760 ABF1
T00669 Ovo-B T01669 RFX2 T03525 PDR3 T08410 PBF T09623 ATF6 T13794 TGA1
T00677 Pax-1 T01670 RFX3 T03538 RCS1 T08411 SED T09629 MYBJS1 T13809 AGL2
T00689 PHO2 T01671 RFX3 T03541 RFX1 T08415 CBT T09635 AP1 T13810 Dof4
T00690 PHO4 T01673 RFX1 T03556 RGT1 T08431 PPARa T09649 cel-let-7 T13811 AGL3
T00691 Pit-1A T01675 Nkx2-5 T03593 Pax-9a T08441 Sox10 T09701 cel-miR-84 T14002 GKLF
T00696 PRB T01679 PacC T03594 Pax-9b T08445 Elk-1-isoform1 T09706 hsa-let-7a T14118 ASR-1
T00697 PRB T01692 T3R-b1 T03600 SIP4 T08466 c-Jun T09707 hsa-let-7b T14187 AIRE-isoform1
T00699 Prd T01705 HOXA7 T03612 NK-4 T08475 GR-a T09718 hsa-miR-23a T14230 WRKY40
T00709 qa-1F T01710 HoxA-9 T03707 XBP1 T08482 VDR T09727 hsa-miR-103 T14231 RP58
T00710 R T01735 HOXB7 T03717 ZAP1 T08487 AR T09729 hsa-miR-107 T14234 WRKY18
T00715 RAP1 T01737 HOXB8 T03718 WRKY1 T08492 LRH-1-xbb1 T09731 dme-miR-2a T14258 Nkx3-2
T00719 RAR-a1 T01755 HOXD9 T03722 ZAP1 T08493 c-Fos T09732 dme-miR-2b T14268 MIZF
T00725 REB1 T01757 HOXD10 T03975 SPF1 T08505 COUP-TF1 T09737 dme-miR-7 T14302 C1-Myb
T00731 RME1 T01784 MEF-2A T03994 ID1 T08520 TBP T09741 dme-miR-13a T14317 Myb-15
T00737 SAP-1a T01786 E12 T04001 ATHB-9 T08528 AR T09742 dme-miR-13b T14381 ATHB-1
T00746 SGF-3 T01799 Tal-1 T04096 Smad3 T08544 MOVO-B T09793 dme-let-7 T14382 ATHB-5
T00751 Sn T01814 Pax-6/Pd-5a T04146 HLTF T08546 Ovo1a T09806 hsa-miR-1 T14442 STF1
T00761 SRF T01823 Pax-2 T04166 FOXD3 T08571 GATA-2 T09810 hsa-miR-124a T14444 TGA1
T00763 SRF T01838 Sox4 T04169 FOXJ2

(long isoform)
T08577 ZBRK1 T09812 hsa-miR-130a T14447 PBF

T00767 Sry-d T01841 WT1-del2 T04176 FOXO4 T08580 STAT3 T09819 hsa-miR-125a T14485 XBP-1
T00769 Sry-b T01851 HMGI T04255 Nkx3-1 T08583 CCA1 T09824 hsa-miR-206 T14491 CBNAC
T00776 SWI5 T01865 Oct-2.3 T04280 FOXP3 T08584 LHY T09840 hsa-miR-130b T14517 Zic3
T00788 T-Ag T01866 Oct-2.4 T04297 Nkx6-1 T08613 ZNF219 T09880 dre-miR-430a T14521 ZF5
T00789 Tll T01867 Oct-2.6 T04312 NURR1-

isoform1
T08615 PLZFB T09892 c-Myb-isoform1 T14543 CBF1

T00798 TBP T01882 unc-86 T04323 Nkx2-5 T08619 WEREWOLF T09914 SF-1 T14573 FUS3
T00810 TFE3-L T01888 POU6F1(c2) T04324 DREF T08621 HAHB-4 T09923 RREB-1 T14681 Spz1
T00812 TFEB-isoform1 T01897 Cf1a T04336 Nkx2-8 T08624 Sox9 T09942 HNF-3b T14827 DEAF-1
T00814 TFE3-S T01900 PDM-1 T04337 Nkx2-2 T08630 CAR T09949 FOXC1 T14951 Ncx
T00830 TGA1b T01944 NF-AT1 T04345 TBX5-L T08667 SZF1-1 T09960 TR4 T14954 OG-2

T14992 Pitx3
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number of pairs. Within a random set, its pairs were
randomly sampled from all the combinations of the
k-mers used in the proposed approach. Fifty random
runs were performed. The maximal performance metrics
of the 50 random runs are summarized in Supplementary
Tables S19–S21. In a comparison to the proposed
approach, their performance has been depicted in
Figure 8. It can be observed that the performance of the
proposed approach is significantly better than the best one
of the 50 random runs. For instance, the binding predic-
tion score of the 131 TFBS 5-mer–TF 5-mer pairs
generated is 0.36±0.39 on average, whereas the maximal
binding prediction score over 50 random runs is only
0.00509±0.06492 on average. Similar observation can
also be drawn for their merged pairs in Supplementary
Tables S22–S24. It can be concluded that the performance
of the proposed approach is very unlikely to happen
purely by chance in PDB.

DISCUSSION

In this article, we have proposed a framework based on
association rule mining with Apriori algorithm to discover
associated TF–TFBS binding sequence patterns in the
most explicit and interpretable form from TRANSFAC.
With downward closure property, the algorithm guar-
antees the exact and optimal performance to generate all
frequent TFBS k-mer TF k-mer pairs from TRANSFAC.
The approach relies merely on sequence information
without any prior knowledge in TF binding domains or
protein–DNA 3D structure data. From comprehensive
evaluations, statistics of the discovered patterns are
shown to reflect meaningful binding characteristics.
According to external literatures, PDB data and
homology modeling, a good number of TF–TFBS
binding patterns discovered have been verified by experi-
ments and annotations. They exhibit atomic-level bindings

(a) (b)

(c) (d)

(e) (f)

Figure 8. Performance Comparison for PDB verifications. (a) TFBS prediction score, (b) TFBS binding prediction score, (c) binding prediction score
(d) TFBS prediction score (merged pairs), (e) TFBS binding prediction score (merged pairs) and (f) binding prediction score (merged pairs) are
shown.
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between the respective TF binding domains and specific
nucleotides of the TFBS from experimentally determined
protein–DNA 3D structures. In fact, most of the pairs
discovered are actually the binding cores from the TF
binding domains and TFBS, respectively.
The proposed approach has great potential for dis-

covering intuitive and interpretable rules of TF–TFBS
binding mechanisms. Such rules are able to reveal TF
binding domains, detailed interactions between amino
acids and nucleotides, accurate TFBS sequence motifs,
and help better understanding and deciphering of
protein–DNA interactions. It also offers strategic help to
reduce the labor and costs involved in wet-lab experi-
ments. With increasing computational power and more
sophisticated mining approaches, the proposed method-
ology can be further improved for discovering more
intriguing TF–TFBS binding patterns and rules.
In the future, approximate associations will be con-

sidered to handle the experimental and biological noises,
although the inevitable computational burden needs to
be carefully handled, and much more efforts are needed
to distinguish real signals from the large number of false
positives introduced by loosening the pattern matching
and clustering. Combinatorial associations between
multiple TF and TFBS k-mers will also be another
challenging topic. We will also seek further real applica-
tions of the approach on experimentally verifiable TF–
TFBS bindings.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Appendix 1

Algoritham 1 Pseudocode of Apriori algorithm (29)

data: A dataset of itemsets
Ln: Frequent n-itemsets
Cn: Candidate n-itemsets
x : An itemset
minsupport: Minimum Support
i 1;
Scan data to get Li;
while Li 6¼ ; do

Ci+1 EXTEND (Li);
Li+1 ;;
For x2Ci+1 do

If supportðxÞ � minsupport then
Li+1 Li+1\x;

end if

end for

i i+1;
end while

Notes:
EXTEND(Li) is the function ‘Candidate itemset generation procedure’
stated in (29).

Support(x) returns the support (30) of the itemset x.
A frequent n-itemset is the n-itemset support is higher
than minsupport.
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