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Abstract

Fiddler crabs (Uca spp., Decapoda: Ocypodidae) are commonly found forming large aggregations in intertidal zones, where
they perform rhythmic waving displays with their greatly enlarged claws. While performing these displays, fiddler crabs
often synchronize their behavior with neighboring males, forming the only known synchronized visual courtship displays
involving reflected light and moving body parts. Despite being one of the most conspicuous aspects of fiddler crab
behavior, little is known about the mechanisms underlying synchronization of male displays. In this study we develop a
spatially explicit model of fiddler crab waving displays using coupled logistic map equations. We explored two alternative
models in which males either direct their attention at random angles or preferentially toward neighbors. Our results indicate
that synchronization is possible over a fairly large region of parameter space. Moreover, our model was capable of
generating local synchronization neighborhoods, as commonly observed in fiddler crabs under natural conditions.
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Introduction

The emergence of large-scale synchronization patterns from the

collective behavior of interacting agents has become a major area

of research in recent years. Biological phenomena as disparate as

neuronal activation [1,2], unison clapping in large audiences [3,4],

and the spatial synchronization of population cycles leading to

outbreaks [5] have been shown to result from the individual

responses of constituent parts without any centralized control

[6,7]. Understanding the mechanisms underlying such emergence,

as well as the commonalities and differences between physical and

biological self-organizing systems, can provide a valuable tool to

assist in overcoming the limitations of traditional reductionistic

approaches, and thus to contribute to a more comprehensive

understanding of the origin and maintenance of biological

diversity [8,9].

A particularly intriguing instance of collective emergence of

synchronization involves the behavioral displays of male fiddler

crabs (Uca spp., Decapoda: Ocypodidae). Local populations of

fiddler crabs often form large aggregations in intertidal zones,

typically in mangroves or sandy beaches of brackish water, where

males from burrow-mating species defend their territories and

attract females during low tides [10–12]. During semimonthly

cycles of reproductive activity associated with female receptivity in

synchrony with tide cycle and larval release [13,14], males

commonly perform rhythmic waving displays with their greatly

enlarged claws (Fig. 1). In addition to courtship displays, these

massive appendages also play an important role in other activities,

such as advertisement and male-male combat [10,15,16], entailing

substantial energetic costs [17–20], given that these massive claws

often approach nearly half of the body mass and four to five times

the length of the minor claw used for feeding [16,21]. While

performing waving displays, fiddler crabs often synchronize their

behavior with neighboring males both in the presence or absence

of a target female [12,22–25]. Although synchronization of

communication signals associated with mating behavior is itself

common in many other organisms with sound or bioluminescent

signals (fireflies [26,27], katydids [28] and frogs [29]), the

synchronized waving displays of fiddler crabs are unique for two

reasons: first, they are the only known synchronized visual

courtship displays involving reflected light and conspicuous

moving body parts [30]. Second, males tend to synchronize more

readily with their immediate neighbors, forming partially discrete

waving neighborhoods [22]. Many studies demonstrated female

preference for males with leading signals, and this leadership was

correlated to other physical qualities such as male size and physical

strength to maintain high signaling rates [15,24] yet little is known

about the adaptive significance of synchronization itself. One

possible explanation is the precedence effect, in which males

displaying first with respect to the rest of the group could be

particularly attractive to females [25,31–33]. As a consequence,

the synchronized courtship observed in the males would likely be

an epiphenomenon resulting of the competition for waving first

[24,25,30,33]. Alternatively, groups of displaying males could be

more attractive to females in general, or to assess each other’s

competitive potential [12,25] or avoid predation [34], in a

phenomenon analogous to the selfish herd hypothesis [35].

The formalism commonly used to model behavioral synchro-

nization involves coupled oscillators responding to a mean-field
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aggregate cue, such as the total sound intensity in chorusing frogs

or light brightness in flashing fireflies [36]. In fiddler crabs,

however, the field of view of a male tends to be disproportionately

affected by signals from its immediate vicinity, leading to the

possibility of decay with distance in the degree of synchronization

and symmetry breaking when groups of males have non-

overlapping waving frequencies. These properties differ from

previous spatially explicit synchronization models in ecology, such

as those focusing on spatial variation in population density in

which spatial coupling among different locations involves spatial

migration and/or a limited spatial foraging area [37–40].

Fiddler crabs have a 360-degree visual field based on compound

eyes made of many ommatidia encircling the tip of the eyestalks held

above the carapace. Fiddler crab compound eyes are excellent

motion detectors but poor in visual resolution, which is determined by

the size and spacing of ommatidia. Better resolution is concentrated

near the visual equator all the way around the eyes, aligned with the

visual horizon, as an adaptation to their flat environment [12,41–43].

Therefore, the visual field of these crabs is distinctly divided into

hemifields below and above the crab’s visual horizon, allowing for

discriminating conspecifics from potential predators, which are larger

visual objects (such as birds). During displays, the waving apex of

conspecifics would penetrate the ‘‘predator’’ or dorsal visual zone and

strikingly call the crab’s attention [41–45]. However, discriminating

predators from conspecifics displayed in the dorsal visual zone is

essential to survival and relies on recognition of visual cues such as

motion patterns, object size and shape, background, and object

contrast [10,41,44–47]. The distance at which a crab is able to detect

and react to the presence of a conspecific can be roughly predicted by

the crab’s height, the conspecific size and the visual resolution power,

yet this is not easily determined given that a response to the presence

of conspecifics is also affected by a set of immeasurable social factors

[12,41,42,45,48].

It is so far not known whether fiddler crabs are able to focus

attention on selected visual objects or whether they continually

attend to all directions. However, it is clear that the visual system of

fiddler crabs is sufficiently elaborate to make waving synchrony

possible [22,23,28,47]. In fact, there is evidence suggesting that

fiddler crabs direct visual attention: According to Land and Layne

[49] male fiddler crabs present preferential orientations toward

conspecifics, showing certain parts of the body to intruders and

females as a threat or attraction. This could also result from an

attempt to align conspecifics with the crab’s highest resolution vision

[50], possibly indicating that they direct attention to approaching

conspecifics and establishing a narrower angle of attention in the

360-degree visual field. However, no study to date has identified a

specific angle of concentrated attention toward conspecifics and

there is still not enough evidence to prove its existence.

In this study we investigate a spatially explicit model of

synchronization in fiddler crab waving displays. We chose the

logistic map as the basis for our model because it has a rich

dynamical behavior (from periodic orbits to chaos) and it has

already been extensively studied [51,52], including coupled logistic

map models [53–58]. Although selected visual attention in several

different directions at once is discarded in this first attempt to

model waving synchrony, we approach two extreme situations: a

limited angle range, and 360u attention vision. The model also

considers that all individuals are equivalent, meaning that all of

them have the same physical strength and visual power, and no

background interference is considered. Despite its simplicity, our

model was able to successfully reproduce many of the main

features of fiddler crab waving behavior, such as local synchro-

nization and the formation of synchronized neighborhoods

through symmetry breaking.

Materials and Methods

2.1 Logistic Map
The logistic map is well known [51,52] because of its rich

dynamics emerging from a simple equation:

xnz1~mxn(1{xn) ð1Þ

where xn is the variable at time n and m is a positive constant. If

0,xn = 0,1 and 1,m,4, the sequential variable values is always

0,xn ,1. For 1,m,3, the fixed point, 121/m, is stable, which

means that for any x0 value, xn evolves to the fixed point. For

3#m#4, the fixed point is unstable and the asymptotic dynamics

of xn depends on m, such that a bifurcation takes place when m = 3

and xn converges to period two dynamics (i.e. xn oscillates between

two values). When m = 3.45, there is another bifurcation, leading to

a period four dynamics. As m increases, successive bifurcations

arise until the point (m = 3.57), when the period of the system

approaches infinity, leading to the onset of chaos. Another

remarkable dynamics present in the logistic map is the presence

of periodic dynamics for some values of m greater than 3.57. The

larger periodic window occurs when m is around 3.83, where the

dynamics is a period three (Fig. 2).

Regarding fiddler crab waving displays, xn can be interpreted as

a claw displacement at time n. A period two dynamics means that

the crab takes two units of time to complete a full wave, period

four means that it takes four units of time, and so on. The chaotic

Figure 1. Waving-display in male of Uca leptodactylus illustrating fiddler crab waving behavior. (a) Initial upward movement; (b) waving
apex; (c) final downward movement. Photo: Ana C. Rorato.
doi:10.1371/journal.pone.0057362.g001
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regime would mean that the crab never wave exactly in the same

way. Although this seems to be unrealistic at first, this regime can

be interpreted as just a small variation on the displacement in a

given time. For example, compare the temporal evolution when

m = 3.2 with m = 3.6 (Fig. 2): both cases led to up and down

sequential movements, yet the amplitude is not exactly the same.

2.2 Model Description
We represent space by a two dimensional regular lattice with LxL

sites. Each site corresponds to an area around the male’s burrow. We

refer to it as its home position and male displacements from this area

are not considered in this version of the model. The claw movement

of each individual is modeled by the coupling logistic map:

xi
nz1~(1{D)mxi

n(1{xi
n)zDm�xxi

n(1{�xxi
n), ð2Þ

where

�xxi
n~

1

Ni

X
j[ni

Rh

xj
n ð3Þ

The variable xi
n indicates claw displacement at time n of the

individual whose home position is in site i. Given that there is only

a single crab per site, the subscript i identifies both the home site

and the individual male. The first term of Eq. (2) models claw

movement without the influence of other neighbors. The second

term represents the aggregate influence of other males on a crab’s

own claw movement. Variable �xxi
n thus represents the average of

the neighbor’s claw displacements, where Ni is the number of

individuals in the field of attention of individual i (Eq. 3). The field

of attention is defined as a section whose area is uRh~360pR2=h,

where R and h are the reach and the angle (in degrees) of

attention, respectively. Given that, to date, no study on the visual

ecology of fiddler crabs has been able to find a definite angle of

attention, we tested different h values, including 360u. The

parameter 0ƒDƒ1 is the coupling constant: the higher its value,

the stronger the influence of other individuals on the wave of

individual i. When D = 0, we have the well-studied logistic map

[51], whereas if D.0 the system becomes more complex and its

dynamics cannot be predicted analytically. Our model also allows

for varying crab density, such that the regular grid is randomly

occupied by rL2 individuals, where L means the lattice width

and0vrƒ1. The model considers absorbing boundary condi-

tions, i.e. individuals that have their field of attention beyond the

Figure 2. Logistic map. Left: Bifurcation diagram shoes the asymptotic value of xn as function m. Right: Temporal evolution for five different values
of m: m = 2.5 (stable fixed point), m = 3.2 (period two), m = 3.6 (chaos) and m = 4.0 (chaos). In all cases the initial conditions were set on x0 = 0.1.
doi:10.1371/journal.pone.0057362.g002
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grid are not influenced by other individuals. Fig. 3 illustrates the

two dimensional grid with the individuals and their set fields of

attention.

We assume that the individuals stay in their home position and

their set field of attention is constant. We provide two alternative

models to assess the influence of the orientation of the male’s field

of attention on their synchronization: (1) M1: The orientation of a

male’s field of attention is random with respect to the presence of

other males; (2) M2: The orientation of a male is preferentially

directed such that the number of males in its field of attention is

maximized. If two equally favored alternative fields of attention

are present, the male chooses one of them with equal probability.

After all fields of attention are set, the iteration of Eq. 2 starts. We

also approach a global field of attention (h= 360u), which

reorientation does not make sense and M1 = M2. A unique and

small angle of attention and a maximum one (when h = 360u) are

two extreme possibilities within the crab possible range of angles.

We also have studied other scenarios in which the model

includes additional assumptions. Among them, it is interesting to

point out two: (a) We modified M2 considering that in the

presence of more than one preferential field of attention, an

individual chooses the direction which the average movement of

the visible individuals looks more similar to its own (that is xi?�xxi);

(b) We considered that the coupling decreases with distance. As

consequence, Eq. (3) was treated as a weighted average,

xi
n~

P
j[ni

Rh
xj

n=di,j
� �

=
P

j[ni
Rh

1=di,j
� �

, where di,j is the distance

between i and j. Although both additions seem to make the model

more realistic, they do not qualitatively change the predictions.

Therefore, we restrict our discussion to M1 and M2.

Figure 3. Illustration of male spatial distribution with random
visual attention orientations. The intersections of the grid represent
all possible home positions and the black dots represent all occupied
sites. Filled gray area shows the field of attention, defined by R and h.
doi:10.1371/journal.pone.0057362.g003

Figure 4. Analytical restriction for two individuals, obtained by Eq. (9) and Eq. (13). The contour plot shows how fast the system becomes
synchronized: the darker is the plot, the faster it occurs. The upper contour plot refers to the follower-leader coupling, and the contour line values
correspond to n = (12D)m. The lower contour plot refers to the case where the coupling is bidirectional, and the contour lines values correspond
ton = |(122D)| m.
doi:10.1371/journal.pone.0057362.g004
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2.2 Model Analysis
In order to quantify synchrony between individuals, we

calculate the average correlation Sri,jTnl ,n
i
Rh

between individual i

and the neighbors j within its field of attention, ni
Rh, during a time

lag nl:

Sri,jT
nl ,ni

Rh
~

1

nlNi

X
n[nl

X
j[ui

Rh

2 xi
n{��xx�xxn

� �
xj

n{��xx�xxn

� �
xi

n{��xx�xxn

� �2
z x

j
n{��xx�xxn

� �2
, ð4Þ

where ��xx�xxn~
1

Ngrid

XNgrid

i~1

xi
n

Ni is the number of individuals in the field of attention of

individual i, and ��xx�xxnis the global average, where the sum takes into

account all individuals in the grid, Ngrid. In order to obtain a

convergent global correlation value ,r., we compute a global

average obtained from st simulations and for the individuals i that

are inside a smaller grid of size LcxLc, centered in whole grid (The

restriction over i was made to minimize boundary effects):

SrT~
1

stNLcxLc

X
i[LcxLc

Xst

s~1

Sri,jTs
nl ,nRh

, ð5Þ

where NLcxLc&Lc
2r is the number of individuals in the centered

grid.

Figure 5. (Color online) Spatial distribution at time n = 800 for M1 and M2. Each dot represents one individual, whose claw displacement
value,xi

800, is identified by the color scale on right of the graphs. Links shows the presence of interactions. Narrow lines means that the interaction
occurs in just one direction (the interaction direction is not plotted) and wide lines means bidirectional interaction. The imposed density values,
r = {0.1, 0.4}, and the logistic map values, m = {3.2, 4.0} are shown on left of each graph. For all graphs the coupling constant value was set on D = 0.5. In
order to contrast the spatial interaction network predicted by M1 and M2, in these graphs the spatial positions of the crabs are the same (for a given
density), the unique difference is the orientation.
doi:10.1371/journal.pone.0057362.g005
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2.3 Analytical Insights
To get some insights about the coupling logistic model, let us

first consider a special case with only two individuals. In this case,

there are two possibilities only: (a) bidirectional coupling, where

both individuals follow each other; (b) leader-follower coupling,

where only one individual follows to the other, whereas the latter

one has no influence on the behavior of the leader. This coupling

structure is also known as master-slave coupling [58]. As detailed

below, these two possibilities result in different synchronization

conditions.

2.3.1 Bidirectional coupling: N«N. This simplified version

has already been studied previously [53–55] for small values of

D(D,0.5). Here we consider the full range of D (0,D,1).

By considering two individuals, i and j, that influence each

other, Eq. (2) is simplified to:

xi
nz1~(1{D)mxi

n(1{xi
n)zDmxj

n(1{xj
n)

x
j
nz1~(1{D)mxj

n(1{xj
n)zDmxi

n(1{xi
n):

ð6Þ

In terms of the amplitude difference, Dn~xi
n{xj

n, Eq. (6) can

be greatly simplified. We obtain:

Dnz1~(1{2D)mxi
n(1{xi

n)z(1{2D)mxj
n(1{xj

n)

Dnz1~(1{2D)m xi
n{xi

n2{xj
nzxj

n2
� �

Dnz1~(1{2D)mDn 1{xi
n{xj

n

� �
:

ð7Þ

Observe that the two individuals will synchronize if the absolute

difference amplitude diminishes over the time, DDnz1DvDDnD: Here

we can already infer that, if the coupling parameter is D = 0.5, the

two individuals synchronize in a single time step. Since the logistic

Figure 6. (Color online) Bifurcation diagram for M1 and M2 considering r = 0.4 and D = 0.5. Gray dots show all possible claw displacement
values assumed by all individuals. Colored dots show one possible claw asymptotic displacement values (assumed by one individual) for
800,n,1000. Colored scale refers to the global correlation value, ,r.. For m,3 both models predict a stable fix point (gray dots are behind to
colored dots). Vertical black dot lines highlight the cases where m = {3.2, 3.74, 3.84, 4}. The first and the last values are the ones set in Figs. 5 and 7. The
other two values have, respectively, five and three period orbits only for M1 model (as predict by uncoupling logistic map).
doi:10.1371/journal.pone.0057362.g006
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map limits 0vxi
nv1, we have that D1{xi

n{xj
nDv1: As conse-

quence, we can write down the following restriction for synchrony:

D(1{2D)mDv1

1{2Dv

1

m
? Dw

1

2
1{

1

m

� �

{1z2Dv

1

m
? Dv

1

2
1z

1

m

� �

8>>><
>>>:

ð8Þ

1

2
{

1

2m
vDv

1

2
z

1

2m
ð9Þ

This condition is sufficient for synchronization, but it is not

necessary since D1{xi
n{xj

nD can assume values smaller than 1. For

this situation we expect a wider range of D. In fact, the study by

Lloyd [55] considered 0,D,0.5, and observed numerically that,

for m = 3.2 and D.0.058, this system always synchronizes.

2.3.3 Leader-follower coupling: NRN. If only one individual

pays attention to the other, Eq. (2) simplifies to:

xi
nz1~(1{D)mxi

n(1{xi
n)zDmxj

n(1{xj
n)

x
j
nz1~mxj

n(1{xj
n),

ð10Þ

where the dynamics of i has no influence over j. Analogous to the

previous case, we rewrite the above equation in terms of the

difference amplitude, Dn~xi
n{xj

nand obtain

Dnz1~(1{D)mxi
n(1{xi

n)z(1{2)mxj
n(1{xj

n)

Dnz1~(1{D)mDn 1{xi
n{xj

n

� �
:

ð11Þ

The condition for synchronization is then:

D(1{D)mDv1, ð12Þ

and results

Dw1{
1

m
ð13Þ

Again, this condition is sufficient for synchronization, but it is not

necessary since D1{xi
n{xj

nD can assume values smaller than 1.

The full model proposed here considers not only two, but many

interacting individuals. However, as we will see, these two simple

interactions, that impose different restrictions, are present in the

full network and can help us to understand the synchronization

dynamics of the complex model. Both conditions, Eq. (9) and Eq.

(13), are plotted in Fig. 4.

Results

For all simulations presented here, initial conditions were set as:

reach of attention R = 3; lattice width L = 30; and lattice width for

the correlation calculation Lc = 10. We ran the simulations for

Figure 7. (Color online) Phase diagrams. The graphs show the global correlation ,r., Eq. (5), for M1 and M2 models and two values of logistic
map constant, as function of coupling constant, D, and the density of individuals, r. The global correlation value corresponds to the color scale on the
right of the graphs. The open black squares highlight the parameters present in Fig. 5.
doi:10.1371/journal.pone.0057362.g007
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different values of m (logistic map constant), D (coupling constant),

r(density) and two alternative breadths in the angle of attention,

h = {60u,360u}.We tested different L, Lc and two other h values

(30u and 90u) and found that they had no qualitative effects on the

investigated results. For h smaller than 360u, we tested either

random field of attention orientation (M1) and preferential field of

attention orientation toward neighbors (M2), whereas when

h = 360u both model version are equivalent. Each simulation

included at least st = 500 replicates and a time lag nl = 500 to

obtain a convergent global correlation value. Throughout the text,

we consider as a leader the individual that does not follow any

other male (because there are not any individual in its field of

attention), and as a follower the individual that follows another

male, regardless if the last one is also a follower or a leader.

Bidirectional coupling refers to two individuals following each

other. Examples of the spatial organization and claw displace-

ments, when h = 60u, for M1 (random field of attention

orientation) and M2 (preferential field of attention orientation

toward neighbors) are shown in Fig. 5. Under low density, the

whole grid is composed of unlinked groups, each having few

coupled individuals. The bidirectional coupling can occur in both

models, as long as two individuals overlap their field of attention.

On the other hand, follower-leader coupling is only present in M1

(if h,360u), whereas, for M2, the reorientation leads to

bidirectional coupling. As consequence, bidirectional coupling is

more frequent in M2 than M1. As density increases, the whole grid

becomes more connected, yet field of attention reorientation

results in more cohesive subgroups (Fig. 5).

By following the dynamics of any individual in the grid and

constructing the bifurcation diagram (Fig. 6) we observed a clear

correspondence between both models and the uncoupling logistic

map [52], such as the presence of stable fix point for m,3.0, period

two orbit for 3#m,3.45, and the following cascade of period

doublings. We have not checked if the coupling models also lead to

chaos, yet given that their bifurcation diagrams are so similar to

the uncoupling logistic map, we believe that chaos could also be

present for m.3.57. Odd period orbits were observed only for M1

(h = 60u) when m = {3.74, 3.84}, in agreement with the uncoupling

Figure 8. Consequence of spatial organization for M1 (black dots) and M2 (gray dots) obtained by the average of 5000 initial
conditions for each r value. Above: average number of leader per follower. Observe that, for M1 and 0.15# r#0.45, there is more than one leader
per follower, causing the asynchronicity observed in Fig. 6. As in M2 the individuals rearrange themselves in order to maximize the number of
individuals in their field of attention, there is not any leader present. Below: average number of reciprocal couplings by individuals that makes at least
one reciprocal coupling. Observe that, for M2 and 0.45# r#0.85, there are more than two reciprocal couplings per individual, causing a decrease of
synchrony, as observed in Fig. 7 for m = 3.2.
doi:10.1371/journal.pone.0057362.g008
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logistic map (compare Fig. 2 with Fig. 6). It is interesting to point

out that, for the periodic orbits, all individuals have the same

period and most of them have the same orbit amplitude as the

uncoupled logistic model (Fig. 5), however all intermediate

amplitude values can also occur (Fig. 6). For example, when

m = 3.2, each individual follows a period two dynamics, but not all

claw displacements assume the same pair of values. Due to the

period two dynamics, the spatial pattern present in Fig. 5 is exactly

the same for any time n multiple of 2 and far from the transient.

Another interesting result indicated in Fig. 6 is that M1 loses

synchrony much faster than M2. For example: when the dynamics

change from a stable fix point to a period two orbit, M1 global

correlation decreases from 1 to around 0.8, whereas M2 maintains

a high correlation value. This figure also shows that the increase of

degree of attention is not always more favorable for synchrony: for

m around 3.35 or greater then 3.7, a small degree of attention with

reorientation (M2, h = 60u) facilitates the synchronization more

than h = 360u (M1 = M2).

Global correlation value, ,r., are shown in Fig. 7 for various

conditions (h = 60 (for both models) and h = 360u (M1 = M2),

assuming m = {3.2, 4.0} and different combinations of coupling

constant, D, and density, r). Given that chaos is characterized by

its high sensitivity to initial conditions, we could expect that, if the

individuals have a chaotic claw movement, the synchronization

would be lower than if they have a periodic movement. In general,

Fig. 7 shows that this expectation is true, except for low density,

where both m values result in high global correlation value. In fact,

Eq. (9) and (13) and Fig. 4, predicts that perfect synchronization

(,r. = 1) can occur for all m values. As we have already pointed

out, the similarity of the coupling models to the case of two

individuals studied analytically is higher under low density. In this

condition, synchronization is independent of m for M1 when D

assumes high values (because most of two coupled interactions are

of the ‘‘leader-follower’’ type) and for intermediate values of those

parameters for M2 and h = 360u (because most of two coupled

interactions are bidirectional), in agreement with the analytical

predictions. In addition, the only situation where M1 synchronizes

more intensely than M2 is for low density and high coupling

constant values. As density increases, the grid becomes more

connected and synchronization is more sensitive to m. However,

for m = 3.2 and high density, Fig. 7 shows that, in both models,

synchronization is not as strong forD&0:7, as predicted analyt-

ically (Fig. 4). Moreover, we can infer that for high densities,

synchronization works like a follower-leader coupling if D assumes

high values (upper right graph region), or, if D around 0.4, the

network can still be well synchronized, meaning that the influence

of part of the whole group on another is bidirectional. Although

the increasing of density results in a much more complex spatial

network (in comparison to the analytical version) this result shows

that the simplest spatial description can still be very informative in

relation to the complex spatial network. We have tested if this

pattern is also present for other m values, which the asymptotic

dynamics for the uncoupled logistic map corresponds to period

two (3.4), four (3.46), eight (3.55), sixteen (3.565), and chaos (3.6

and 4.0). We noticed that this valley is smoother as m increases,

and that it disappears for period eight, showing that the analytical

prediction fails as the dynamics become more elaborated. Fig. 7

exemplifies the case where m = 4.0 and there is no restriction for

D&0:7. As shown in Fig. 6, when h = 360u, synchronization is not

favored in all scenarios. In general, M2 promotes stronger

synchronization under low densities (r,0.4), regardless of m.

When m = 4.0, M2 has a higher global correlation value for all

densities if D.0.5 and a similar value for D,0.5 Another

intriguing pattern present in Fig. 7 is that, although synchroniza-

tion can be high for low and high densities, it can be fairly low for

intermediate densities as well. For M1 this phenomenon occurs

regardless of m value, meaning that there is at least one spatial

network property that is present in low and high densities that is

not present for intermediate densities. In order to further explore

this phenomenon, we counted, for each considered density value,

how many leaders each follower has. Then we calculated the

average in the LcxLc central grid over 5 thousand spatial networks.

We observed that, for 0.15#r#0.45, each follower has, on

average, more than one leader (Fig. 8). In fact, if two leaders are

not synchronized and the behavior of a follower is influenced by

both, it is impossible that these three individuals will synchronize.

For M1 and 0.10$r$0.50, the number of leaders that each

follower has is, on average, less than 1, meaning that not all

network configurations had a leader, and when they did occur,

they tended to have only one follower. The increase of the number

of leaders around r<0.3 is a consequence of a spatial limitation.

To explore this result further, one can imagine a region of empty

space that receives individuals at random. For low densities, the

probability of having one individual in the field of attention of

another is low. As we include more individuals the number of

leaders increases. However, for an intermediate density, those

individuals that were leaders at low densities now have new

individuals in their field of attention (and thus become followers).

In this hypothetical example, the probability of new individuals

not having any individual in their field of attention also decreases

as the density increases. When the density is at its maximum value,

it is impossible to have any leader because all individuals

necessarily see others. On the other hand, for M2, there is no

leader for any density value because a potential leader reorients its

field of attention and connects at least with its follower. However,

there is also a valley present in Fig. 7 for M2 m = 3.2, when r is

around 0.6. We have observed that this valley is present for m,3.5

(that corresponds to the periodic orbits). Similarly to the previous

analysis, we looked for a network characteristic dependent only on

density. We found that the number of individuals with at least one

bidirectional coupling increases in this valley (Fig. 8). For this

region, the average number of bidirectional couplings per

individual is higher than 2. Contrary to the previous analysis, it

is unclear whether two or more bidirectional couplings reduce

synchronization. In fact, this effect is present just for periodic

orbits and the loss of synchronization is fairly smooth (Fig. 7,

m = 3.2). We also counted the average number of individuals in the

unlinked groups as function of density and confirmed that group

size increases with density, without notable distribution changes in

the valley.

Discussion

In the present study, we provide the first effort to model

explicitly the phenomenon of synchronization of male waving

displays in fiddler crabs. Our study is particularly novel given that

two of the main characteristics of models – the lack of migration

and the restriction of spatial interactions to circular sectors – have

not been explored hitherto in the biological literature. In

particular, we explored two alternative spatial models for the

synchronization of waving displays with limited attention angle:

either with random field of attention orientation (M1) or with

males preferentially orienting their field of attention toward their

neighbors (M2). We have also approached 360u attention vision

(M1 = M2). Although synchronization was possible for all scenarios

both M1 and M2, the possibility of limited field of attention with

reorientation had a profound influence on the resulting behaviors.
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First, M2 led to increased clustering in interaction networks and

more defined synchronization neighborhoods than M1 and

M1 = M2 (360u) (Fig. 7). This indicates that directing attention

to the whole 360u visual field at a time leads to a decrease in the

level of synchrony. In natural conditions, it is common for small

groups of synchronic waving males to form around a passing

female while other males outside the group wave out of synchrony

[22,24,25]. The formation of groups is evidence that the visual

information coming from it (waving males) is the one that triggers

the response of the observer to wave in synchrony, in contrast to

the visual information coming from waving males from outside the

synchronic group [59]. Therefore, despite evidence that fiddler

crabs respond to certain visual objects over others, this is not prove

of the existence and extent of angles of attention. Our results

suggest that fiddler crabs have selective attention, given that M2

facilitates synchronization. However, the predictions from this

study together with the available data on fiddler crab visual

systems tested against empirical data should clarify the complexity

of surrounding perception particularly toward conspecifics during

synchrony. Determining the extent of visual attention is important

to further understand the formation of waving neighborhoods in

fiddler crabs.

Synchronization was considerably more robust in M2 than in

M1 = M2 and M1 with respect to increases in m, in other words

waving complexity (Fig. 6). In nature, it is known that some species

increase wave complexity and conspicuousness when seeing an

approaching female [e.g. 60, 61]. However, according to the data

shown in this study, synchrony decreases with the increase in

display complexity. Therefore, species that respond by increasing

both complexity and conspicuousness such as Uca leptodactyla (Perez

personal observation) and U. perplexa [25,61], probably face greater

challenges in attracting mates. If cautiously analyzed, waving

complexity (m) is an interesting pattern given its potential to be

tested against the diversity in standardized waving displays found

in the genus [10,62–66]. Therefore, future research on modeling

waving synchrony could adjust m according to the studied species.

Moreover, M1, M2 and M1 = M2 also show different predic-

tions with respect to the relation between density (r) and the level

of synchronization (r), which tends to be much lower at

intermediate densities in M1 (Fig. 7). In order to unveil the

influence of density on synchrony, empirical data with density

manipulation of synchronic males is needed. Investigations of the

type are already been conducted and should reveal the unfavor-

able densities for synchronization. Additionally, coupling (D) is

another factor that showed unexpected patterns where its increase

does not always result in higher synchrony (r). In fact, the influence

of other waving crabs in field might be a highly complex and

variable aspect [67,68].

Given the 360u fiddler crab’s visual field [12,41–43], M1 is less

likely to happen in nature, especially regarding a fixed field of

attention that is randomly oriented. Additionally, in contrast to

M2 and M1 = M2, M1 is the only case presenting the leader-

follower coupling where the leader does not see another crab (fig. 8;

see results). Fiddler crabs have an interesting framework where

females likely chose males that wave first in a synchronic group as

an indicator of male quality [24,25,30,32,33,67]. Considering that

this very unlikely visually limited situation is set, maybe due to

physical visual barriers, where one male waves alone without

seeing the others that follow him, a passing female which could

assess all crabs in this group would chose the leader, even if all

males in the synchronic group have same physical strength and

stamina. Selecting the leader in this particular case would not

mean that the female is choosing the fittest.

The remarkable simplification of the model is to assume that all

males are equivalent. Small variations in the wave displacement (m)

and in the influence of other individuals on the wave (D) could

encompass intraspecific variations and better represent waving

leadership. Although is very unlikely that attention is focused on

certain sectors, defined by angles in this study, the model does not

consider that the individuals move through space, so it is

reasonable to assume that it serves effectively as attention towards

objects.

Recent years have witnessed a strong interest in understanding

collective behaviors in animal groups, such as ant colonies, bird

flocks and fish schools [7]. The synchronization in waving displays

in fiddler crabs provides an ideal model system to investigate

collective behaviors on a simple two-dimensional space, given the

relatively small scale of the phenomenon and the simplicity in the

individual behaviors. Moreover, the large number of species and

the remarkable interspecific variation in waving displays them-

selves [65,66] indicate the possibility of phylogenetic comparisons

that would allow for a window into how self-organized behaviors

can evolve as species adapt to varying ecologies.
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