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Several researchers have focused on random-forest-based inference methods because

of their excellent performance. Some of these inferencemethods also have a useful ability

to analyze both time-series and static gene expression data. However, they are only of

use in ranking all of the candidate regulations by assigning them confidence values. None

have been capable of detecting the regulations that actually affect a gene of interest.

In this study, we propose a method to remove unpromising candidate regulations by

combining the random-forest-based inference method with a series of feature selection

methods. In addition to detecting unpromising regulations, our proposed method uses

outputs from the feature selection methods to adjust the confidence values of all of the

candidate regulations that have been computed by the random-forest-based inference

method. Numerical experiments showed that the combined application with the feature

selection methods improved the performance of the random-forest-based inference

method on 99 of the 100 trials performed on the artificial problems. However, the

improvement tends to be small, since our combined method succeeded in removing

only 19% of the candidate regulations at most. The combined application with the

feature selection methods moreover makes the computational cost higher. While a bigger

improvement at a lower computational cost would be ideal, we see no impediments to

our investigation, given that our aim is to extract as much useful information as possible

from a limited amount of gene expression data.

Keywords: FANTOM5, gene expression, feature selection, random forest, genetic network inference

1. INTRODUCTION

The dynamic behavior of gene expression determines a variety of cell functions. Our understanding
of biological systems requires the study of complex patterns of gene regulation, as the regulation
among genes determines how genes are expressed. One promising approach developed for the
analysis of gene regulation is the inference of genetic networks. In a genetic network inference
problem, mutual regulations among genes are inferred from gene expression data measured by
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biological technologies, such as DNA microarrays, RNA-seq
using next generation sequencers, and so on. The inferred
networkmodels can serve as ideal tools to help biologists generate
hypotheses and facilitate the design of their experiments. Many
researchers have thus taken an interest in the inference of
genetic networks.

A number of genetic network inference methods have been
proposed (Larrañaga et al., 2006; Meyer et al., 2008; Chou and
Voit, 2009; Hecker et al., 2009; de Matos Simoes and Emmert-
Streib, 2012; Emmert-Streib et al., 2012; Glass et al., 2013).
Among them, random-forest-based methods show promise for
their excellent performance (Huynh-Thu et al., 2010; Maduranga
et al., 2013; Petralia et al., 2015; Huynh-Thu and Geurts, 2018;
Kimura et al., 2019). Some of these inference methods also
have a useful ability to analyze both time-series and static gene
expression data (Petralia et al., 2015; Huynh-Thu and Geurts,
2018; Kimura et al., 2019). The time-series data are a series of
sets of gene expression levels measured at successive time points
after a stimulation. The static data are sets of gene expression
levels measured under steady-state conditions. The random-
forest-based inference methods analyze gene expression data by
assigning confidence values to all of the candidate regulations.
While many genetic network inference methods try to find
regulations that are actually contained in the target network,
the random-forest-based methods only rank the candidates by
assigning every candidate a confidence value.When biologists try
to perform experiments for confirming the inferred regulations
of genes, the confidence values computed by the random-forest-
based methods could be used to determine the order of the
experiments. The random-forest-based inference methods would
become much more useful, however, if they had the ability to
detect genes that actually regulated a gene of interest.

By combining the random-forest-based inference method
with some feature selection method, we have been able to
detect regulations that are actually contained in the target
genetic network. Feature selection, a procedure studied in
the computational intelligence field, removes input variables
irrelevant to the output in an approximation task or a
classification task (Guyon and Elisseeff, 2003; Cai et al., 2018).
We found, however, in preliminary experiments, that a combined
method integrating the random-forest-based method with one
of the existing feature selection methods often fails to detect
genes that weakly affect a gene of interest. The main purpose of
the existing feature selection methods might explain this failure,
as the methods were developed not to detect all of the input
variables that actually affect the output, but to find input variables
that maximize the predicting performance of the obtainedmodel.
More recently, our group developed a new feature selection
method whose purpose is to find all of the input variables that
actually affect the output and to remove as many of the irrelevant
input variables as possible (Kimura and Tokuhisa, 2020).

In this manuscript, we propose a method to remove
unpromising candidate regulations by combining the random-
forest-based inference method with the new feature selection
method we developed in Kimura and Tokuhisa (2020), along
with two modified versions of the same. The feature selection
methods used in this study are effective in not only removing

several irrelevant input variables, but also in assigning confidence
values to the input variables to show the likelihood that they
actually affects the output. In our combined method, we can
therefore use the confidence values computed by the feature
selection methods to adjust the confidence values assigned to all
of the candidate regulations by the random-forest-based method.

The remainder of this manuscript is organized as follows. In
the section 2, we introduce the random-forest-based inference
method used in this study. In the section 3, we describe the
feature selection methods, and then explain a way to combine
them with the inference method. We confirm the effectiveness of
the proposed combined method through numerical experiments
using artificial and biological gene expression data in the
sections 4 and 5, respectively. Finally, in the section 6, we
conclude with our future work.

2. RANDOM-FOREST-BASED INFERENCE
METHOD

As mentioned previously, this study combines the random-
forest-based inference method with a series of feature selection
methods. While any random-forest-based method can serve this
purpose, in this study we apply an inference method (Kimura
et al., 2019) that is capable of analyzing both time-series and
static gene expression data. This section briefly describes the
inference method.

2.1. Model for Describing Genetic
Networks
The inference method applied in this study describes a genetic
network using a set of differential equations of the form

dXn

dt
= Fn (X−n)− βnXn, (n = 1, 2, · · · ,N), (1)

where X−n = (X1, · · · ,Xn−1,Xn+1, · · · ,XN), Xm (m =
1, 2, · · · ,N) is the expression level of the m-th gene, N is the
number of genes contained in the target network, βn (> 0) is a
constant parameter, and Fn is a function of arbitrary form.

When using this model, we infer a genetic network by
obtaining a function Fn and a parameter βn (n = 1, 2, · · · ,N)
that produce time-courses consistent with the observed gene
expression levels. The following section presents a way to
obtain them.

2.2. Obtaining Fn and βn
The inference method (Kimura et al., 2019) divides an inference
problem of a genetic network consisting of N genes into N
subproblems, each of which corresponds to each gene. By
solving the n-th subproblem, the method obtains a reasonable
approximation of the function Fn and a reasonable value for the
parameter βn. The remainder of this section will describe the
n-th subproblem.

2.2.1. Problem Definition

The inference method used in this study obtains an
approximation of the function Fn and a value for the
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parameter βn through the optimization of the following
one-dimensional function.

Sn(βn) =
KT
∑

k=1

wT
k

βn

[

dXn

dt

∣

∣

∣

∣

tk

− F̂n

(

X−n|tk ;βn

)

+ βn Xn|tk

]2

+
KS
∑

k=1

wS
k

βn

[

dXn

dt

∣

∣

∣

∣

sk

− F̂n

(

X−n|sk ;βn

)

+ βn Xn|sk

]2

, (2)

where X−n|tk = (X1|tk , · · · , Xn−1|tk , Xn+1|tk , · · · , XN |tk ),
X−n|sk = (X1|sk , · · · , Xn−1|sk , Xn+1|sk , · · · , XN |sk ), and Xm|tk
and Xm|sk (m = 1, 2, · · · ,N) are the expression levels of
the m-th gene at the k-th measurement in time-series and
steady-state experiments, respectively. KT (≥ 2) and KS (≥
0) are the numbers of measurements performed in the time-
series and steady-state experiments, respectively. Note that
the expression levels Xm|tk and Xm|sk are measured using

biochemical techniques in the genetic network inference. dXn
dt

∣

∣

∣

tk

and dXn
dt

∣

∣

∣

sk
are the time derivatives of the expression level of

the n-th gene at the k-th measurement in the time-series and
steady-state experiments, respectively. The time derivatives of the
expression level of the n-th gene in the time-series experiments,

i.e., dXn
dt

∣

∣

∣

tk
’s, are directly estimated from the measured time-

series of the gene expression levels using a smoothing technique,
such as a spline interpolation (Press et al., 1995), a local linear
regression (Cleveland, 1979), a modified Whittaker’s smoother
(Vilela et al., 2007), or the like. On the other hand, the time
derivatives of the expression level of the n-th gene in the steady-

state experiments, i.e., dXn
dt

∣

∣

∣

sk
’s, are all set to zero. wT

k
and wS

k

are weight parameters for the k-th measurements in the time-
series and steady-state experiments, respectively. Kimura et al.
(2019) showed that the performance of the random-forest-based
inference method improves by discounting the weight values of
the measurements that were obtained under states similar to each
other. F̂n ( · ;βn) is an approximation of the function Fn trained
under the given βn. The inference method (Kimura et al., 2019)
obtains an approximation of the function Fn using a random
forest (Breiman, 2001). The section 2.2.2 below will describe a
way to obtain F̂n using a random forest. The inference method
described here uses the golden section search (Press et al., 1995)
to minimize the objective function (2).

2.2.2. Approximation of Fn
The computation of the objective function (2) requires an
approximation of the function Fn, i.e., F̂n. As described
previously, an approximation of the function Fn is obtained
using a random forest. In the inference method (Kimura et al.,
2019), the random forest that approximates the function Fn is
trained based on training data consisting of the following set of

input-output pairs,

{(

X−n|tk ,
dXn

dt

∣

∣

∣

∣

tk

+ βn Xn|tk

)∣

∣

∣

∣

∣

k = 1, 2, · · · ,KT

}

∪
{(

X−n|sk ,
dXn

dt

∣

∣

∣

∣

sk

+ βn Xn|sk

)
∣

∣

∣

∣

∣

k = 1, 2, · · · ,KS

}

.

Note that a value for the parameter βn is always given when
computing a value for the objective function (2). Therefore, we
can train the random forest using the training data described
above. Note also that, in order to keep consistency with the
objective function (2), the random forest used in the method
(Kimura et al., 2019) tries to obtain an approximation of the
function Fn that minimizes a weighted sum of the squared errors
between the given output values and the values computed from
the model.

2.3. Assigning Confidence Values to the
Regulations
As is done in other random-forest-based inference methods,
the inference method described in this section uses a variable
importance measure defined in tree-based machine learning
techniques, such as a random forest, to evaluate the confidence
values of all of the candidate regulations. Note again, however,
that the random forest used in the inference method tries to
minimize the weighted sum of the squared errors. The confidence
value of the regulation of the n-th gene from them-th gene, Cn,m,
is thus computed by

Cn,m =
1

Sqw0

1

Ntree

Ntree
∑

i=1

∑

ν∈Vi(m)

I(ν), (3)

where

Sqw0 =
KT
∑

k=1
wT
k (ytk − yw0)

2 +
KS
∑

k=1
wS
k(ysk − yw0)

2, (4)

yw0 =
1

Nw0

[

KT
∑

k=1
wT
k ytk +

KS
∑

k=1
wS
kysk

]

, (5)

Nw0 =
KT
∑

k=1
wT
k +

KS
∑

k=1
wS
k, (6)

ytk =
dXn

dt

∣

∣

∣

∣

tk

+ β∗n Xn|tk , (7)

ysk =
dXn

dt

∣

∣

∣

∣

sk

+ β∗n Xn|sk , (8)

I(ν) = Nw(ν)Sqw(ν)− Nw(νL)Sqw(νL)

− Nw(νR)Sqw(νR), (9)

Sqw(ν) =
∑

k∈T(ν)
wT
k

[

ytk − yw(ν)
]2

+
∑

k∈S(ν)
wS
k

[

ysk − yw(ν)
]2
, (10)
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yw(ν) =
1

Nw(ν)





∑

k∈T(ν)
wT
k ytk +

∑

k∈S(ν)
wS
kysk



, (11)

Nw(ν) =
∑

k∈T(ν)
wT
k +

∑

k∈S(ν)
wS
k, (12)

Ntree is the number of trees in the random forest F̂∗n , and Vi(m)
is a set of nodes that use the expression levels of the m-th gene
to split the training examples in the i-th decision tree of F̂∗n .
νL and νR are the left and right children nodes of the node ν,
respectively, and T(ν) and S(ν) are sets of indices of the training
examples generated from time-series and static gene expression
data, respectively, and allocated to the node ν. F̂∗n and β∗n are
the approximation of the function Fn and the value for the
parameter βn, respectively, obtained through the optimization of
the function (2).

3. COMBINING A
RANDOM-FOREST-BASED INFERENCE
METHOD WITH FEATURE SELECTION
METHODS

As mentioned previously, any existing feature selection method
can be combined with a random-forest-based inference method.
We found however that the combination of the random-forest-
based method and an existing feature selection method often
degrades the quality of the inferred genetic network. This
degradation might be explained by the purpose for which the
existing feature selection methods were designed, namely, to
select input variables that maximize the predicting performance
of the approximated function. More recently, however, Kimura
and Tokuhisa (2020) proposed a new feature selection method
that seeks to find all of the input variables that actually affect
the output. In this study, we combine the random-forest-based
inference method described in the previous section with this new
feature selection method (Kimura and Tokuhisa, 2020), along
with two modified versions of the same.

In this section, we first describe the new feature selection
method (Kimura and Tokuhisa, 2020) as originally proposed and
several modified forms, and then propose a way to combine them
with the random-forest-based inference method.

3.1. Feature Selection Methods Based on
Variable Importance Measure
The feature selection method (Kimura and Tokuhisa, 2020), we
apply uses a variable importancemeasure to check whether or not
each input variable actually affects the output. If a certain input
variable is relevant to the output, its importance score is likely
to be larger than that of a random variable. The feature selection
methods described here are designed based on this idea.

Assume that a set of K input-output pairs
{

(xk, yk)|k = 1,
2, · · · ,K} is given, where xk = (x1,k, x2,k, · · · , xN,k), xi,k is the
value for the i-th input variable at the k-th observation, and yk
is the output value at the k-th observation. Then, the feature
selection method (Kimura and Tokuhisa, 2020) tries to find all

of the input variables relevant to the output according to the
following procedure.

1. Construct a new training dataset
{

(zk, yk)
∣

∣ k = 1, 2, · · · , K}
based on the given dataset

{

(xk, yk)
∣

∣ k = 1, 2, · · · ,K}, where
zk = (x1,k, x2,k, · · · , xN,k, x

pmt

1,k
, x

pmt

2,k
, · · · , xpmt

N,k
), and x

pmt

i,k
is

the value for the i-th permuted input variable at the k-th
observation. The values for the i-th permuted input variable

in this algorithm, x
pmt

i,k
’s, are obtained by randomly permuting

those for the i-th original input variable, xi,k’s.
2. Train a random forest using the training dataset constructed

in the step 1.
3. In order to statistically check whether or not input variables

are relevant to the output, construct NRF different random
forests by repeating the steps 1 and 2.

4. When a value for Ci−NRF/2√
NRF/4

exceeds the αs-quantile of the

standard normal distribution, conclude that the i-th input
variable actually affects the output, where Ci is the number
of random forests in which the importance score of the i-th
original input variable is greater than that of the i-th permuted
input variable. Note here that this study also uses a probability
defined by 1 − Ci

NRF
as a confidence value that the i-th input

value actually affects the output.

To give the original and permuted input variables even chances
of being selected for the splitting of the training examples,
the feature selection method uses a slightly modified training
algorithm for the random forest. See Kimura and Tokuhisa
(2020) for more detailed information about the modification.

While the feature selection method described above is capable
of detecting input variables that weakly affect the output, each
irrelevant input variable is erroneously concluded to be relevant
with a probability of about 0.5. In this study, we overcome the
poor specificity of the feature selection method by constructing
two other feature selection methods based on the same design
concept (Kimura and Tokuhisa, 2020) and then combining all
three of the methods together. To be specific, the two newly
constructed feature selection methods respectively use Extra-
Trees (Geurts et al., 2006) and VR-Trees (Liu et al., 2008), instead
of the random forest, in the algorithm described above. Extra-
Trees and VR-Trees are variants of the random forest. The
method used to combine the three feature selection methods is
described in the next section. While the original feature selection
method uses a modified training algorithm for the random
forest, note that the two newly constructed methods use the
training algorithms for Extra-Trees and VR-Trees without any
modification. In this paper, we refer to these three methods as the
feature selection methods using the random forest, Extra-Trees,
and VR-Trees, respectively.

3.2. Algorithm of the Combined Method
As mentioned earlier, we combined the random-forest-based
inference method (Kimura et al., 2019) with the feature
selection methods described in the previous section. In addition
to removing unpromising regulations, the combined method
improves the confidence values of all of the candidate regulations.
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FIGURE 1 | A framework of the proposed method.

Below, we explain the algorithm of the combined method (see
also Figure 1).

1. Set a counter n to 1.
2. Perform the random-forest-based inference method

(Kimura et al., 2019) for the n-th subproblem, then
obtain an approximation of the function Fn and a value
for the parameter βn. Here, we represent them as F̂∗n and
β∗n , respectively.

3. By applying F̂∗n and β∗n to the Equation (3), compute the
confidence value of the regulation of the n-th gene from the
m-th gene, Cn,m (m = 1, 2, · · · ,N,m 6= n).

4. Construct a training dataset of input-output pairs,

{(

X−n|tk ,
dXn

dt

∣

∣

∣

∣

tk

+ β∗n Xn|tk

)∣

∣

∣

∣

∣

k = 1, 2, · · · ,KT

}

∪
{(

X−n|sk ,
dXn

dt

∣

∣

∣

∣

sk

+ β∗n Xn|sk

)∣

∣

∣

∣

∣

k = 1, 2, · · · ,KS

}

,

and then apply the feature selection methods using the
random forest, Extra-Trees, and VR-Trees to the constructed
dataset. Note that the random-forest-based inference method
used in this study trains models that consider the weight
values, wT

k
’s and wS

k
’s, assigned to the given gene expression

data. Therefore, our feature selection methods also consider
these weight values when training the random forests, Extra-
Trees, and VR-Trees used in these methods.

5. If one or more of the three feature selection methods conclude
that the m-th gene does not regulate the n-th gene, set Cn,m

to zero. In this study, a confidence value Cn,m equal to zero
indicates that the proposed method infers no regulation of
the n-th gene from the m-th gene. Otherwise, adjust the
confidence value Cn,m according to

Cn,m ← pCn,m + (1− p)min
{

DRF
n,m,D

ET
n,m,D

VT
n,m

}

,

where p (0 ≤ p ≤ 1) is a mixing parameter. The mixing
parameter represents the degree to which our combined
method relies on the confidence values computed by the
random-forest-based inference method. DRF

n,m, D
ET
n,m, and DVT

n,m

are the confidence values of the regulation of the n-th gene
from the m-th gene, obtained from the feature selection
methods using the random forest, Extra-Trees and VR-Trees,

respectively. As mentioned in the section 3.1, the feature
selection methods used in this study often falsely conclude an
irrelevant input variable to be relevant. In this step, therefore,
we adopt the worst estimate among the estimates obtained
from the three feature selection methods in order to reduce
the number of irrelevant regulations falsely concluded to
be relevant.

6. n← n+ 1. If n ≤ N, return to the step 2.
7. Output all of the confidence values, i.e., Cn,m’s (m, n =

1, 2, · · · ,N,m 6= n).

4. EXPERIMENTS WITH ARTIFICIAL GENE
EXPRESSION DATA

This section describes experiments conducted with artificial
genetic network inference problems to evaluate the performance
of the proposed method.

4.1. Analysis Using DREAM3 Data
To investigate the effect of the mixing parameter p on the
performance of the proposed method, we first performed the
experiment with a series of DREAM3 problems.

4.1.1. Experimental Setup

The proposed method was applied to five artificial genetic
network problems obtained from the DREAM3 in silico network
challenges (http://dreamchallenges.org/): Ecoli1, Ecoli2, Yeast1,
Yeast2, and Yeast3. The target networks of these problems
consisted of 100 genes each (N = 100) and were designed based
on actual biochemical networks.

Each problem used here contained both time-series and
static expression data of all 100 genes. The time-series data
were 46 datasets consisting of time-series of gene expression
levels obtained by solving a set of differential equations on
the target network, and were polluted by internal and external
noise (Schaffter et al., 2011). The time-series datasets began from
randomly generated initial values, and each gene in each set
was assigned 21 observations, with time intervals of 10 between
two adjacent observations. The static data consisted of wild-type,
knockout and knockdown data. The wild-type data contained the
steady-state gene expression levels of the unperturbed network.
The knockout and knockdown data contained the steady-state
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expression levels of every single-gene knockout and every single-
gene knockdown, respectively. When trying to solve the n-
th subproblem corresponding to the n-th gene, however, we
removed the static data of the knockout and the knockdown of
the n-th gene. The number of measurements in the time-series
experiment, KT , was therefore 46 × 21 = 966, while that of the
steady-state experiment, KS, was 1 + 100 + 100 − 2 = 199.
Noisy time-series data were provided as the observed data, so we
smoothed them using a local linear regression (Cleveland, 1979),
a data smoothing technique. The same local linear regression
was used to estimate the time derivatives of the gene expression
levels. The genetic network of 100 genes was inferred solely from
the smoothed time-series of the gene expression levels, their
estimated time derivatives, and the static gene expression data.

The number of trees in the random forest (Ntree), the number
of input variables to be considered in each internal node of
each tree (Ntest), and the maximum height of each tree (Nhmax)
were set to 1, 000,

⌈

N−1
3

⌉

, and 32, respectively, according to
the recommended parameter values for the random-forest-
based inference method (Kimura et al., 2019). Because the
parameter to be estimated, βn, was positive, we searched for
an optimum value in a logarithmic space. The search area of
logβn was [−10, 5]. The inference method used in the proposed
method must give values for the weight parameters for the gene
expression data, i.e., wT

k
’s and wS

k
’s. The weight parameters for

the measurements in each of the 46 time-series datasets were set
at the values used by Kimura et al. (2019), namely, 0.6674 for
the 10th measurement, 0.3348 for the 11th measurement, and
0.002174 for the last 10 measurements. The weight parameters
for the other measurements in the time-series datasets and for
the measurements in the static dataset were set to 1.0 and
1.1, respectively.

The number of random forests constructed (NRF), the number
of trees in each random forest, and the significance level of the
statistical test (αs) were set to 100, 100, and 0.01, respectively,
for the feature selection method using the random forest, as well
as for the feature selection methods using Extra-Trees and VR-
Trees. Again, the recommended values were used for the other
parameters for the feature selection methods: the numbers of
input variables to be considered in each internal node of each tree
in the random forest and in Extra-Trees were set to

⌈

N−1
3

⌉

×2 and
(N − 1) × 2, respectively, and α, the parameter that controls the
probability that the deterministic test-selection will be selected
over the random test-selection in VR-Trees, was set to 0.5.

Another parameter, namely, the mixing parameter p, must
also be assigned a value in the proposed method. In this
study, we investigated how the parameter p affected the
performance of our method by running a series of experiments
with different mixing parameter values. As the proposed
method is a stochastic algorithm, we applied the method with
each of the parameter settings to each of the five problems
ten times.

4.1.2. Results

We tested the performance of the proposed method using the
area under the recall-precision curve (AURPC), a performance

measure that increases from 0 to 1 as the numbers of false-
positive and false-negative regulations decrease. The recall-
precision curve of an algorithm was obtained by checking the
recalls and precisions. The recall and the precision are defined as

recall = TP

TP + FN
, precision = TP

TP + FP
,

where TP, FP, and FN are the numbers of true-positive, false-
positive, and false-negative regulations, respectively. The recall
and precision were computed by constructing a network of
regulations whose confidence values exceeded a threshold, and
then comparing it with the target network. Note that the
proposedmethod assigns confidence values to all of the candidate
regulations. Next, the recall-precision curve of the algorithm
was obtained by changing the threshold for the confidence
value. Auto-regulations/auto-degradations were disregarded in
the evaluation of the performance.

Table 1 lists the AURPCs of the proposed method with
different mixing parameter values in the five problems. The
table also shows the performance of the random-forest-based
inference method (Kimura et al., 2019), a method equivalent to
that proposed here without the feature selection. As described
in the section 3.2, the proposed method removes unpromising
candidate regulations and then adjusts the confidence values of
the remaining the candidates. When the mixing parameter p is
set to 1.0, however, our method omits this adjustment of the
confidence values. The experimental results thus show that the
removal of the unpromising candidate regulations improves the
performance of the inference method only to a slight degree.
Note that our method removed 268.4, 235.8, 208.9, 73.0, and
107.6 candidate regulations, on average, in Ecoli1, Ecoli2, Yeast1,
Yeast2, and Yeast3, respectively. Given that Ecoli1, Ecoli2,
Yeast1, Yeast2, and Yeast3 have N × (N − 1) = 9, 900
candidate regulations each, and 125, 119, 166, 389, and 551 actual
regulations, respectively, we see that the numbers of regulations
removed by the proposed method were very small. Hence, the
limited improvement in the performance might be explained by
the small number of unpromising candidate regulations removed
in the five problems solved.

When the mixing parameter p is set to 0.0, on the other
hand, the proposed method outputs the confidence values of the
regulations computed only on the basis of the values provided
by the feature selection methods. The experimental results of
our method with p = 0.0 indicate that the confidence values
computed by the feature selection methods are unreliable. As
the table shows, however, we can improve the performance
of the proposed method by combining the confidence values
computed by the random-forest-based inference method with
those computed by the feature selection methods. Our method
seems to perform at its best when the parameter p is set to
around 0.5. The standard deviations of the AURPCs, on the
other hand, widened as the value for parameter p fell from 0.9
to 0.1. As a result, the network inferred by the proposed method
with a smaller parameter p was likely to be of a lower quality
than that inferred by the method without the feature selection
methods. In the remaining experiments in this study, we thus
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TABLE 1 | The performance of the proposed method with different values for the mixing parameter p on the DREAM3 problems.

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

AVG AVG AVG AVG AVG

± STD ± STD ± STD ± STD ± STD

Proposed method (p = 1.0) 0.41910 0.54478 0.50084 0.39486 0.31297

±0.00390 ±0.00586 ±0.00287 ±0.00344 ±0.00224
Proposed method (p = 0.9) 0.42143 0.54539 0.50594 0.40047 0.32093

±0.00378 ±0.00563 ±0.00289 ±0.00370 ±0.00221
Proposed method (p = 0.8) 0.42307 0.54607 0.50825 0.40261 0.32234

±0.00380 ±0.00530 ±0.00301 ±0.00371 ±0.00245
Proposed method (p = 0.7) 0.42422 0.54674 0.50984 0.40384 0.32256

±0.00395 ±0.00523 ±0.00314 ±0.00377 ±0.00263
Proposed method (p = 0.6) 0.42493 0.54736 0.51055 0.40446 0.32223

±0.00420 ±0.00537 ±0.00347 ±0.00384 ±0.00272
Proposed method (p = 0.5) 0.42532 0.54772 0.51060 0.40419 0.32151

±0.00437 ±0.00542 ±0.00395 ±0.00393 ±0.00278
Proposed method (p = 0.4) 0.42520 0.54767 0.50996 0.40321 0.32054

±0.00465 ±0.00579 ±0.00446 ±0.00393 ±0.00291
Proposed method (p = 0.3) 0.42410 0.54689 0.50856 0.40179 0.31975

±0.00533 ±0.00658 ±0.00472 ±0.00378 ±0.00297
Proposed method (p = 0.2) 0.42216 0.54514 0.50655 0.40059 0.31922

±0.00663 ±0.00766 ±0.00489 ±0.00386 ±0.00293
Proposed method (p = 0.1) 0.42034 0.54344 0.50332 0.40046 0.31881

±0.00757 ±0.00813 ±0.00507 ±0.00390 ±0.00265
Proposed method (p = 0.0) 0.07094 0.07486 0.09892 0.13139 0.13949

±0.00195 ±0.00206 ±0.00252 ±0.00232 ±0.00284
Random-forest-based inference method 0.41918 0.54477 0.50083 0.39482 0.31291

(Kimura et al., 2019) ±0.00388 ±0.00586 ±0.00285 ±0.00344 ±0.00223

The performance of the random-forest-based inference method (Kimura et al., 2019) is also shown. AVG and STD represent the averaged AURPC and its standard deviation, respectively.

set the mixing parameter p to 0.9. The networks inferred by the
proposed method with p = 0.9 were better than those inferred by
themethodwithout the feature selection in 49 of the 50 (= 5×10)
trials performed on the DREAM3 problems.

The proposed method has a much higher computational cost
than the random-forest-based inference method (Kimura et al.,
2019), as the random forest, Extra-Trees, and VR-Trees must be
trainedmany times. As described earlier, we divided the inference
problem of a genetic network consisting of 100 genes into 100
subproblems. While the random-forest-based inference method
(Kimura et al., 2019) required an average of 30.3 min to solve a
single subproblem, the proposed method required an average of
127.9 min to solve a subproblem on the same workstation (Xeon
Gold 6150 2.7GHz). Though inconvenient, we do not see high
computational cost of the proposed method as a hindrance to
our study, given that our primary aim is to extract as much useful
information as possible from a limited amount of gene expression
data. Moreover, the computation time required by our method
can be easily shortened by performing the calculations in parallel.

4.2. Analysis Using DREAM4 Data
Our next step was to compare the proposed method
with the other genetic network inference methods on the
DREAM4 problems.

4.2.1. Experimental Setup

For our next experiment, we applied the proposed method to
five problems from the DREAM4 in silico network challenges.
Similar to the DREAM3 problems, the target networks in these
problems consisted of 100 genes, and were designed based on
actual biochemical networks. These networks were described
using a model identical to that of the DREAM3 networks
(Schaffter et al., 2011).

Each problem contained both the time-series and static
expression data of all 100 genes. The time-series data were 10
datasets of time-series of gene expression levels. Each dataset
consisted of the expression levels at 21 time points, and was
polluted by internal and external noise. A dataset was constructed
by applying a perturbation to the network at the first time point
and removing the perturbation at the 11-th time point. The
perturbation affected the transcription rates of a different set
of several genes in each dataset. The static data consisted of
wild-type, knockout, and knockdown data.

To take the perturbations into account explicitly, we added 10
elements to the gene expression data, each corresponding to one
of the perturbations. The i-th added element had a value of 1 for
the measurements between the 1st and 10th time points in the i-
th time-series dataset generated by adding the i-th perturbation,
and a value of 0 for the other measurements. The number of
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TABLE 2 | The AURPCs of the proposed method with p = 0.9 on the DREAM4 problems.

Network1 Network2 Network3 Network4 Network5

AVG AVG AVG AVG AVG

± STD ± STD ± STD ± STD ± STD

Proposed method (p = 0.9) 0.44629 0.31188 0.35118 0.35700 0.28935

±0.00351 ±0.00364 ±0.00369 ±0.00366 ±0.00399
Random-forest-based inference method 0.42797 0.28656 0.33930 0.34079 0.27199

(Kimura et al., 2019) ±0.00312 ±0.00300 ±0.00397 ±0.00347 ±0.00415
dynGENIE3 0.34 0.22 0.32 0.34 0.22

(Huynh-Thu and Geurts, 2018) — — — — —

MCZ 0.48 0.38 0.38 0.36 0.17

(Greenfield et al., 2010) — — — — —

dynGENIE3 + MCZ 0.60 0.43 0.47 0.52 0.37

— — — — —

iRafNet 0.552 0.337 0.414 0.421 0.298

(Petralia et al., 2015) — — — — —

The table also shows the performances of the random-forest-based inference method (Kimura et al., 2019), dynGENIE3 (Huynh-Thu and Geurts, 2018), MCZ (Greenfield et al., 2010),

a combination of dynGENIE3 and MCZ, and iRafNet (Petralia et al., 2015).

elements, N, was therefore 100 + 10 = 110. When trying to
solve the n-th subproblem corresponding to the n-th gene, we
also removed the static data of the knockout and the knockdown
of the n-th gene. The numbers of measurements of the time-
series and steady-state experiments, i.e., KT and KS, were thus
10 × 21 = 210 and 1 + 100 + 100 − 2 = 199, respectively.
The local linear regression (Cleveland, 1979) was used to smooth
the given time-series data and to estimate the time derivatives of
the gene expression levels. We inferred a genetic network using
only the smoothed time-series of the gene expression levels, their
estimated time derivatives, and the static gene expression data.

The 6th, 7th, 8th, 9th, and 10th measurements in each of
the time-series datasets were all assigned weight values of 0.2
(Kimura et al., 2019). The 17th, 18th, 19th, 20th, and 21th
measurements were all assigned weight values of 0.02. The
4th, 5th, 15th, and 16th measurements were assigned weight
values of 0.7333, 0.4667, 0.6733, and 0.3466, respectively. The
values for the remaining wT

k
’s and for wS

k
’s were set to 1.0 and

1.1, respectively. As described in the section 4.1.2, the mixing
parameter p was set to 0.9. The other experimental conditions
were unchanged from those used in the section 4.1.

4.2.2. Results

We also used the area under the recall-precision curve (AURPC)
to quantify the performance of the inference method in
this experiment. Although we inferred the regulations of the
100 genes from these genes and the 10 additional elements
representing 10 perturbations, we disregarded the regulations
of the genes from the additional elements for the evaluation of
the performance. Auto-regulations/auto-degradations were also
disregarded in the evaluation of the performance. Table 2 shows
the AURPCs of the proposed method on the five problems, along
with the AURPCs of the original random-forest-based inference
method (Kimura et al., 2019), dynGENIE3 (Huynh-Thu and
Geurts, 2018), MCZ (Greenfield et al., 2010), a combination

of dynGENIE3 and MCZ, and iRafNet (Petralia et al., 2015).
The AURPCs of dynGENIE3, MCZ, and the combination
of dynGENIE3 and MCZ are taken from Huynh-Thu and
Geurts (2018), while the AURPCs of iRafNet are taken from
Petralia et al. (2015).

As the table illustrates, the use of the feature selectionmethods
improved the quality of the inferred network. The improvements
brought about by the feature selection methods were larger than
the improvements obtained in the experiment performed in the
section 4.1. The better performance obtained might have partly
stemmed from the larger number of unpromising regulations
removed by the proposed method on the DREAM4 problems.
Our method removed an average of 2075.6, 1676.1, 1797.8,
1652.8, and 1559.9 regulations from 100×109 = 10900 candidate
regulations in Network1, Network2, Network3, Network4, and
Network5, respectively.

The proposed method, however, failed to outperform the
other inference methods in some cases, as the table shows.
Note however that dynGENIE3 and iRafNet are both designed
based on the random forest. As such, we could modify these
inference methods to improve the performance by applying the
proposed idea. Remember also that, when using MCZ, we must
provide static data for every single-gene knockout if we are to
obtain a reasonable genetic network. The use of static data for
every single-gene knockout might partly explain the excellent
performance of the combination of dynGENIE3 and MCZ. The
excellent performance of iRafNet seems to stem from a similar
cause. Data of this type, however, are difficult to measure, which
puts a limit to their practical use.

5. ANALYSIS OF BIOLOGICAL GENE
EXPRESSION DATA

In the final experiment of this study, we used the proposed
method to analyze actual gene expression data.
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TABLE 3 | The measurement conditions of the time-series datasets used in this

study.

Cell name Stimulus Measured time (min.)

Saos-2 cells Ascorbic acid 0, 15, 30, 45, 60, 80, 100, 120, 150,

and BGP 180, 240

MCF-7 cells EGF1 0, 15, 30, 45, 60, 80, 100, 120, 150,

180, 210, 240, 300, 360, 420, 480

MCF-7 cells HRG 0, 15, 30, 45, 60, 80, 100, 120, 150,

180, 210, 240, 300, 360, 420, 480

ARPE-19 cells TGF-β and 0, 15, 30, 45, 60, 80, 100, 120, 150,

TNF-α 180, 210, 240, 300

Lymphatic VEGF 0, 15, 30, 45, 60, 80, 100, 120, 150,

endothelial cells 180, 210, 240, 300, 360, 420, 480

Mesenchymal IBMX, DEX 0, 15, 30, 45, 60, 80, 100, 120, 150,

stem cells and insulin 180

Aortic smooth FGF-2 0, 15, 30, 45, 60, 120, 180, 240, 300,

muscle cells 360

Aortic smooth IL-1B 0, 15, 30, 45, 60, 120, 180, 240, 300,

muscle cells 360

5.1. Experimental Setup
In this experiment, we analyzed the expression data of 11
immediate early genes related to transcription, i.e., ATF3, EGR1,
EGR2, EGR3, ETS2, FOS, FOSB, FOSL1, JUN, JUNB, and MYC.
The time-series and static gene expression levels were obtained
from FANTOM5 data (http://fantom.gsc.riken.jp/5/) (FANTOM
Consortium et al., 2014). The time-series datasets consisted of
sets of expression levels of the genes measured in Saos-2, MCF-
7, ARPE-19, lymphatic endothelial, mesenchymal stem, and
aortic smooth muscle cells at successive time points after several
kinds of external stimuli were applied. Table 3 presents detailed
information on the time-series datasets used in this study. Two
types of static data were used for the experiment. The first were
sets of gene expression levels for the Saos-2 and mesenchymal
stem cells introduced as untreated controls. The second were
the measurements taken at time 0 in the respective time-series
datasets. The numbers of measurements contained in the time-
series and static data in this experiment, KT and KS, were 11 +
16 + 16 + 13 + 16 + 10 + 10 + 10 = 102 and 2 + 8 = 10,
respectively. Eight elements corresponding to the stimuli applied
to the cells were added to the gene expression data, in order to
take the external stimuli explicitly into account: “ascorbic acid
and BGP,” “EGF1,” “HRG,” “TGF-β and TNF-α,” “VEGF,” “IBMX,
DEX and insulin,” “FGF-2,” and “IL-1B.” An added element had
a value of 1 for the measurements in the time-series dataset
obtained by applying the stimulus corresponding to the element,
and a value of 0 for the other measurements. The total number of
elements,N, was therefore 11+8 = 19. By applying the proposed
method to the gene expression data described here, we inferred
regulations of the 11 selected genes from both the 11 genes and
the 8 additional elements. These gene expression data were also
analyzed in Kimura et al. (2019).

TABLE 4 | The top 20 regulations ranked by the confidence values computed by

the proposed method.

Rank Result from original data Result from modified data

1 EGR1← FOS EGR1← FOS

2 EGR2← FOS FOS← HRG

3 ATF3← TGF-β and TNF-α ATF3← TGF-β and TNF-α

4 JUNB← FOSB EGR2← HRG

5 EGR3← EGR2 JUNB← FOSB

6 FOSL1← ATF3 EGR3← EGR2

7 MYC← FOS EGR3← FOS

8 EGR1← EGR2 FOSL1← ATF3

9 EGR3← FOS EGR2← FOS

10 FOSB← JUNB EGR1← EGR2

11 JUNB← EGR2 MYC← FOS

12 EGR3← EGR1 JUNB← EGR2

13 FOS← EGR2 EGR3← EGR1

14 ETS2← EGR2 FOSB← JUNB

15 JUN← FOSB JUN← VEGF

16 EGR2← MYC ETS2← EGR2

17 JUN← VEGF JUN← FOSB

18 EGR2← EGR1 FOSL1← FOSB

19 FOSL1← FOSB FOSB← EGR2

20 FOSB← EGR2 ATF3← JUN

The rankings are obtained from an analysis of original data identical to those of Kimura

et al. (2019), and the modified data constructed by considering the decomposition of

the chemical compounds used for the stimulation of the cells. The regulations written in

boldface and italic fonts have reportedly been confirmed in human and/or other species

and are accordingly assumed to be reasonable.

The following weight values for the expression data were
determined according to Kimura et al. (2019). The weight
values corresponding to the 11th, 12th, 13th, 14th 15th, and
16th measurements in the time-series dataset of the lymphatic
endothelial cells were set to 0.75, 0.5, 0.25, 0.25, 0.25, and 0.25,
respectively. The weight values for the 8th, 9th, 10th, and 11th
measurements in the time-series dataset of the Saos-2 cells, and
for the 7th, 8th, 9th, and 10th measurements in the two time-
series datasets of the aortic smooth muscle cells, were set to
0.8333, 0.6667, 0.5, and 0.5, respectively. The weight values for the
twomeasurements in the steady-state experiments with the Saos-
2, MCF-7, mesenchymal stem, and aortic smooth muscle cells
were set to 0.55. The weight values for the other measurements
in the time-series and static datasets were set to 1.0 and 1.1,
respectively. The other experimental settings were identical to
those used in the previous experiment.

5.2. Results
Table 4 lists the top 20 regulations with respect to the confidence
values computed by the proposed method. The correct structure
of the target network, however, is still unknown. We thus
compared the inferred regulations with those obtained from
the STRING database (https://string-db.org/) (Szklarczyk et al.,
2014) of protein-protein interactions. The comparison results
suggest that 13 of the 20 regulations (boldface font in the
table) are reasonable, as the interactions between the proteins
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corresponding to the genes have been confirmed in human
and/or other species. Moreover, the regulation of ATF3 from the
external stimulus “TGF-β and TNF-α” (italic font in the table)
seems to be reasonable because TGF-β has been confirmed to
induce ATF3 (Yin et al., 2010).

The proposed method, on the other hand, concluded that 28
candidate regulations were unpromising, and set their confidence
values to zero. While the regulations of EGR1 from the external
stimuli “FGF-2” and “IL-1B” were among the 28 removed
regulations, the protein-protein network obtained from the
STRING database suggested that these two regulations should
not be removed. As described in the section 5.1, this study
represented the existence and absence of an external stimulus as
1 and 0, respectively. This simple representation might help to
explain the erroneous conclusion that the two regulations just
mentioned were unpromising.

Our next step, therefore, was to obtain a more reasonable
genetic network by making the representation of the external
stimuli more realistic. To do so, we first had to consider the
decomposition of the chemical compounds used for stimulating
the cells. When preparing the gene expression data, we set the
value for each of the 8 added elements corresponding to the

external stimuli to 0.9
t
48 , instead of 1, where t was the time (min.)

elapsed after the stimulation of the cells. We then applied the
proposed method to the modified gene expression data. Table 4
also shows the top 20 regulations ranked by the confidence values
obtained in the additional experiment with the modified data. To
check the effect of the modification of the data, we compared the
inferred regulations with those contained in the protein-protein
network obtained from the STRING database. The comparison
indicated that 12 of the 20 regulations were reasonable (boldface
font in the table), as the interactions between the corresponding
proteins were reportedly confirmed. We could also conclude, for
the reason mentioned previously, that the regulation of ATF3
from the external stimulus “TGF-β and TNF-α” was reasonable.
The regulations of FOS and EGR2 from the external stimulus
“HRG” (italic font in the table) appeared to be reasonable as
well, given the suggestion from Yuan et al. (2008) and Martine-
Moreno et al. (2017) that these regulations existed. In the
top 20 regulations inferred in the additional experiment, the
number of reasonable regulations was larger, and the ranks of
the unreasonable regulations seemed to be slightly lower. The
regulations of EGR1 from the external stimuli “FGF-2” and “IL-
1B,” meanwhile, were erroneously removed in the experiment
with the original gene expression data, as mentioned earlier.
These two regulations remained in the inferred regulations in
this additional experiment, although the number of removed
regulations decreased to 18.

As mentioned earlier, the improvement in performance
brought about by combining the random-forest-based inference
method with the feature selection methods is often small. In
the experiments in this section, therefore, the top 20 regulations
obtained by the proposed method were completely identical to
those of the original random-forest-based method (Kimura et al.,
2019). Moreover, the numbers of regulations removed by the

proposed method were also modest. By comparing the removed
regulations with those now known, however, we can check the
validity of the inferred network. This feature of the proposed
method could be useful, when we try to analyze actual gene
expression data.

6. CONCLUSION

Several random-forest-based inference methods have been
proposed. While these methods show promise, they are only of
use in ranking all of the candidate regulations by assigning them
confidence values. They are of no use in removing unnecessary
regulations. In this study, we propose a new method to remove
unpromising candidate regulations by combining the random-
forest-based inference method (Kimura et al., 2019) with the
original feature selection method (Kimura and Tokuhisa, 2020)
and two modifications of that method. By using the outputs
from the feature selection methods, the proposed method also
adjusts the confidence values of the candidate regulations.
Numerical experiments performed with artificial gene expression
data showed that the combination of the inference method with
the feature selection methods slightly improved the quality of
the inferred genetic network. Though its computational cost
is high, we believe that the proposed method is useful for
our chief purpose of extracting as much useful information as
possible from a limited amount of gene expression data. Through
experiments with actual data, we showed that the removal
of unpromising regulations is a useful feature for confirming
the validity of an inferred genetic network. The number of
regulations removed by the proposedmethod, however, was often
very small. In future work, we plan to search for strategies to
detect larger numbers of unpromising regulations.
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