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Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. 
However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. 
Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone 
effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.
Materials and Methods: A cellular injury model of OGD-treated H9c2 cells in vitro was constructed to 
simulate ischemic/reperfusion (I/R) injury. Then, various concentrations of pioglitazone (0, 2.5, 5, 7.5 
and 10 μM) were used for the treatment of H9c2 cells, and CCK-8, flow cytometry and western blot 
assays were performed to examine cell viability, apoptosis, and the protein levels of factors involved 
in cell cycle and apoptosis in OGD-treated cells. MiR-454 inhibitor was used to suppress miR-454 
expression, and whether miR-454 was involved in regulating OGD-induced cell injury was studied. 
Two key signal pathways were examined to uncover the underlying mechanism. 
Results: OGD reduced cell proliferation and induced apoptosis in H9c2 cells (P<0.05, P<0.01 or P< 
0.001). OGD-induced injury was significantly attenuated by pioglitazone at the concentration of 5 μM. 
Additionally, pioglitazone significantly up-regulated miR-454 expression in OGD-injured cells (P< 0.05 
or P< 0.01). MiR-454 suppression declined the protective effect of pioglitazone on OGD-injured H9c2 
cells (P<0.05 or P< 0.01). Besides, pioglitazone activated PI3K/AKT and ERK/MAPK pathways via up-
regulating miR-454.
Conclusion: Pioglitazone protected H9c2 cells against OGD-induced injury through up-regulating 
miR-454, indicating a novel therapeutic strategy for treatment of MIRI.
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Introduction
Ischemia/reperfusion (I/R) injury is a common 

pathological and physiological phenomenon in clinic, 
which is the resultant from multiple factors (1). With the 
development of coronary intervention and thrombolytic 
therapy, myocardial ischemia reperfusion injury (MIRI) 
is becoming more and more common (2). Accumulating 
evidences have demonstrated that MIRI could induce 
arrhythmia, enlarge infarct size, and lead to ventricular 
systolic dysfunction (3, 4). MIRI has negative effect on 
human health, and it remains a challenge to alleviate 
MIRI for researchers and clinicians (5). Currently, 
conservative drug therapy is still considered to be 
effective and safe method for the treatment of MIRI (6). 
Therefore, it is of great significance to find a novel drug 
for the treatment of MIRI. 

Pioglitazone is a highly selective and powerful 
peroxisome proliferator-activated receptor-γ (PPARγ) 
agonist, which has been widely used to improve insulin 
resistance and control blood sugar in the clinic (7). 
In the recent years, pioglitazone has been reported 
to be linked with various diseases, such as ischemic 
stroke, dementia and bladder cancer (8-10). Moreover, 
several studies have demonstrated that pioglitazone 
has anti-inflammatory, and antioxidant stress effects; 

as well, it improves myocardial energy metabolism and 
inhibits cardiomyocyte apoptosis, thereby protecting 
cardiomyocytes (11-13). A rat model experiment 
from Li et al. reported that pioglitazone could protect 
cardiomyocytes through decreasing apoptosis in these 
cells, which subsequently reduces mitochondrial 
ultrastructure injury and membrane potential loss 
in the I/R heart of rat (14). Another study found that 
pioglitazone could alleviate MIRI through up-regulation 
of extracellular signal-regulated kinases (ERK) and 
cyclooxygenase (COX)-2 (15). Despite these studies have 
demonstrated the role of pioglitazone in MIRI, further 
exploration regarding the regulatory mechanisms is still 
necessary.

Accumulating evidences have uncovered that 
miRNAs are involved in various biological processes 
of the heart (16). Mounting evidences confirmed that 
miRNAs expression in cardiomyocytes was significantly 
changed after IRI, suggesting the important roles of 
miRNAs in MIRI (17, 18). The abnormal expression 
of miR-454 is found in various cancers, and is closely 
associated with lung injury (19, 20). However, the effect 
of miR-454 on MIRI remains unclear. The objective 
of this study is to investigate the protective effects of 
pioglitazone on MIRI in H9c2 cells. An oxygen glucose 

http://ijbms.mums.ac.ir


1051Iran J Basic Med Sci, Vol. 21, No. 10, Oct 2018

Pioglitazone protects H9c2 cells against OGD Sun et al.

deprivation (OGD)-induced H9c2 cells injury model 
in vitro was firstly constructed. Moreover, the effect 
of miR-454 was examined on OGD-induced H9c2 cells 
injury. Mechanistically, the relevant signal pathways 
of phosphoinositide 3-kinase (PI3K)/protein kinase 
B (AKT) and ERK/ mitogen-activated protein kinase 
(MAPK) were investigated. These results might provide 
a novel therapeutic strategy for MIRI.

Materials and Methods
Cell culture and OGD-induced cell injury model 
construction

The H9c2 cell line purchased from American Type 
Culture Collection (ATCC, Rockville, MD, USA) was used 
in the present study. For cell culture, the cell culture 
bottle of H9c2 cell line was opened under the sterile 
condition. 

The medium in the bottle was sucked out, and the cell 
surface was cleaned 2-3 times with phosphate-buffered 
saline (PBS). Then, the supernatant was discarded, 
and the cells were digested with 0.25% trypsin-EDTA 
(Gibco-BRL, Gaithersburg, MD, USA). When the cells 
were turned round, the complete medium was added to 
stop the reaction. The cells were then transferred to a 
new culture bottle, and the commonly-used Dulbecco’s 
modified Eagle medium (DMEM, LifeTechnologies, 
Carlsbad, CA, USA) containing 10% (v/v) fetal 
bovine serum (FBS, Gibco-BRL), 1% (v/v) Penicillin-
Streptomycin double resistant (Gibco) and 1% (v/v) 
GlutaMAX (Life Technologies) was added to further 
culture cells under the routine condition. The culture 
medium was changed every 2-3 days. 

For OGD treatment, H9c2 cells were switched from 
high-glucose DMEM to free-glucose DMEM for one day 
treatment. Then, these cells were placed in an anaerobic 
condition with 5% (v/v) CO2 and 95% (v/v) N2 for 0, 
2, 4, 6 and 8 hr; culture temperature was controlled at 
37 ± 0.5°C. Subsequently, these cells were recovered 
to the conventional culture. H9c2 cells were cultured 
under normal conditions and served as a blank control 
group. pioglitazone purchased from Sigma-Aldrich 
(St Louis, MO, USA) (21) was configured at different 
concentrations of solution (0, 2.5, 5, 7.5 and 10 μM). 
H9c2 cells were pretreated with pioglitazone for 12 hr 
before accepting OGD stimulation. Furthermore, 5 μM 
pioglitazone was selected as the optimum concentration 
for the following research.

Cell counting kit-8 (CCK-8) assay
The cell proliferation/toxicity detection kit, CCK-

8 (Dojindo Molecular Technologies, Gaithersburg, 
MD) was used to determine the cell viability of H9c2. 
Briefly, H9c2 cells were collected, and cell suspension 
concentration was adjusted to 5 × 103 cells/well. Cells 
were cultured in 96-well plate at 37°C for 24 hr in an 
incubator containing 5% (v/v) CO2, and then different 
concentrations of pioglitazone (0, 2.5, 5, 7.5 and 10 μM) 
were added into 96-well plate for stimulating H9c2 cells 
for 12 hr. After treatment, 10 μl of CCK-8 solution was 
added to each plate well and continued to culture for 1 
hr at 37°C in CO2 incubator. The 450 nm wavelength was 
chosen to measure the absorbance value by a Microplate 
Reader (Bio-Rad, Hercules, CA, USA).

Apoptosis assay
Annexin V-FITC/PI apoptosis detection kit (Beijing 

Biosea Biotechnology, Beijing, China) was used to 
examine the percentage of apoptotic cells of H9c2 cells. 
After treatment with 5 μM Pioglitazone, treated cells 
were collected and washed twice with pre-cold PBS. 
Subsequently, cells were re-suspended in 1 × binging 
buffer, and cell suspension concentration was adjusted 
to 1 × 106 cells/well. Then, 100 μl cell suspension was 
added to the bottom of flow tube, and 10 μl Annexin-V 
and 5 μl propidium iodide (PI) were added to stain these 
cells for 15 min under the shading condition at room 
temperature. After this, cells were re-suspended in 400 
μl 1 × binging buffer, and analyzed by using FACScan 
flowcytometer (Becton Dickinson, San Jose, CA, USA).

Cell transfection 
In order to suppress miR-454 expression, the vector 

of miR-454 inhibitor was synthesized by GenePharma 
Co. (Shanghai, China), and transfected into H9c2 cells. 
The negative control (NC) served  as a blank control 
group. All cell transfections were conducted by using 
Lipofectamine 3000 reagent (Invitrogen) based on the 
manufacturer’s protocol. After transfection for 48 hr, the 
cells were harvested for the following researches.

Quantitative real-time polymerase chain reaction 
(qRT-PCR)

After treatment with OGD or Pioglitazone, the Trizol 
reagent (Life Technologies Corporation, Carlsbad, 
CA, USA) was used to extract the total RNA of treated 
H9c2 cells according to the kit instructions. Taqman 
MicroRNA Reverse Transcription Kit (TaKaRa, Dalian, 
China) was used to reverse transcribe the RNA sample 
into cDNA. The Taqman Universal Master Mix II with the 
TaqMan MicroRNA Assay (Applied Biosystems, Foster 
City, CA, USA) was used to detect miR-454 expression 
in these treated cells. U6 was used as a loading control. 
The data was measured by using the 2-ΔΔCT method 
(22). The specific primer sequence for miR-454 was as 
Forward: 5’-GGGACCCTATCAATATTGT-3’ and Reverse: 
5’- CAGTGCGTGTCGTGGAGT-3’. U6 primer sequence 
was as Forward: 5’-CTTCGGCAGCACATATACT-3’ and 
Reverse: 5’-AAAATATGGAACGCTTCACG-3’. 

Western blot
The proteins of H9c2 cells with different treatments 

were extracted using RIPA lysis buffer (Beyotime 
Biotechnology, Shanghai, China) supplemented with 
protease inhibitors (Roche, Basle, Switzerland). The BCA 
Protein Assay Kit was used to analyze and determine 
the total protein concentration. Protein samples (50 μg) 
were electrophoresed by SDS-PAGE. Then, these proteins 
were transferred to PVDF membranes (Millipore, 
Billerica, MA, USA), and these membranes were placed 
in 5% (w/v) non-fat milk and shaken for 1 hr at room 
temperature. The blocked membranes were shake-
washed in Tris-buffered saline with 0.1 % (v/v) Tween 
20 (TBST) for 10 min. After this, the membranes were 
incubated with the following diluted primary antibodies 
at 4°C overnight: Cyclin D1 (ab16663, 1:200 dilution), 
p21 (ab109199; 1:1000 dilution), Bax (ab53154, 1:500 
dilution), pro-Caspase-3 (ab205733, 1:5000 dilution),
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Figure 1. Oxygen glucose deprivation (OGD) treatment induced H9c2 
cells injury. (A) H9c2 cells were maintained under OGD for 0, 2, 4, 6 
and 8 hr, and the viability of H9c2 cells was subsequently analyzed 
by cell counting kit-8 (CCK-8) assay. After treatment of OGD for 6 hr, 
(B) Western blot assay was performed to detect the protein levels 
of Cyclin D1 and p21 in OGD-treated cells; (C) flow cytometry with 
Annexin V-FITC/PI staining was performed to measure the percentage 
of apoptotic cells; (D) the apoptosis-associated protein levels were 
assessed by Western blot. *P< 0.05; **P< 0.01; ***P< 0.001

cleaved-Caspase-3 (ab32042; 1:500 dilution), pro-
Caspase-9 (ab138412; 1:1000 dilution), cleaved-
Caspase-9 (ab2324; 1:1000 dilution), t-PI3K (ab191606, 
1:1000 dilution), p-PI3K (ab182651, 1:500 dilution), 
t-AKT (ab8805, 1:500 dilution), p-AKT (ab8933, 1:500 
dilution) and β-actin (ab8227, 1:1000 dilution) (All 
from Abcam, Cambridge, UK). 

 

Figure 2. Pioglitazone attenuated oxygen glucose deprivation (OGD)-
induced H9c2 cells injury. (A) H9c2 cells were stimulated with 
indicated concentrations of pioglitazone (0, 2.5, 5. 7.5 and 10 μM) for 
12 hr, and then cell viability was examined by cell counting kit-8 (CCK-
8). H9c2 cells were pretreated with 5 μM of pioglitazone for 12 hr, and 
were maintained under OGD for 6 hr, (B) cell viability (C) Cyclin D1 
and p21 protein levels were determined by CCK-8 and Western blot 
assays; (D) cell apoptosis and (E) apoptosis-related protein levels 
were analyzed by flow cytometry with Annexin V-FITC/PI staining and 
Western blot. *P< 0.05; **P< 0.01; ***P< 0.001

Figure 3. Pioglitazone up-regulated miR-454 expression in oxygen 
glucose deprivation (OGD)-injured H9c2 cells. H9c2 cells were 
pretreated with 5 μM of pioglitazone for 12 hr and were maintained 
under OGD for 6 hr; miR-454 expression level was measured by qRT-
PCR. *P< 0.05; **P< 0.01

After incubation and washing, the membranes were 
incubated with goat anti-rabbit secondary antibody 
conjugated with horseradish peroxidase (ab205781, 
1:5000 dilution, Abcam) for 1 hr at room temperature. 
Subsequently, the membranes were tiled on the 
preservative film, and the ECL Western blotting reagent 
mixture (Pierce Biotechnology, Thermo Fisher Scientific 
Inc., Waltham, MA, USA) was uniformly dropped on 
the membranes. After reaction, the experiment figures 
were analyzed by using Image Lab™ Software (Bio-Rad, 
Shanghai, China). 

Figure 4. Pioglitazone alleviated oxygen glucose deprivation (OGD)-
induced H9c2 cells injury through up-regulating miR-454. The 
expression vectors of miR-454 inhibitor and its negative control (NC) 
were transfected into H9c2 cells, and then (A) the expression level 
of miR-454 was detected by qRT-PCR after treatment with 5 μM of 
pioglitazone for 12 hr and were maintained under OGD for 6 hr, (B) 
cell viability (C) Cyclin D1 and p21 protein levels were determined 
by cell counting kit-8 (CCK-8) and Western blot; flow cytometry with 
Annexin V-FITC/PI staining and Western blot assay were performed 
to analyze (D) cell apoptosis and (E) the protein levels of apoptosis-
related factors. *P< 0.05; **P< 0.01; ***P< 0.001
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Figure 5. Pioglitazone activated phosphoinositide 3-kinase (PI3K/)/
protein kinase B (AKT) and extracellular signal-regulated kinases 
(ERK)/mitogen-activated protein kinase (MAPK) signal pathways 
via regulation of miR-454. H9c2 cells were transfected with miR-454 
inhibitor and negative control (NC), and the transfected cells were 
pretreated with 5 μM of pioglitazone for 12 hr and were maintained 
under oxygen glucose deprivation (OGD) for 6 hr; the protein levels of 
(A) p/t-PI3K and p/t-AKT as well as (B) p/t-ERK and p/t-MAPK were 
determined by Western blot. *P< 0.05; **P< 0.01; ***P< 0.001

The gray value of the blots in the figures reflected the 
expression level of the target proteins.

Statistical analysis
All data from this study are shown as the mean ± 

standard deviation (SD). SPSS statistical software version 
19.0 (IBM, Armonk, NY, USA) was used for statistical 
analyses. One-way analysis of variance (ANOVA) was 
used to calculate the P- values. The difference between 
groups with P<0.05 was considered as a statistically 
significant result. 

Results
Construction of OGD-induced H9c2 cells injury model 
in vitro

A cell model of OGD-induced injury in H9c2 cells 
was constructed. Results showed that the viability of 
H9c2 cells was significantly decreased when cells had 
undergone OGD at 4 hr, 6 hr and 8 hr (P<0.05, P<0.01 
or P < 0.001, Figure 1A). Moreover, Cyclin D1 protein 
level was down-regulated and p21 protein level was 
up-regulated after OGD treatment (P<0.05, Figure 
1B). The percentage of apoptotic cell was prominently 
induced in OGD-treated cells compared to non-treated 
cells (P < 0.01, Figure 1C). Meanwhile, the protein levels 
of apoptosis-associated factors of Bax and cleaved-
Caspase-3/-9 were promoted under OGD treatment 
(Figure 1D). Furthermore, the treatment time of OGD for 
6 hr was selected for the following experiments.

Pioglitazone attenuated OGD-induced H9c2 cells 
injury

H9c2 cells were stimulated with the different 
concentrations of pioglitazone (0-10 μM), and cell 
viability was examined. As shown in Figure 2A, 
pioglitazone significantly promoted cell viability at 

the concentrations of 7.5 μM and 10 μM (P<0.05). 
But, pioglitazone had no effect on cell viability at 
the concentrations of 2.5 μM and 5 μM. Therefore, 5 
μM pioglitazone was selected as the best treatment 
concentration in subsequent expressions. In Figure 2B, 
the results displayed that cell viability was significantly 
promoted by pioglitazone after OGD treatment (P<0.05). 

Figure 2C revealed that pioglitazone obviously up-
regulated the protein level of Cyclin D1 and down-
regulated the protein level of p21 after OGD treatment 
(P < 0.001). Additionally, the results in Figure 2D and 2E 
showed that pioglitazone significantly suppressed OGD-
induced cell apoptosis (P < 0.05). The protein levels 
of Bax and cleaved-Caspase-3/-9 were decreased by 
Pioglitazone after OGD treatment. 

Pioglitazone up-regulated miR-454 expression in 
OGD-treated H9c2 cells

As result displayed in Figure 3, miR-454 expression 
in OGD-treated cells was significantly lower than 
that in non-treated cells (P<0.05). However, miR-454 
expression level was significantly increased after adding 
the pioglitazone on OGD-treated H9c2 cells (P<0.01). 
Above data suggested the probable involvement of miR-
454 in the protective effect of pioglitazone against OGD-
induced injury in H9c2 cells.

Pioglitazone attenuated OGD-induced H9c2 cells 
injury via up-regulation of miR-454

To further explore whether miR-454 was participated 
in mediating OGD-induced H9c2 cells injury, miR-
454 inhibitor was transfected into H9c2 cells to 
regulate miR-454 expression. In Figure 4A, qRT-PCR 
analytical result showed that the expression of miR-
454 was significantly decreased by miR-454 inhibitor, 
indicating well transfection efficiency (P<0.01). 
Next, the results in Figure 4B revealed that miR-454 
suppression significantly decreased cell viability after 
co-treatment of OGD and pioglitazone (P<0.05). The 
protein level of Cyclin D1 was down-regulated by miR-
454 suppression; as well, the protein level of p21 was 
up-regulated by miR-454 suppression after treatment of 
Pioglitazone in OGD-injured H9c2 cells (P<0.001, Figure 
4C). Furthermore, miR-454 suppression remarkably 
promoted cell apoptosis, meanwhile up-regulated Bax 
and cleaved-Caspase-3/-9 expressions after treatment 
of pioglitazone in OGD-injured H9c2 cells (P<0.05, 
Figure 4D and 4E). 

 
Pioglitazone activated PI3K/AKT and ERK/MAPK 
signal pathways by regulation of miR-454

Western blot assay was performed to determine 
the functions of pioglitazone in PI3K/AKT and ERK/
MAPK signal pathways. The results in Figure 5A and 5B 
showed that the protein levels of p-PI3K, p-AKT, p-ERK 
and p-MAPK were remarkably increased by pioglitazone 
after OGD treatment (P< 0.001). However, the promoting 
effects of pioglitazone on these two signal pathways 
were obviously declined by miR-454 suppression (P< 
0.05 or P<0.001). The protein levels of t-PI3K, t-AKT, 
t-ERK and t-MAPK had no significant changes in the 
different treatment groups. 
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Discussion
In our study, the model of OGD-induced H9c2 

cell injury was successfully constructed. Then, we 
observed that Pioglitazone significantly promoted cell 
proliferation and reduced apoptosis in OGD-injured 
H9c2 cell. However, the protective effects of Pioglitazone 
on OGD-injured H9c2 cell were abolished by suppression 
of miR-454. Furthermore, the results revealed that 
Pioglitazone activated PI3K/AKT and ERK/MAPK signal 
pathways by up-regulation of miR-454 in OGD-injured 
H9c2 cells.

OGD-induced cell injury is a complicated process that 
accompanies the generation of reactive oxygen species 
(ROS), calcium (Ca+) overloading and mitochondrial 
permeability transition pore (mPTP) opening (23). 
Recent study proved that OGD has been widely used 
to treat cardiomyocytes and to construct cell model 
of ischemic heart damage (24). The model of OGD-
induced MIRI could be used to explore the molecular 
mechanisms of MIRI and screen effective drugs to 
alleviate MIRI (25). Additionally, mounting evidences 
displayed that H9c2 cardiomyocytes were broadly used 
for investigating the protective effects of agents on OGD-
induced ischemic heart injury (23, 26). Based on these 
studies, we constructed an OGD-induced H9c2 cells 
injury model to investigate the effect of Pioglitazone on 
MIRI. We found that cell viability and cell cycle-related 
protein levels were decreased, while cell apoptosis and 
the protein levels of apoptosis-related factors were 
increased in OGD-treated H9c2 cells. These data stated 
that the OGD-induced H9c2 cells injury model was 
successfully constructed in vitro.

Pioglitazone is an anti-diabetic agent in the 
thiazolidinedione class, which has been used to 
treat several diseases, including MIRI (27). Recent 
studies have demonstrated that Pioglitazone could 
protect heart and alleviate MIRI by suppressing cell 
apoptosis (28). An animal experiment revealed that 
pharmacological preconditioning with nicorandil and 
Pioglitazone could alleviate MIRI in rats (29). However, 
whether Pioglitazone could exert the protective effect 
on OGD-injured H9c2 cells has not been clarified. In 
the present study, we found that pioglitazone alleviated 
OGD-induced H9c2 cells injury by restoring cell viability 
and proliferation-associated factors expressions and 
declined apoptosis in OGD-treated H9c2 cells, indicating 
the protective role of pioglitazone in OGD-injured H9c2 
cells.

Recent evidences have proven that various miRNAs 
such as miR-214, miR-22 and miR-103/107 are involved 
in regulation of MIRI (30-32). MiR-454 functions as 
an oncogene has been confirmed in various cancers, 
such as hepatocellular and colorectal cancer (19, 33). 
Study from Tao et al. revealed that miR-454 alleviated 
lipopolysaccharides (LPS)-induced acute lung injury 
(ALI) in lung epithelial cells (20). However, the effect 
of miR-454 on MIRI has not been investigated. In our 
study, miR-454 inhibitor was transfected into H9c2 
cells to alter miR-454 expression. Results in this study 
revealed that miR-454 expression was up-regulated by 
Pioglitazone. However, miR-454 suppression abolished 
the protective effect of pioglitazone on OGD-injured 
H9c2 cells. These data suggested that pioglitazone 

alleviated OGD-induced H9c2 cells injury through up-
regulation of miR-454.

PI3K/AKT and ERK/MAPK signal pathways are vital 
regulators in cell growth and inflammatory response 
(34, 35). Several studies have proven that activation 
of PI3K/AKT and ERK/MAPK signal pathways plays 
critical role in the protection against MIRI (36, 37). 
Taniguchi et al. uncovered that pioglitazone could 
alleviate MIRI through increasing the expression of 
heat shock protein 72 (HSP72), and activating PI3K/
AKT signal pathway (38). Another study found that 
pioglitazone could protect cardiomyocytes against I/R-
induced apoptosis by regulation of PI3K/ERK1/2 signal 
pathway (39). Similar with these studies, we found 
that pioglitazone could activate PI3K/AKT and ERK/
MAPK signal pathways by regulation of miR-454. These 
findings indicated that activation of these two signal 
pathways might contribute to the reduction of MIRI.

Conclusion
Taken together, the results from present study 

suggested that pioglitazone could protect H9c2 cells 
against OGD-induced injury by activation of PI3K/AKT 
and ERK/MAPK signal pathways through up-regulating 
miR-454. These findings might provide a preliminary 
pharmacological basis for pioglitazone in the treatment 
of MIRI. 
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